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Preface

This book on Principles of Physics is intended to serve fundamental college
courses in scientific curricula.

Physics is one of the most important tools to aid undergraduates, graduates, and
researchers in their technical fields of study. Without it many phenomena cannot
be described, studied, or understood. The topics covered here will help students
interpret such phenomena, ultimately allowing them to advance in the applied
aspects of their fields.

The goal of this text is to present many key concepts in a clear and concise, yet
interesting way, making use of practical examples and attractively colored illustrations
whenever appropriate to satisfy the needs of today’s science and engineering students.

Some of the examples, proofs, and subsections in this textbook have been identified
as optional and are preceded with an asterisk *. For less intensive courses these optional
portions may be omitted without significantly impacting the objectives of the chapter.
Additional material may also be omitted depending on the course’s requirements.

The first author taught the material of this book in many universities in the
Middle East for almost four decades. Depending on the university, he leveraged
different international textbooks, resources, and references. These used different
approaches, but were mainly written in an expansive manner delivering a plethora
of topics while targeting students who wanted to dive deeply into the subject
matter. In this textbook, however, the authors introduce a large subset of these
topics but in a more simplified manner, with the intent of delivering these topics
and their key facts to students all over the world and in particular to students in the
Middle East and neighboring regions where English may not be the native lan-
guage. The second author went over the entire text with the background of study
and/or teaching at Caltech, UC Berkeley, and Yale.

Instructors teaching from this textbook will be able to gain online access from
the publisher to the solutions manual, which provides step-by-step solutions to all
exercises contained in the book. The solutions manual also contains many tips,
colored illustrations, and explanations on how the solutions were derived.
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Fundamental Basics



Dimensions and Units 1

The laws of physics are expressed in terms of basic quantities that require a clear

definition for the purpose of measurements. Among these measured quantities are

length, time, mass, temperature, etc.

In order to describe any physical quantity, we first have to define a unit of

measurement (which was among the earliest tools invented by humans), i.e. a mea-

sure that is defined to be exactly 1.0. After that, we define a standard for this quantity,

i.e. a reference to compare all other examples of the same physical quantity.

1.1 The International System of Units

Seven physical quantities have been selected as base quantities in the 14th General

Conference on Weights and Measurements, held in France in 1971. These quantities

form the basis of the International System of Units, abbreviated SI (from its French

name Système International) and popularly known as the metric system. Table 1.1

depicts these quantities, their unit names, and their unit symbols.

Many SI derived units are defined in terms of the first three quantities of Table 1.1.

For example, the SI unit for force, called the newton (abbreviated N), is defined in

terms of the base units of mass, length, and time. Thus, as we will see from the study

of Newton’s second law, the unit of force is given by:

1 N = 1 kg.m/s2 (1.1)

When dealing with very large or very small numbers in physics, we use the

so-called scientific notation which employs powers of 10, such as:

H. A. Radi and J. O. Rasmussen, Principles of Physics, 3
Undergraduate Lecture Notes in Physics, DOI: 10.1007/978-3-642-23026-4_1,
© Springer-Verlag Berlin Heidelberg 2013
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3 210 000 000 m = 3.21 × 109 m (1.2)

0.000 000 789 s = 7.89 × 10−7 s (1.3)

Table 1.1 The seven independent SI base units

Quantity Unit name Unit symbol

Length Meter m

Time Second s

Mass Kilogram kg

Temperature Kelvin K

Electric current Ampere A

Amount of substance Mole mol

Luminous intensity Candela cd

An additional convenient way to deal with very large or very small numbers in

physics is to use the prefixes listed in Table 1.2. Each one of these prefixes represents

a certain power of 10.

Table 1.2 Prefixes for SI unitsa

Factor Prefix Symbol Factor Prefix Symbol

1024 yotta- Y 10−24 yocto- y

1021 zeta- Z 10−21 zepto- z

1018 exa- E 10−18 atto- a

1015 peta- P 10−15 femto- f

1012 tera- T 10−12 pico- p

109 giga- G 10−9 nano- n

106 mega- M 10−6 micro- µ

103 kilo- k 10−3 milli- m

102 hecta- h 10−2 centi- c

101 deca- da 10−1 deci- d
a The most commonly used prefixes are shown in bold face type

Accordingly, we can express a particular magnitude of force as:

1.23 × 106 N = 1.23 mega newtons

= 1.23 MN
(1.4)
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or a particular time interval as:

1.23 × 10−9 s = 1.23 nano seconds

= 1.23 ns
(1.5)

We often need to change units in which a physical quantity is expressed. We

do that by using a method called chain-link conversion, in which we multiply by a

conversion factor that equals unity. For example, because 1 minute and 60 seconds

are identical time intervals, then we can write:

1 min

60 s
= 1 and

60 s

1 min
= 1 (1.6)

This does not mean that 1
60 = 1 or 60 = 1, because the number and its unit must be

treated together.

Example 1.1

Convert the following: (a) 1 kilometer per hour to meter per second, (b) 1 mile

per hour to meter per second, and (c) 1 mile per hour to kilometer per hour [to a

good approximation 1mi = 1.609 km].

Solution: (a) To convert the speed from the kilometers per hour unit to meters

per second unit, we write:

1 km/h =
(

1
km

h

)
×

(
103 m

1 km

)
×

(
1 h

60 × 60 s

)
= 0.2777...

m

s
= 0.278 m/s

(b) To convert from miles per hour to meters per second, we write:

1 mi/h =
(

1
mi

h

)
×

(
1609 m

1 mi

)
×

(
1 h

60 × 60 s

)
= 0.447

m

s
= 0.447 m/s

(c) To convert from miles per hour to kilometers per hour, we write:

1mi/h =
(

1
mi

h

)
×

(
1.609 km

1 mi

)
= 1.609

km

h
= 1.609 km/h

1.2 Standards of Length, Time, and Mass

Definitions of the units of length, time, and mass are under constant review and are

changed from time to time. We only present in this section the latest definitions of

those quantities.



6 1 Dimensions and Units

Length (L)

In 1983, the precision of the meter was redefined as the distance traveled by a light

wave in vacuum in a specified time interval. The reason is that the measurement of

the speed of light has become extremely precise, so it made sense to adopt the speed

of light as a defined quantity and to use it to redefine the meter. In the words of the

17th General Conference on Weights and Measurements:

One Meter

One meter is the distance traveled by light in vacuum during the time interval

of 1/299 792 458 of a second.

This time interval number was chosen so that the speed of light in vacuum c will be

exactly given by:

c = 299 792 458 m/s (1.7)

For educational purposes we usually consider the value c = 3 × 108 m/s.

Table 1.3 lists some approximate interesting lengths.

Table 1.3 Some approximate

lengths
Length Meters

Distance to farthest known galaxy 4 × 1025

Distance to nearest star 4 × 1016

Distance from Earth to Sun 1.5 × 1011

Distance from Earth to Moon 4 × 108

Mean radius of Earth 6 × 106

Wave length of light 5 × 10−7

Radius of hydrogen atom 5 × 10−11

Radius of proton 1 × 10−15

Time (T)

Recently, the standard of time was redefined to take advantage of the high-precision

measurements that could be obtained by using a device known as an atomic clock.

Cesium is most common element that is typically used in the construction of atomic

clocks because it allows us to attain high accuracy.
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Since 1967, the International System of Measurements has been basing its unit

of time, the second, on the properties of the isotope cesium-133 (133
55Cs). One of the

transitions between two energy levels of the ground state of 133
55Cs has an oscil-

lation frequency of 9 192 631 770 Hz, which is used to define the second in SI

units. Using this characteristic frequency, Fig. 1.1 shows the cesium clock at the

National Institute of Standards and Technology. The uncertainty is about 5 × 10−16

(as of 2005). Or about 1 part in 2 × 1015. This means that it would neither gain nor

lose a second in 64 million years.

One Second

One second is the time taken for the cesium atom 133
55Cs to perform

9 192 631 770 oscillations to emit radiation of a specific wavelength

Fig. 1.1 The cesium atomic

clock at the National Institute

of Standards and Technology

(NIST) in Boulder, Colorado

(photo with permission)

Table 1.4 lists some approximate interesting time intervals.

Table 1.4 Some approximate

time intervals
Time intervals Seconds

Lifetime of proton (predicted) 1 × 1039

Age of the universe 5 × 1017

Age of the Earth 1.3 × 1017

Period of one year 3.2 × 107

Time between human heartbeats 8 × 10−1

Period of audible sound waves 1 × 10−3

Period of visible light waves 2 × 10−15

Time for light to cross a proton 3.3 × 10−24
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Mass (M)

The Standard Kilogram

A cylindrical mass of 3.9 cm in diameter and of 3.9 cm in height and made of an unusu-

ally stable platinum-iridium alloy is kept at the International Bureau of Weights and

Measures near Paris and assigned in the SI units a mass of 1 kilogram by international

agreement, see Fig. 1.2.

One Kilogram

The SI unit of mass, 1 kilogram, is defined as the mass of a platinum-iridium

alloy cylinder kept at the International Bureau of Weights and Measures in

France.

Fig. 1.2 The standard

1 kilogram of mass is a

platinum-iridium cylinder

3.9 cm in height and diameter

and kept under a double bell

jar at the International Bureau

of Weights and Measures in

France

Accurate copies of this standard 1 kilogram have been sent to standardizing lab-

oratories in other countries. Table 1.5 lists some approximate mass values of various

interesting objects.

A Second Standard Mass

Atomic masses can be compared with each other more precisely than the kilogram.

By international agreement, the carbon-12 atom, 12
6C, has been assigned a mass of

12 atomic mass units (u), where:

1 u = (1.660 540 2 ± 0.000 001 0) × 10−27 kg (1.8)

Experimentally, with reasonable precision, all masses of other atoms can be measured

relative to the mass of carbon-12.
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Table 1.5 Mass of various

objects (approximate values)
Object Kilogram

Known universe (predicted) 1 × 1053

Our galaxy the milky way (predicted) 2 × 1041

Sun 2 × 1030

Earth 6 × 1024

Moon 7 × 1022

Small mountain 1 × 1012

Elephant 5 × 103

Human 7 × 101

Mosquito 1 × 10−5

Bacterium 1 × 10−15

Uranium atom 4 × 10−25

Proton 2 × 10−27

Electron 9 × 10−31

1.3 Dimensional Analysis

Throughout your experience, you have been exposed to a variety of units of length;

the SI meter, kilometer, and millimeter; the English units of inches, feet, yards,

and miles, etc. All of these derived units are said to have dimensions of length,

symbolized by L. Likewise, all time units, such as seconds, minutes, hours, days,

years, and centuries are said to have dimensions of time, symbolized by T. The

kilogram and all other mass units have dimensions of mass, symbolized by M.

In general, we may take the dimension (length, time, and mass) as the concept of the

physical quantity.

From the three fundamental physical quantities of length L, time T, and mass M,

we can derive a variety of useful quantities. Derived quantities have different dimen-

sions from the fundamental quantities. For example, the area obtained by multiplying

one length by another has the dimension L2. Volume has the dimension L3. Mass

density is defined as mass per unit volume and has the dimension M/L3. The SI unit

of speed is meters per second (m/s) with the dimension L/T.

The concept of dimensionality is important in understanding physics and in solv-

ing physics problems. For example, the addition or subtraction of quantities with

different dimensions makes no sense, i.e. 2 kg plus 8 s is meaningless. Actually, phys-

ical equations must be dimensionally consistent. For example, the equation giving

the position of a freely falling body (see Chap. 3) is giving by:
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x = v◦ t + 1

2
g t2 (1.9)

where x is the position (length), v◦ the initial speed (length/time), g is the acceleration

due to gravity (length/time2), and t is time. If we analyze the equation dimensionally,

we have:

L = L

T
× T + L

T2 × T2 = L + L (Dimensional analysis)

Note that every term of this equation has the dimension of length L. Also note

that numerical factors, such as 1
2 in Eq. 1.9, are ignored in dimensional analysis

because they have no dimension. Dimensional analysis is useful since it can be used

to catch careless errors in any physical equation. On the other hand, Eq. 1.9 may be

correct with respect to dimensional analysis, but could still be wrong with respect to

dimensionless numerical factors.

If we had incorrectly written Eq. 1.9 as follows:

x = v◦ t2 + 1

2
g t (1.10)

Then, by analyzing this equation dimensionally, we have:

L = L

T
× T2 + L

T2 × T
(Dimensional analysis)

= L

T
× T × T + L

T × T
× T

and finally we get: L = LT+ L

T
(Dimensional analysis)

Dimensionally, Eq 1.10 is meaningless, and thus cannot be correct.

Example 1.2

Use dimensional analysis to show that the expression v = v◦+ at is dimensionally

correct, where v and v◦ represent velocities, a is acceleration, and t is a time

interval.

Solution: Since L/T is the dimension of v and v◦, and the dimension of a is

L/T2, then when we analyze the equation v = v◦ + at dimensionally, we have:

L

T
= L

T
+ L

T2 × T

(Dimensional analysis)

= L

T
+ L

T × T
× T
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and finally we get:
L

T
= L

T
+ L

T
(Dimensional analysis)

Thus, the expression v = v◦ + at is dimensionally correct.

Example 1.3

A particle moves with a constant speed v in a circular orbit of radius r, see the

figure below. Given that the magnitude of the acceleration a is proportional to

some power of r, say rm, and some power of v,say vn, then determine the powers

of r and v.

v

a

r

Solution: Assume that the variables of the problem can be expressed mathemat-

ically by the following relation:

a = k rmvn,

where k is a dimensionless proportionality constant. With the known dimensions

of r, v, and a we analyze the dimensions of the above relation as follows:

L

T2 = Lm ×
(

L

T

)n

= Lm+n

Tn (Dimensional analysis)

This dimensional equation would be balanced, i.e. the dimensions of the right

hand side equal the dimensions of the left hand side only when the following two

conditions are satisfied:

m + n = 1,

and n = 2.

Thus: m = −1.
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Therefore, we can rewrite the acceleration as follows:

a = k r−1v2 = k
v 2

r

When we later introduce uniform circular motion in Chap. 4, we shall see that

k = 1 if SI units are used. However, if for example we choose a to be in m/s2 and

v to be in km/h, then k would not be equal to one.

1.4 Exercises

Section 1.1 The International System of Units

(1) Use the prefixes introduced in Table 1.2 to express the following: (a) 103 lambs,

(b) 106 bytes, (c) 109 cars, (d) 1012 stars, (e) 10−1 Kelvin, (f) 10−2 meter,

(g) 10−3 ampere, (h) 10−6 newton, (i) 10−9 kilogram, (j) 10−15 second.

Section 1.2 Standards of Length, Time, and Mass

Length

(2) The original definition of the meter was based on distance from the North pole

to the Earth’s equator (measures along the surface) and was taken to be 107 m.

(a) What is the circumference of the Earth in meters? (b) What is the radius

of the Earth in meters, (c) Give your answer to part (a) and part (b) in miles.

(d) What is the circumference of the Earth in meters assuming it to be a sphere

of radius 6.4 × 106 m? Compare your answer to part (a)

(3) The time of flight of a laser pulse sent from the Earth to the Moon was measured

in order to calculate the Earth-Moon distance, and it was found to be 3.8 ×
105 km. (a) Express this distance in miles, meters, centimeters, and millimeters.

(4) A unit of area, often used in measuring land areas, is the hectare, defined as

104 m2. An open-pit coal mine excavates 75 hectares of land, down to a depth

of 26 m, each year. What volume of Earth, in cubic kilometers, is removed

during this time?

(5) The units used by astronomers are appropriate for the quantities they usually

measure. As an example, for planetary distances they use the astronomical
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unit (AU), which is equal to the mean Earth-Sun distance (1.5 × 1011 m). For

stellar distances they use the light-year (1 ly = 9.461 × 1012 km), which is the

distance that light travels in 1 yr (1 yr = 365.25 days = 3.156 × 107 s) with a

speed of 299 792 458 m/s. They use also the parsec (pc), which is equal to 3.26

light-years. Intergalactic distances might be described with a more appropriate

unit called the megaparsec. Convert the following to meters and express each

with an appropriate metric prefix: (a) The astronomical unit, (b) The light-year,

(c) The parsec, and (d) The megaparsecs.

(6) When you observe a total solar eclipse, your view of the Sun is obstructed by

the Moon. Assume the distance from you to the Sun (ds) is about 400 times the

distance from you to the Moon (dm). (a) Find the ratio of the Sun’s radius to the

Moon’s radius. (b) What is the ratio of their volumes? (c) Hold up a small coin

so that it would just eclipse the full Moon, and measure the distance between

the coin and your eye. From this experimental result and the given distance

between the Moon and the Earth (3.8 × 105 km), estimate the diameter of the

Moon.

(7) Assume a spherical atom with a spherical nucleus where the ratio of the

radii is about 105. The Earth’s radius is 6.4 × 106 m. Suppose the ratio of the

radius of the Moon’s orbit to the Earth’s radius (3.8 × 105 km) were also 105.

(a) How far would the Moon be from the Earth’s surface? (b) How does this

distance compare with the actual Earth-Moon distance given in exercise 6?

Time

(8) Using the day as a unit, express the following: (a) The predicted life time of

proton, (b) The age of universe, (c) The age of the Earth, (d) The age of a

50-year-old tree.

(9) Compare the duration of the following: (a) A microyear and a 1-minute TV

commercial, and (b) A microcentury and a 60-min TV program.

(10) Convert the following approximate maximum speeds from km/h to mi/h:

(a) snail (5 × 10−2 km/h), (b) spider (2 km/h), (c) human (37 km/h),(d) car

(220 km/h), and (e) airplane (1,000 km/h).

(11) A 12-hour-dial clock happens to gain 0.5 min each day. After setting the clock

to the correct time at 12:00 noon, how many days must one wait until it again

indicates the correct time?
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(12) Is a cesium clock sufficiently precise to determine your age (assuming it is

exactly 19 years, not a leap year) within 10−6 s? How about within 10−3s?

(13) The slowing of the Earth’s rotation is measured by observing the occurrences

of solar eclipses during a specific period. Assume that the length of a day is

increasing uniformly by 0.001 s per century. (a) Over a span of 10 centuries,

compare the length of the last and first days, and find the average difference.

(b) Find the cumulative difference on the measure of a day over this period.

Mass

(14) A person on a diet loses 2 kg per week. Find the average rate of mass loss in

milligrams every: day, hour, minute, and second.

(15) Density is defined as mass per unit volume. If a crude estimation of the average

density of the Earth was 5.5 × 103 kg/m3 and the Earth is considered to be a

sphere of radius 6.37 × 106 m, then calculate the mass of the Earth.

(16) A carbon-12 atom (12
6 C) is found to have a mass of 1.992 64 × 10−26 kg. How

many atoms of 12
6 C are there in: (a) 1 kg? (b) 12 kg? (This number is Avogadro’s

number in the SI units.)

(17) A water molecule (H2O) contains two atoms of hydrogen (1
1H), each of which

has a mass of 1 u, and one atom of oxygen (16
8 O), that has a mass 16 u, approx-

imately. (a) What is the mass of one molecule of water in units of kilograms?

(b) Find how many molecules of water are there in the world’s oceans, which

have an estimated mass of 1.5 × 1021 kg?

(18) Density is defined as mass per unit volume. The density of iron is 7.87 kg/m3,

and the mass of an iron atom is 9.27×10−26 kg. If atoms are cubical and tightly

packed, (a) What is the volume of an iron atom, and (b) What is the distance

between the centers of two adjacent atoms.

Section 1.3 Dimensional Analysis

(19) A simple pendulum has periodic time T given by the relation:

T = 2π
√

L/g

where L is the length of the pendulum and g is the acceleration due to gravity

in units of length divided by the square of time. Show that this equation is

dimensionally correct.
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(20) Suppose the displacement s of an object moving in a straight line under uniform

acceleration a is giving as a function of time by the relation s = kamtn, where

k is a dimensionless constant. Use dimensional analysis to find the values of

the powers m and n.

(21) Using dimensional analysis, determine if the following equations are dimen-

sionally correct or incorrect: (a) v2 = v2◦ + 2a s, (b) s = s◦ + v◦ t + 1
2 a t2,

(c) s = s◦ cos kt, where k is a constant that has the dimension of the inverse of

time.

(22) Newton’s second law states that the acceleration of an object is directly propor-

tional to the force applied and inversely proportional to the mass of the object.

Find the dimensions of force and show that it has units of kg·m/s2 in terms of

SI units.

(23) Newton’s law of universal gravitation is given by F = Gm1m2/r2, where F is

the force of attraction of one mass, m1, upon another mass, m2, at a distance r.

Find the SI units of the constant G.



Vectors 2

When a particle moves in a straight line, we can take its motion to be positive in one

specific direction and negative in the other. However, when this particle moves in

three dimensions, plus or minus signs are no longer enough to specify the direction

of motion. Instead, we must use a vector.

2.1 Vectors and Scalars

A vector has magnitude and direction, examples being displacement (change of

position), velocity, acceleration, etc. Actually, not all physical quantities involve

direction, examples being temperature, mass, pressure, time, etc. These physical

quantities are not vectors because they do not point in any direction, and we call

them scalars.

A vector, such as a displacement vector, can be represented graphically by an

arrow denoting the magnitude and direction of the vector. All arrows of the same

direction and magnitude denote the same vector, as in Fig. 2.1a for the case of a

displacement vector.

The displacement vector in Fig. 2.1b tells us nothing about the actual path taken

from point A to B. Thus, displacement vectors represent only the overall effect of the

motion, not the motion itself.

Another way to specify a vector is to determine its magnitude and the angle it

makes with a reference direction, as in Example 2.1.

H. A. Radi and J. O. Rasmussen, Principles of Physics, 17
Undergraduate Lecture Notes in Physics, DOI: 10.1007/978-3-642-23026-4_2,
© Springer-Verlag Berlin Heidelberg 2013
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Fig. 2.1 (a) Three vectors of

the same direction and

magnitude represent the same

displacement. (b) All three

paths connecting the two

points A and B correspond to

the same displacement vector

A1

B1

A

B

A2

B2

A

B

(a) (b)

Example 2.1

A person walks 3 km due east and then 2 km due north. What is his displacement

vector?

Solution: We first make an overhead view of the person’s movement as shown

in Fig. 2.2. The magnitude of the displacement d is given by the Pythagorean

theorem as follows:

d =
√

(3 km)2 + (2 km)2 = 3.61 km

The angle that this displacement vector makes relative to east is given by:

tan θ = 2 km

3 km
= 0.666...

Then: θ = tan−1(0.666...) = 33.69◦

Thus, the person’s displacement vector is 56.31◦ east of north.

Fig. 2.2

Start

End

3 km

2 km
d

θ

E

N

W

S
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2.2 Properties of Vectors

In text books, it is common to use boldface symbols to identify vectors, such as

A, B, etc., but in handwriting it is usual to place an arrow over the symbol, such as,
→
A,

→
B, etc. Throughout this text we shall use the handwriting style only and use the

italic symbols A, B, etc. to indicate the magnitude of vectors.

Equality of Vectors

The two vectors
→
A and

→
B are said to be equal if they have the same magnitude,

i.e. A = B, and point in the same direction; see for example the three equal vectors

AB, A1B1, and A2B2 in Fig. 2.1a.

Addition of Vectors

Of course, all vectors involved in any addition process must have the same units.

The rules for vector sums can be illustrated by using a graphical method. To add

vector
→
B to vector

→
A, we first draw vector

→
A on graph paper with its magnitude

represented by a convenient scale, and then draw vector
→
B to the same scale with its

tail coinciding with the arrow head of
→
A, see Fig. 2.3a. This is known as the triangle

method of addition. Thus, the resultant vector
→
R is the red vector drawn from the

tail of
→
A to the head of

→
B and is shown in the vector addition equation:

→
R = →

A + →
B , (2.1)

which says that the vector
→
R is the vector sum of vectors

→
A and

→
B . The symbol +

in Eq. 2.1 and the words “sum” and “add” have different meanings for vectors than

they do in elementary algebra of scalar numbers.

(a) (b)

A A

B

A

B

=
+

R
A

B=
+

R
A

B
B=

+
R

A
B

Fig. 2.3 (a) In the triangle method of addition, the resultant vector
→
R is the red vector that runs

from the tail of
→
A to the head of

→
B . (b) In the parallelogram method of addition, the resultant vec-

tor
→
R is the red diagonal vector that starts from the tails of both

→
A and

→
B . This method shows

that
→
A + →

B = →
B + →

A
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An alternative graphical method for adding two vectors is the parallelogram rule

of addition. In this method, we superpose the tails of the two vectors
→
A and

→
B ; then

the resultant
→
R will be the diagonal of the parallelogram that starts from the tail of

both
→
A and

→
B (which form the sides of that parallelogram), as shown in Fig. 2.3b.

Vector addition has two important properties. First, the order of addition does not

matter, and this is known as the commutative law of addition, i.e.

→
A + →

B = →
B + →

A (Commutative law) (2.2)

Second, if there are more than two vectors, their sum is independent of the way in

which the individual vectors are grouped together. This is known as the associative

law of addition, i.e.

→
A + (

→
B + →

C )= (
→
A + →

B )+ →
C (Associative law) (2.3)

The Negative of a Vector

The negative of a vector
→
B is a vector with the same magnitude which points in the

opposite direction, namely −→
B, see Fig. 2.4a. Therefore, when we add a vector and

its negative we will get zero, i.e.

→
B + (−→

B )= 0 (2.4)

Adding −→
B to

→
A has the same effect of subtracting

→
B from

→
A , see Fig. 2.4b, i.e.

→
S = →

A + (−→
B )

= →
A − →

B (2.5)

(a) (b)

B -B -B=
-

S
A

B

A

Fig. 2.4 (a) This part of the figure shows vector
→
B and its corresponding negative vector −→

B , both of

which have the same magnitude but are opposite in direction. (b) To subtract vector
→
B from vector

→
A ,

we add the vector −→
B to vector

→
A to get

→
S = →

A − →
B
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Example 2.2

A car travels 6 km due east and then 4 km in a direction 60◦ north of east. Find

the magnitude and direction of the car’s displacement vector by using: (a) the

graphical method, and (b) the analytical method.

Solution: (a) Let
→
A be a vector directed due east with magnitude A = 6 km

and
→
B be a vector directed 60◦ north of east with magnitude B = 4 km. Using

graph paper with a reasonable scale and a protractor, we draw the two vectors
→
A and

→
B ; then we measure the length of the resultant vector

→
R . The measure-

ments shown in Fig. 2.5 indicates that R = 8.7 km. Also, the angle φ that the

resultant vector
→
R makes with respect to the east direction can be measured and

will give φ = 23.4◦.

Fig. 2.5

°

Start

End

6 km
4

km

θ

E

N

W

S

60°A

B
R

φ

si
n

60
B

(b) The analytical solution for the magnitude of
→
R can be obtained from geom-

etry by using the law of cosines R = √
A2 + B2 − 2AB cos θ as applied to an

obtuse triangle with angle θ = 180◦ − 60◦ = 120◦, see exercise (10b). Thus:

R =
√

A2 + B2 − 2 AB cos θ

=
√

(6 km)2 + (4 km)2 − 2(6 km)(4 km) cos 120◦

=
√

(36 + 16 + 24) (km)2 = 8.72 km

The angle that this displacement vector
→
R makes relative to the east direction, see

Fig. 2.5, is given by:

sin φ = B sin 60◦

R
= 4 km sin 60◦

8.72 km
= 0.397

Then: φ = sin−1(0.397) = 23.41◦.
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2.3 Vector Components and Unit Vectors

Vector Components

Adding vectors graphically is not recommended in situations where high precision

is needed or in three-dimensional problems. A better way is to make use of the

projections of a vector along the axes of a rectangular coordinate system.

Consider a vector
→
A lying in the xy-plane and making an angle θ with the

positive x-axis, see Fig. 2.6. This vector
→
A can be expressed as the sum of two

vectors
→
Ax and

→
Ay called the rectangular vector components of

→
A along the x-axis

and y-axis, respectively. Thus:

→
A = →

Ax + →
Ay (2.6)

Fig. 2.6 A vector
→
A in the

xy-plane can be presented by

its rectangular vector

components
→
Ax and

→
Ay, where

→
A = →

Ax + →
Ay

θ

A

x

y

Ay

Ax

o

From the definitions of sine and cosine, the rectangular components of
→
A , namely

Ax and Ay, will be given by:

Ax = A cos θ and Ay = A sin θ , (2.7)

where the sign of the components Ax and Ay depends on the angle θ .

The magnitudes Ax and Ay form two sides of a right triangle that has a hypotenuse

of magnitude A. Thus, from Ax and Ay we get:

A =
√

A2
x + A2

y and θ = tan−1
(

Ay

Ax

)
(2.8)

The inverse tan obtained from your calculator is from −90◦ < θ < 90◦. This may

lead to incorrect answer when 90◦ < θ ≤ 360◦. A method used to achieve the correct

answer is to calculate the angle φ such as:
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φ = tan−1 (|Ay|/|Ax|
)

(2.9)

Then, depending on the signs of Ax and Ay, we identify the quadrant where the vector
→
A lies, as shown in Fig. 2.7.

x

y

|Ax|

A

ox

y

o

x

y

ox

y

o

|Ay|

|Ax|

A
|Ay| θ

|Ax|

A
|Ay|

|Ax|

A
|Ay|

θθ

Ax positiveAx negative
Ay negative

Ax positive
Ay positive

Ax negative

Ay negative

Ay positive

φ

φ

φ

θ

Quadrant IQuadrant II

Quadrant III Quadrant IV

θ ≡ φ

Fig. 2.7 The signs of Ax and Ay depend on the quadrant where the vector
→
A is located

Once we determine the quadrant, we calculate θ using Table 2.1.

Table 2.1 Calculating θ from

φ according to the signs of Ax

and Ay

Sign of Ax Sign of Ay Quadrant Angle θ

+ + I θ = φ

− + II θ = 180◦ − φ

− − III θ = 180◦ + φ

+ − IV θ = 360◦ − φ

Unit Vectors

A unit vector is a dimensionless vector that has a magnitude of exactly one and points

in a particular direction, and has no other physical significance. The unit vectors in
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the positive direction of the x, y, and z axes of a right-handed coordinate system

are often labeled
→
i ,

→
j , and

→
k , respectively; see Fig. 2.8. The magnitude of each unit

vector equals unity; that is:

|→i | = |→j | = |→k | = 1 (2.10)

x

yox

y

o
OR

Z

Z

i

k

j

i

jk

Fig. 2.8 Unit vectors
→
i ,

→
j , and

→
k define the direction of the commonly-used right-handed coordinate

system

Consider a vector
→
A lying in the xy-plane as shown in Fig. 2.9. The product

of the component Ax and the unit vector
→
i is the vector

→
Ax = Ax

→
i , which is paral-

lel to the x-axis and has a magnitude Ax. Similarly,
→
Ay = Ay

→
j is a vector parallel

to the y-axis and has a magnitude Ay. Thus, in terms of unit vectors we write
→
A

as follows:

→
A = Ax

→
i + Ay

→
j (2.11)

Fig. 2.9 A vector
→
A in the

xy-plane can be represented by

its rectangular components Ax

and Ay and the unit vectors
→
i and

→
j , and can be written

as
→
A = Ax

→
i + Ay

→
j

A

x

y

Ax i
o

Ay j

This method can be generalized to three-dimensional vectors as:

→
A = Ax

→
i + Ay

→
j + Az

→
k (2.12)



2.3 Vector Components and Unit Vectors 25

We can define a unit vector →n along any vector, say,
→
A, as follows:

→n =
→
A

A
. (2.13)

Adding Vectors by Components

Suppose we wish to add the two vectors
→
A = Ax

→
i + Ay

→
j and

→
B = Bx

→
i + By

→
j

using the components method, such as:

→
R = →

A + →
B

= (Ax
→
i + Ay

→
j ) + (Bx

→
i + By

→
j )

= (Ax + Bx)
→
i + (Ay + By)

→
j (2.14)

If the vector sum
→
R is denoted by

→
R = Rx

→
i + Ry

→
j , then the components of the

resultant vector will be given by:

Rx = Ax + Bx

Ry = Ay + By

(2.15)

The magnitude of
→
R can then be obtained from its components or the components

of
→
A and

→
B using the following relationships:

R =
√

R2
x + R2

y =
√

(Ax + Bx)2 + (Ay + By)2 (2.16)

and the angle that
→
R makes with the x-axis can also be obtained by using the fol-

lowing relationships:

θ = tan−1
(

Ry

Rx

)
= tan−1

(
Ay + By

Ax + Bx

)
(2.17)

The components method can be verified using the geometrical method, as shown in

Fig. 2.10.

If
→
A = Ax

→
i +Ay

→
j +Az

→
k and

→
B = Bx

→
i +By

→
j +Bz

→
k, then we can generalize

the previous case to three dimensions as follows:

→
R = →

A + →
B = (Ax + Bx)

→
i + (Ay + By)

→
j + (Az + Bz)

→
k

= Rx
→
i + Ry

→
j + Rz

→
k (2.18)
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Fig. 2.10 Geometric

representation of the sum of

the two vectors
→
A and

→
B ,

showing the relationship

between the components of the

resultant
→
R and the

components of
→
A and

→
B

x

y

o
i

j

BR

Ax

Rx

Bx

By 

Ay 

Ry 

A

θ

Example 2.3

Find the sum of the following two vectors:

→
A = 8

→
i + 3

→
j

→
B = −5

→
i − 7

→
j

For convenience, the units of the two vectors have been omitted, but for instance,

you may take them to be kilometers.

Solution: The two vectors lie in the xy-plane, since there is no component

in the z-axis. By comparing the two expressions of
→
A and

→
B with the gen-

eral relations
→
A = Ax

→
i + Ay

→
j and

→
B = Bx

→
i + By

→
j we see that, Ax = 8,

Ay = 3, Bx = − 5, and By = − 7. Therefore, the resultant vector R is obtained by

using Eq. 2.14 as follows:

→
R = →

A + →
B = (Ax + Bx)

→
i + (Ay + By)

→
j

= (8 − 5)
→
i + (3 − 7)

→
j = 3

→
i − 4

→
j

That is: Rx = 3 and Ry = −4. The magnitude of
→
R is given according to

Eq. 2.16 as:

R =
√

R2
x + R2

y =
√

(3)2 + (−4)2 = √
9 + 16 = √

25 = 5
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while the value of the angle θ that
→
R makes with the positive x-axis is given

according to Eq. 2.17 as:

θ = tan−1
(

Ry

Rx

)
= tan−1

(−4

3

)
= 360◦ − tan−1

(
4

3

)
= 360◦ − 53◦ = 307◦

where we used Table 2.1 to calculate θ in case of negative Ry (Q IV).

2.4 Multiplying Vectors

Multiplying a Vector by a Scalar

If we multiply vector
→
A by a scalar a we get a new vector

→
B , i.e.

→
B = a

→
A (2.19)

The vector
→
B has the same direction as

→
A if a is positive but has the opposite

direction if a is negative. The magnitude of
→
B is the product of the magnitude of

→
A

and the absolute value of a.

The Scalar Product (or the Dot Product)

The scalar product of the two vectors
→
A and

→
B is denoted by

→
A •

→
B and is

defined as:

→
A •

→
B = AB cos θ (2.20)

where A and B are the magnitudes of the two vectors
→
A and

→
B , and θ is the angle

between them, see Fig. 2.11. The two angles θ and 360◦ − θ could be used, since

their cosines are the same. As we see from Eq. 2.20, the result of
→
A •

→
B is a scalar

quantity, and is known as the dot product from its notation. Also, we get:

→
A •

→
B = AB cos θ =

⎧⎪⎪⎨
⎪⎪⎩

+AB if θ = 0◦

0 if θ = 90◦

−AB if θ = 180◦
(2.21)

According to Fig. 2.11, the dot product can be regarded as the product of the

magnitude of one of the vectors with the scalar component of the second along the

direction of the first. That is:
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A

B

A
B

A

B
θθ θ
cos

A
θ

co
s

B

θ

Fig. 2.11 The left part shows two vectors
→
A and

→
B , with an angle θ between them. The middle and

the right parts show the component of each vector along the other

→
A •

→
B = (A cos θ)B = A(B cos θ) (2.22)

This indicates that scalar products obey the commutative and associative laws, so

that:

→
A •

→
B = →

B •
→
A (Commutative law) (2.23)

→
A • (

→
B + →

C ) = →
A •

→
B + →

A •
→
C (Associative law) (2.24)

By applying the definition of dot product to the unit vectors
→
i ,

→
j , and

→
k, we get the

following:

→
i •

→
i = →

j •
→
j = →

k •
→
k = 1

→
i •

→
j = →

i •
→
k = →

j •
→
k = 0 , (2.25)

where the angle between any two identical unit vectors is 0◦ and the angle between

any two different unit vectors is 90◦.

When two vectors are written in terms of the unit vectors
→
i,

→
j, and

→
k, then to

get their dot product, each component of the first vector is to be dotted into each

component of the second vector. After that, we use Eq. 2.25 to get the following:

→
A •

→
B = (Ax

→
i + Ay

→
j + Az

→
k ) • (Bx

→
i + By

→
j + Bz

→
k )

= AxBx + AyBy + AzBz (2.26)

Thus, from Eqs. 2.20 and 2.26, we can generally write the dot product as

follows:

→
A •

→
B = A B cos θ = AxBx + AyBy + AzBz (2.27)
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Example 2.4

Find the angle between the vector
→
A = 8

→
i +3

→
j and the vector B = −5

→
i −7

→
j .

Solution: Since A =
√

A2
x + A2

y and B =
√

B2
x + B2

y , then using the dot product

given by Eq. 2.20 we get:

→
A •

→
B = AB cos θ =

√
82 + 32 ×

√
(−5)2 + (−7)2 cos θ

= 8.544 × 8.60 cos θ

= 73.5 cos θ

Keeping in mind that there is no component for
→
A and

→
B along the z-axis, we

can find the dot product from Eq. 2.26 as follows:

→
A •

→
B = AxBx + AyBy + AzBz

= 8 × (−5) + 3 × (−7) + 0 × 0

= −61

Equating the results of the last two steps to each other, we find:

73.5 cos θ = −61

Thus:

θ = cos−1
(−61

73.5

)
= 146.1◦.

The Vector Product (or the Cross Product)

The vector product of the two vectors
→
A and

→
B is denoted by

→
A × →

B and defined

as a third vector
→
C whose magnitude is:

C = AB sin θ , (2.28)

where θ is the smaller angle between
→
A and

→
B (hence, 0 ≤ sin θ ≤ 1). The direction

of
→
C is perpendicular to the plane that contains both

→
A and

→
B, and can be determined

by using the right-hand rule, see Fig. 2.12. To apply this rule, we allow the tail of
→
A to coincide with the tail of

→
B, then the four fingers of the right hand are pointed

along
→
A and then “wrapped” into

→
B through the angle θ. The direction of the erect
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right thumb is the direction of
→
C, i.e. the direction of

→
A × →

B. Also, the direction of
→
C is determined by the direction of advance of a right-handed screw as shown in

Fig. 2.12.

Right-hand rule
Direction

of Advance

A

B

C = BA

θ

Fig. 2.12 The vector product
→
A ×→

B is a third vector
→
C that has a magnitude of AB sin θ and a direction

perpendicular to the plane containing the vectors
→
A and

→
B . Its sense is determined by the right-hand rule

or the direction of advance of a right-handed screw

The vector product definition leads to the following properties:

1. The order of vector product multiplication is important; that is:

→
A × →

B = −(
→
B × →

A ) (2.29)

which is unlike the scalar product and can be easily verified with the right-hand

rule.

2. If
→
A is parallel to

→
B (that is, θ = 0◦) or

→
A is antiparallel to

→
B (that is, θ =

180◦), then:

→
A × →

B = 0 (if
→
A is parallel or antiparallel to

→
B ) (2.30)

3. If
→
A is perpendicular to

→
B , then:

| →
A × →

B | = AB (if
→
A ⊥ →

B ) (2.31)

4. The vector product obeys the distributive law, that is:

→
A × (

→
B + →

C ) = →
A × →

B + →
A × →

C (Distributive law) (2.32)

5. The derivative of
→
A × →

B with respect to any variable such as t is:

d

dt
(
→
A × →

B ) = →
A × d

→
B

dt
+ d

→
A

dt
× →

B (2.33)
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6. From the definition of the vector product and the unit vectors
→
i ,

→
j , and

→
k, we

get the following relationships:

→
i × →

i = →
j × →

j = →
k × →

k = 0 (2.34)

→
i × →

j = →
k,

→
j × →

k = →
i ,

→
k × →

i = →
j (2.35)

The last relations can be obtained by setting the unit vectors
→
i ,

→
j , and

→
k on

a circle, see Fig. 2.13, and rotating in a clockwise direction to find the cross

product of one unit vector with another. Rotating in a counterclockwise direction

will involve a negative sign of the cross product of one unit vector with another,

that is:

→
i × →

k = −→
j,

→
k × →

j = −→
i,

→
j × →

i = −→
k (2.36)

Fig. 2.13 The clockwise and

counterclockwise cyclic order

for finding the cross product of

the unit vectors
→
i ,

→
j , and

→
k

k

++

+

-

-

-

j

i

7. When two vectors
→
A and

→
B are written in terms of the unit vectors

→
i ,

→
j , and

→
k , then the cross product will give the result:

→
A × →

B = (Ax
→
i + Ay

→
j + Az

→
k ) × (Bx

→
i + By

→
j + Bz

→
k )

= (AyBz − AzBy)
→
i + (AzBx − AxBz)

→
j

+ (AxBy − AyBx)
→
k (2.37)

This result can be expressed in determinant form as follows:

→
A × →

B =

∣∣∣∣∣∣∣∣

→
i

→
j

→
k

Ax Ay Az

Bx By Bz

∣∣∣∣∣∣∣∣
= →

i

∣∣∣∣∣
Ay Az

By Bz

∣∣∣∣∣ − →
j

∣∣∣∣∣
Ax Az

Bx Bz

∣∣∣∣∣ + →
k

∣∣∣∣∣
Ax Ay

Bx By

∣∣∣∣∣ (2.38)
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Example 2.5

(a) Find the cross product of the two vectors
→
A = 8

→
i +3

→
j and

→
B = −5

→
i −7

→
j .

(b) Verify explicitly that
→
A × →

B = −→
B × →

A .

Solution: (a) Using Eq. 2.34 through Eq. 2.36 for the cross product of unit vectors,

we will get the following for
→
A × →

B :
→
A × →

B = (8
→
i + 3

→
j ) × (−5

→
i − 7

→
j )

= −40
→
i × →

i − 56
→
i × →

j − 15
→
j × →

i − 21
→
j × →

j

= 0 − 56
→
k + 15

→
k + 0 = −41

→
k

As an alternative method for finding
→
A × →

B , we use Eq. 2.37, with Ax = 8,

Ay = 3, Az = 0, Bx = −5, By = −7, and Bz = 0:

→
A × →

B = (AyBz − AzBy)
→
i + (AzBx − AxBz)

→
j + (AxBy − AyBx)

→
k

= (0)
→
i + (0)

→
j + (−56 − [−15])→k = −41

→
k

(b) We can evaluate
→
B × →

A as follows:

→
B × →

A = (−5
→
i − 7

→
j ) × (8

→
i + 3

→
j )

= −40
→
i × →

i −15
→
i × →

j −56
→
j × →

i −21
→
j × →

j

= 0 − 15
→
k + 56

→
k + 0 = +41

→
k

Therefore,
→
A × →

B = −→
B × →

A .

Example 2.6

Is it possible to use the cross product to find the angle between the two vec-

tors
→
A = 8

→
i + 3

→
j and

→
B = −5

→
i − 7

→
j of Example 2.5?

Solution: From Example 2.5 we found that:

→
A × →

B = −41
→
k

If we let
→
C = →

A × →
B , then according to Eq. 2.28 the magnitude of

→
C is:

C = AB sin θ
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But C = 41. Therefore:

41 =
√

82 + 32 ×
√

(−5)2 + (−7)2 sin θ = 73.5 sin θ

Thus, your calculator will give: θ = sin−1
(

41

73.5

)
= 33.91◦

The calculator’s range for sin−1 is only from −90◦ to 90◦, (see the red part of

the sine curve of Fig. 2.14.) So, when you calculate the inverse of a sine function,

you must consider how reasonable your answer is, because there is usually another

possible answer that the calculator does not display. For example, in Fig. 2.14, the

horizontal line through 0.5 cuts the sine curve at 30◦ and 150◦, i.e. the inverse

sine of those two angles are equal to 0.5. But your calculator will give only the

angle 30◦ (see the red part of the curve).

Fig. 2.14

θ (Degrees)
-90 -60 -30 0 30 60 90 120 150 180

sin θ

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

Since sin θ = sin(180◦ − θ), then the angle between the two vectors could

be either 33.91◦ or 146.1◦. You can find the correct answer by using a graphical

method or the dot product, as in Example 2.4, to prove that the correct answer is

θ = 146.1◦. Thus, the cross product is not the simplest method for determining

the angle between any two vectors.

2.5 Exercises

Section 2.2 Properties of Vectors

(1) A car travels 10 km due north and then 5 km due west. Find graphically and

analytically the magnitude and direction of the car’s resultant displacement.
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(2) A car travels 6 km due east and then 4 km in a direction 120◦ north of east. Use

both the graphical and analytical methods to find the magnitude and direction

of the car’s displacement vector.

(3) Vector
→
A has a magnitude of 10 units and makes 60◦ with the positive x-axis.

Vector
→
B has a magnitude of 5 units and is directed along the negative x-axis.

Use geometry to find: (a) the vector sum
→
A + →

B , and (b) the vector difference
→
A − →

B .

(4) A car travels in a circular path of radius 10 m. (a) If the car traveled one half of

the circle, find the magnitude of the displacement vector and find how far the

car traveled. (b) Answer part (a) if the car makes one complete revolution.

Section 2.3 Vector Components and Unit Vectors

(5) Vector
→
A has x and y components of 4 cm and −5 cm, respectively. Vector

→
B

has x and y components of −2 cm and 1 cm, respectively. If
→
A − →

B + 3
→
C = 0,

then what are the components of
→
C .

(6) Three vectors are oriented as shown in Fig. 2.15, where A = 10, B = 20, and

C = 15 units. Find: (a) the x and y components of the resultant vector
→
D = →

A +
→
B + →

C , (b) the magnitude and direction of the resultant vector.

Fig. 2.15 See Exercise (6)

x

y

A

B

C 30 o

30 o

(7) The radar beam of a police car points at an angle of 30◦ away from the direction

of a highway. The radar records the component of the car’s speed along the

beam as vCR = 120 km/h, see Fig. 2.16. (a) What is the speed vC of the car

along the highway? (b) Can the radar beam be directed perpendicular to the

direction of the highway? Why or why not?

(8) A radar device detects a rocket approaching directly from east due west. At

one instant, the rocket was observed 10 km away and making an angle of 30◦

above the horizon. At another instant the rocket was observed at an angle of 150◦
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in the vertical east-west plane while the rocket was 8 km away, see Fig. 2.17.

Find the displacement of the rocket during the period of observation.

Rad
ar

 bea
m Car velocity

Police car

C  R

C

30
o

Fig. 2.16 See Exercise (7)

W E
30°

150°

Radar Dish

Rocke t

10 km8 km

Fig. 2.17 See Exercise (8)

(9) Find the vector components of the sum
→
R of the displacement vectors

→
A

and
→
B whose components along three perpendicular directions are Ax = 2,

Ay = 1, Az = 3, Bx = 1, By = 4, and Bz = 2. Find the magnitude of
→
R.

(10) Two vectors
→
A and

→
B (of lengths A and B, respectively) make an angle θ

with each other when they are placed tail to tail, see Fig. 2.18. (a) By taking

components along two perpendicular axes, prove that the length of their vector

sum
→
R = →

A + →
B is:

R =
√

A2 + B2 + 2AB cos θ

(b) For the difference
→
C = →

A − →
B , where C is the length of the third side of a

triangle formed from connecting the head of
→
B to the head of

→
A as in Fig. 2.19,

use the same approach to prove that:
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C =
√

A2 + B2 − 2AB cos θ

Fig. 2.18 See Exercise (10)

x

y

θ

A

B
R

Fig. 2.19 See Exercise (10)

θ
x

y

A

B
C

(11) A position vector →r = x
→
i + y

→
j + z

→
k makes angles α, β, and γ with the

x, y, and z axes of a perpendicular right-handed coordinate system as in

Fig. 2.20. Show that the relation between what is known as the direction cosines

cos α, cos β, and cos γ are as follows: cos2 α + cos2 β + cos2 γ = 1.

Fig. 2.20 See Exercise (11)

x

z

y

r

x
y

zα β

γ

(12) When vector
→
B is added to vector

→
A we get 5

→
i − →

j , and when
→
B is sub-

tracted from
→
A we get

→
i − 7

→
j . What is the magnitude and direction of

→
A ?
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(13) Two vectors are given by
→
A = 2

→
i + 3

→
j and

→
B = 4

→
i − 3

→
j . Find: (a) the

magnitude and direction of the vector sum
→
R = →

A + →
B , (b) the magnitude and

direction of the vector difference
→
S = →

A − →
B .

(14) Two vectors are given by
→
A = −→

i + →
j + 4

→
k and

→
B = 3

→
i − 4

→
j + →

k . Find:

(a)
→
A + →

B , (b)
→
A − →

B , and (c) a vector
→
C such that

→
A + →

B + →
C = 0.

Section 2.4 Multiplying Vectors

(15) Vector
→
A has a magnitude of 3 units and lies along the negative x-axis. Vector

→
B has a magnitude of 6 units and makes an angle 30◦ with the positive x-axis.

(a) Find the scalar product
→
A •

→
B without using the concept of components.

(b) Find
→
A •

→
B by using vector components.

(16) Show that for any vector
→
A : (a)

→
A •

→
A = A2 and (b)

→
A × →

A = 0.

(17) In Exercise 10, show that dotting vector
→
R with itself and dotting vector

→
C

with itself leads directly to the results of both part (a) and part (b).

(18) For the vectors in Fig. 2.21, find the following: (a)
→
A •

→
B , (b)

→
A •

→
C ,

(c)
→
B •

→
C , (d)

→
A × →

B , (e)
→
A × →

C , and (f)
→
B × →

C .

Fig. 2.21 See Exercise (18)

3

A

BC
45 x

y

(19) (a) Show that
→
A • (

→
A × →

B ) = 0 for all vectors
→
A and

→
B . (b) If θ is the angle

between
→
A and

→
B , then find the magnitude of

→
A × (

→
A × →

B ).

(20) Two vectors
→
A and

→
B make an acute angle θ with each other when they are

placed tail to tail as shown in Fig. 2.22. (a) Prove that the area of the triangle

that is contained by these two vectors is 1
2 | →

A × →
B |. (b) Show that the area of

the parallelogram formed by
→
A and

→
B is | →

A × →
B |.

(21) Show that
→
A • (

→
B × →

C ) is equal in magnitude to the volume of the paral-

lelepiped whose sides are formed from the three vectors
→
A ,

→
B , and

→
C as shown

in Fig. 2.23.
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Fig. 2.22 See Exercise (20)

θ

A

B

Fig. 2.23 See Exercise (21)

A
C

B

(22) In the xy plane, point P has coordinates (x1, y1) and is described by the posi-

tion vector →r1 = x1
→
i + y1

→
j . Similarly, point Q has coordinates (x2, y2)

and is described by the position vector →r 2 = x2
→
i + y2

→
j , see Fig. 2.24.

(a) Show that the displacement vector from P to Q is given by
→
d = →r 2 − →r 1 =

(x2 − x1)
→
i + (y2 − y1)

→
j . (b) Find the magnitude and direction of

→
d .

Fig. 2.24 See Exercise (22)

x

y

r1

r2
d

P(x1,y1)

Q(x2,y2)

o

(23) The equation
→
F = q(

→
v × →

B ) gives the force
→
F on an electric point charge q

moving with velocity →
v through a uniform magnetic field

→
B . Find the force on

a proton of q = 1.6×10−19 coulomb moving with velocity →
v = (2

→
i +3

→
j +

4
→
k ) × 105 m/s in a magnetic field of 0.5

→
k tesla. (The given SI units yield a

force in newtons.)

(24) The electromagnetic Poynting vector
→
S is defined by

→
S = →

E × →
H , where

→
E and

→
H are the electric and magnetic fields. Calculate

→
S for

→
E = →

i +
0.3

→
j + 0.5

→
k and

→
H = −0.4

→
i + →

j + 0.2
→
k. You can disregard units for this

calculation.
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Mechanics
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Mechanics is the science that deals with motion of objects. It is basic to all other

branches of physics. The branch of mechanics that describes the motion of objects

is called kinematics. In this branch we answer questions like “Does the object speed

up, slow down, stop, or reverse direction?” and “How is time involved in these

situations?”

In this chapter, we only study motion along straight lines. The moving object of

concern is either a particle (a point-like object) or an object that can be viewed to

move like a particle.

3.1 Position and Displacement

To locate an object in one-dimensional space, we find its position with respect to

some reference point, called the origin of an axis, such as the x-axis shown in Fig. 3.1.

The positive/negative direction of this axis is the direction of increasing/decreasing

numbers.

A change in the object’s position from an initial position xi to a final position xf

is called displacement �x (read delta x), where:

0 1 2 3-1-2-3

Positive direction

Negative direction

x

Fig. 3.1 The position of a particle that moves in one dimension is identified on an x-axis that is marked

in units of length

H. A. Radi and J. O. Rasmussen, Principles of Physics, 41
Undergraduate Lecture Notes in Physics, DOI: 10.1007/978-3-642-23026-4_3,
© Springer-Verlag Berlin Heidelberg 2013
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�x = xf − xi (3.1)

The displacement is a vector quantity which has a magnitude and a direction. The

magnitude is the distance between the initial and final positions and the direction is

represented in Fig. 3.1 by a plus or minus sign for motion to the right or to the left,

respectively.

3.2 Average Velocity and Average Speed

Average Velocity

Consider a particle moving along the x-axis, where its position-time graph is as

shown in Fig. 3.2. At point P, let its position be xi when the time was ti and at point

Q, let its position be xf when the time was tf (the indices i and f refer to the initial

and final values for the variables under consideration). Accordingly, during the time

interval �t = tf − ti, the particle’s displacement is �x = xf − xi.

x

t

Slope =

O

P

Q

t i t f

x

tΔ

Δ

x i

xf

Fig. 3.2 The position-time graph for a particle moving along the x-axis. The slope of the line PQ measures

the average velocity v

One of several quantities associated with the phrase “how fast” a particle moves

is the average velocity, v, which is defined as follows:

Average velocity

The average velocity, v, of a particle is defined as the ratio of its displacement,

�x, to the time interval, �t. That is:
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v = �x

�t
= xf − xi

tf − ti
(3.2)

From this definition, v has the dimension of length divided by time, that is m/s

in SI units. The average velocity is a vector quantity which has a magnitude and

direction represented by a plus or minus sign for motion to the right or to the left,

respectively, see Fig. 3.1.

Average Speed

The average speed s is a different way of describing “how fast” a particle moves and

it is defined as follows:

Average speed

The average speed, s, of a particle is defined as the ratio of the total distance

covered d to the time interval �t = tf − ti. That is:

s = total distance

�t
= d

tf − ti
(3.3)

So, s is different from v in that s does not depend on direction, and hence is always

positive. In some cases s might be the same as v.

Example 3.1

A car moving along the x-axis starts from the position xi = 2 m when ti = 0 and

stops at xf = −3 m when tf = 2 s. (a) Find the displacement, the average velocity,

and the average speed during this interval of time. (b) If the car goes backward

and takes 3 s to reach the starting point, then repeat part (a) for the whole time

interval.

Solution: (a) The car’s displacement, see Fig. 3.3, is given by:

�x = xf − xi = −3 m − 2 m = −5 m

The average velocity is then given by:

v = �x

�t
= xf − xi

tf − ti
= −3 m − 2 m

2 s − 0 s
= −5 m

2 s
= −2.5 m/s
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Since �x and v are negative for this time interval, then the car has moved to

the left, toward decreasing values of x, see Fig. 3.3. The total covered distance is

d = 5 m and the average speed is thus:

s = total distance

�t
= d

tf − ti
= 5 m

2 s − 0 s
= 5 m

2 s
= 2.5 m/s

In this case, s is the same as v (except for a minus sign).

Negative direction

t i = 0t f = 2 s

x (m)|                |               |             |               |                |   
-3 -2 -1 0 1 2

Fig. 3.3 Example 3.1

(b) After the backward movement, the final position and final time of the car

are xf = 2 m and tf = 2 s + 3 s = 5 s, respectively, while the total distance

covered by the car is d = 5 m + 5 m = 10 m. As we know, the displacement

involves only the initial and final positions and will be:

�x = xf − xi = 2 m − 2 m = 0

Then, the average velocity will be:

v = �x

�t
= xf − xi

tf − ti
= 0

5 s − 0 s
= 0

Finally, the average speed for the whole movement of the car will be:

s = total distance

�t
= d

tf − ti
= 10 m

5 s − 0 s
= 10 m

5 s
= 2 m/s

As you can see, the average velocity is zero, while the average speed is 2 m/s,

since the latter depends only on the total covered distance d.

3.3 Instantaneous Velocity and Speed

More commonly, we ask how fast a particle is moving at a given instant, which

refers to its instantaneous velocity (or simply velocity). The velocity at any instant

is obtained from the average velocity by allowing the time interval �t to approach

zero. Consider the motion of an object (for example a car). This object can be viewed
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as a particle for simplicity. The motion of that particle between two points P and

Q on a position-time graph is shown in the right part of Fig. 3.4. As point Q is

brought closer and closer to point P (through points Q1, Q2, . . .), the time intervals

(�t1, �t2, . . .) get progressively smaller. The average velocity for each time interval

is the slope of the dotted line in Fig. 3.4. As point Q approaches P, the time interval

approaches zero, while the slope of the dotted line approaches the slope of the tangent

to the curve at point P. This slope is defined to be the instantaneous velocity v at the

time ti. In short, we define:

Instantaneous velocity

The instantaneous velocity, v, of a particle is defined as the limiting value of the

ratio �x/�t as �t approaches zero. Mathematically v can be expressed as:

v = lim
�t→0

�x

�t
(3.4)
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x

xi

P
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Q
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Fig. 3.4 The left part shows a police car (which can be considered as a particle) that moves along the

x-axis. The right part shows the position-time graph for this motion. As Q approaches P, the average

velocity v for the interval PQ approaches the slope of the tangent line at P, which is defined as the

instantaneous velocity v at point P

In calculus notation, the above limit is called the derivative of x with respect to t, and

written as dx/dt (abbreviated as ẋ). Thus:

v = dx

dt
≡ xf − xi =

tf∫
ti

v dt ≡ Area under v-t graph (3.5)
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The instantaneous velocity, v, can be positive, negative, or zero, depending on the

slope of the position-time graph at the interval of interest in Fig. 3.5. In this figure,

v = 0 represents the turning point, and occurs at any maximum or minimum of the

x-t graph. From here on, we use the word velocity to denote instantaneous velocity.

The speed of a particle is defined as the magnitude of its velocity.

x

t1

t

Inflection points

t2
0

Fig. 3.5 The position-time graph for a particle moving along the x-axis. On this graph we display:

(1) Positive velocities, where the slope of the tangent lines are positive, (2) Negative velocities, where the

slope of the tangent lines are negative, (3) Zero velocities (turning points), where the slope of the tangent

lines are zero, and (4) Inflection points at t1 and t2, where the increase/decrease of the velocity reaches a

maximum/minimum

Example 3.2

A particle moves along the x-axis and its coordinates vary with time according

to the relation x = t2 − 2 t, where x is measured in meters and t is in seconds.

The position-time graph for this motion is shown in Fig. 3.6. (a) Use this graph to

comment about the particle’s motion. (b) Find the displacement and the average

velocity of the particle in the time intervals 0 ≤ t ≤ 1 s and 1 s ≤ t ≤ 3 s.

(c) Find the velocity of the particle at t = 2 s.

Solution: (a) The particle starts from the origin of the x-axis and moves in the

negative x direction for the first second. Its velocity is zero at x = −1 m when

t = 1 s and then heads back in the positive x direction for t > 1 s.

(b) In the interval 0 ≤ t ≤ 1 s we have ti = 0 and tf = 1 s. Since x = t2 − 2 t,

we get xi = t2
i − 2 ti = 0 and xf = t2

f − 2 tf = −1 m. Thus:

�x = xf − xi = −1 m − 0 m = −1 m
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Fig. 3.6
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The average velocity is then:

v = �x

�t
= xf − xi

tf − ti
= −1 m − 0 m

1 s − 0 s
= −1 m

1 s
= −1 m/s

According to Fig. 3.6, this value equals the slope of the straight line drawn for

this time interval.

In the interval 1 s ≤ t ≤ 3 s we have ti = 1 s and tf = 3 s. Again, from x =
t2 − 2 t we get xi = t2

i − 2 ti = −1 m and xf = t2
f − 2 tf = 3 m. Thus:

�x = xf − xi = 3 m − (−1 m) = 4 m

The average velocity is then:

v = �x

�t
= xf − xi

tf − ti
= 3 m − (−1 m)

3 s − 1 s
= 4 m

2 s
= 2 m/s

According to Fig. 3.6, this value equals the slope of the straight line drawn for

this time interval.

(c) To find the instantaneous velocity at any time t, we use Eq. 3.5 and apply

the rules of differential calculus on the coordinate x = t2 − 2 t. That is:

v = dx

dt
= d(t2 − 2t)

dt
= 2 t − 2
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Notice that this expression gives the velocity v at any time t and indicates that v

is increasing linearly with time. It tells us that v < 0 during the interval 0 ≤ t < 1 s

(i.e. the particle is moving in the negative x direction), and that v = 0 at t = 1 s,

and finally v > 0 for t > 1 s. When t = 2 s we use the above expression to get:

v = 2 × 2 − 2 = 2 m/s

3.4 Acceleration

When the velocity of a particle changes with time, the particle is said to be acceler-

ating. Consider the motion of a particle along the x-axis. If the particle has a velocity

vi at time ti and a velocity vf at time tf as in the velocity-time graph of Fig. 3.7, then

we define the average acceleration as:

Average acceleration

The average acceleration, a, of a particle is defined as the ratio of the change

in velocity �v = vf − vi to the time interval �t = tf − ti. That is:

a = �v

�t
= vf − vi

tf − ti
(3.6)

a
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Δ
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Fig. 3.7 The velocity-time graph for a car (or simply a particle) moving in a straight line. The slope of

the straight line PQ is defined as the average acceleration in the time interval �t = tf − ti
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Acceleration is a vector quantity having dimensions of length divided by (time)2, or

L/T2; that is m/s2 in SI units.

It is useful to define the instantaneous acceleration as the limit of the average

acceleration when �t approaches zero. Consider the motion of a particle (for example

a car that moves like a particle) between the two points P and Q on the velocity-

time graph shown in the right part of Fig. 3.8. As point Q is brought closer and

closer to point P (through points Q1, Q2, . . .), the time intervals (�t1, �t2, . . .) get

progressively smaller. The average acceleration for each time interval is the slope of

the dotted line in Fig. 3.8. As Q approaches P, the time interval approaches zero, while

the slope of the dotted line approaches the slope of the tangent to the curve at point

P. The slope of the tangent line to the curve at P is defined to be the instantaneous

acceleration a at the time ti. That is, we define the following:

Instantaneous acceleration

The instantaneous acceleration, a, of a particle is defined as the limiting

value of the ratio �v/�t when �t approaches zero. Mathematically a can

be expressed as:

a = lim
�t→0

�v

�t
(3.7)

1tΔ
2tΔ

tΔ

i

it ft
= f=
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Fig. 3.8 The left part shows a car that moves along the x-axis. The right part shows the velocity-time

graph that describes the car’s motion. As Q approaches P, the average acceleration a for the interval

PQ approaches the slope of the tangent line at P, which is defined as the instantaneous acceleration a at

point P
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In calculus notation, the above limit is called the first derivative of v with respect

to t, and written as dv/dt (simplified sometimes as v̇), or the second derivative of x

with respect to t, and written as d2x/dt2 (simplified sometimes as ẍ). Thus:

a = dv

dt
= d2x

dt2 ≡ vf − vi =
tf∫
ti

a dt ≡ Area under a-t graph (3.8)

From here on, we use the word acceleration to designate instantaneous acceler-

ation. Depending on the slope of the tangent to the velocity-time graph, acceleration

a can be positive, negative (called deceleration), or zero. If a = 0 for a specific time

interval in the v − t graph, then the velocity must be a constant in this interval.

Example 3.3

The position of a particle moving along the x-axis varies with time t according to

the relation x = t3 − 12 t + 20, where x is given in meters and t in seconds. (a)

Find the velocity and the acceleration of the particle as a function of time. (b) Is

there ever a time when v = 0? (c) Describe the particle’s motion for t ≥ 0.

Solution: (a) To get the velocity v as a function of time t, we differentiate the

coordinate x with respect to t as follows:

v = dx

dt
= d

dt

(
t3 − 12 t + 20

)
⇒ v = 3 t2 − 12

To get the acceleration a as a function of time t, we differentiate the velocity v

with respect to t as follows:

a = dv

dt
= d

dt

(
3 t2 − 12

)
⇒ a = 6 t

(b) Setting v = 0 in the velocity relation yields:

0 = 3 t2 − 12,

which has the solution t = ±2 s. The negative answer has to be rejected, since

time must be always positive. Thus at t = 2 s the velocity of the particle is zero.

(c) To describe the particle’s motion for t ≥ 0 we examine the expressions

x = t3 − 12 t + 20, v = 3 t2 − 12, and a = 6 t.

At t = 0, the particle is at x = 20 m from the origin and moving to the left

with velocity v = −12 m/s and not accelerating since a = 0, see Fig. 3.9.
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At 0 < t < 2 s, the particle continues to move to the left (x decreases), but at a

decreasing speed, because it is now accelerating to the right, a = positive (Check

the expressions of x, v, and a for t = 1 s and compare the results with Fig. 3.9).

At t = 2 s, the particle stops momentarily (v = 0) to reverse its direction of

motion. At this moment x = 4 m, i.e. it will be as close as it will ever be to the

origin. It will continue to accelerate to the right at an increasing rate, see Fig. 3.9.

For t > 2 s, the particle continues to accelerate and move to the right, and its

velocity, which is now to the right, increases rapidly, see Fig. 3.9.

Fig. 3.9
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3.5 Constant Acceleration

In many common types of one-dimensional motion, the acceleration is constant (or

we say uniform). In this case, the average acceleration equals the instantaneous

acceleration, i.e.

a = a = constant (3.9)

The shape of this relation can be displayed for positive a as shown in the left part of

Fig. 3.10. Consequently, Eq. 3.6 becomes:

a = vf − vi

tf − ti
(when a = a = constant) (3.10)

Fig. 3.10 (Left part) The acceleration-time graph of a particle moving along the x-axis with constant

acceleration. (Middle part) the velocity-time graph of the particle’s motion. (Right part) The position-time

graph of the particle’s motion

For convenience, we let ti = 0 and tf = t, where t is any arbitrary time. Also, we let

vi = v◦ (the initial velocity at time t = 0) and vf = v (the velocity at any time t).

With this notation, we can express acceleration as:

a = v − v◦
t

Rearranging gives:

v = v◦ + a t (for constant a) (3.11)

This linear relationship enables us to find the velocity at any time t; see the middle

part of Fig. 3.10.

We can make use of the fact that when the acceleration is constant (i.e. when the

velocity varies linearly with time according to Eq. 3.11 as in Fig. 3.10), the average
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velocity in any time interval is the arithmetic mean of the initial velocity, v◦, and the

final velocity at the end of that interval, v. Thus:

v = v◦ + v

2
(for constant a) (3.12)

To find the displacement as a function of time, we first let xi = x◦ (the initial position

at time t = 0) and xf = x (the position at any time t), and then use Eq. 3.2 and Eq. 3.12

to get:

v = x − x◦
t

= v◦ + v

2

Rearranging gives:

x − x◦ = 1
2 (v◦ + v) t (for constant a) (3.13)

We can obtain another useful expression for the displacement by substituting Eq. 3.11

into Eq. 3.13 to get:

x − x◦ = v◦ t + 1
2 a t2 (for constant a) (3.14)

As a first check for Eq. 3.14, one can notice that substituting t = 0 yields x = x◦,
as it must be. A further check, taking the derivative of Eq. 3.14 with respect to time,

yields Eq. 3.11. The right part of Fig. 3.10 displays the position x as a function of

time t for the parabolic Eq. 3.14.

We can use Eq. 3.11 to eliminate v◦ from Eq. 3.14 to obtain the following relation:

x − x◦ = v t − 1
2 a t2 (for constant a) (3.15)

Finally, by replacing the value of t that was obtained from Eq. 3.11 into Eq. 3.13, we

can obtain an expression that does not include the time variable as follows:

x − x◦ = 1
2 (v◦ + v)

(v − v◦)
a

= (v2 − v2◦)
2 a

Rearranging gives:

v2 = v2◦ + 2 a (x − x◦) (for constant a) (3.16)

Equations 3.11 through 3.16 are six kinematic expressions used to solve any one-

dimensional problem with constant acceleration.

Table 3.1 lists the four kinematic equations that are used most often in solving

problems for the case of constant acceleration.



54 3 Motion in One Dimension

Table 3.1 Equations for motion with constant acceleration

Equation Missing quantity Equation number

v = v◦ + a t x − x◦ Eq. 3.11

x − x◦ = 1
2 (v◦ + v) t a Eq. 3.13

x − x◦ = v◦ t + 1
2 a t2 v Eq. 3.14

v2 = v2◦ + 2 a (x − x◦) t Eq. 3.16

Example 3.4

A car accelerates uniformly from rest to a speed of 100 km/h in 18 s.(a) Find the

acceleration of the car. (b) Find the distance that the car travels. (c) If the car

brakes to a full stop over a distance of 100 m, then find its uniform deceleration.

Solution: (a) In this problem we are given v◦ = 0, v = 100 km/h, and t =
18 s = 5 × 10−3 h and we need to find a. So, we can use v = v◦ + a t to find

the acceleration as follows:

a = v − v◦
t

= 100 km/h − 0

5 × 10−3 h
= 2 × 104 km/h2 ≡ 2 × 104 1,000 m

(60 × 60 s)2 = 1.54 m/s2

(b) If the car starts from the origin of the x-axis, i.e. x◦ = 0, then we are given

v◦ = 0, v = 100 km/h, x◦ = 0, and t = 5 × 10−3 h and we need to find x, which in

this case equals the distance traveled by the car. So, we use x − x◦ = 1
2 (v◦ + v) t

to find the position x as follows:

x = x◦ + 1
2 (v◦ + v) t = 0 + 1

2 (0 + 100 km/h)× 5 × 10−3 h = 0.25 km = 250 m

(c) We are given v◦ = 100 km/h, v = 0, and x − x◦ = 0.1 km and we need to

find the deceleration a. We use v2 = v2◦ + 2 a (x − x◦) to get:

a = v2 − v2◦
2 (x − x◦)

= 0 − (100 km/h)2

2 × 0.1 km
= −5 × 104 km/h2 = −3.86 m/s2

Example 3.5

In a cathode ray tube of a TV set, an electron with initial velocity v◦ = 2×104 m/s

enters a region 2 cm long (see Fig. 3.11) where it is electrically accelerated in a

straight line. The electron emerges from this region with a velocity v = 3×105 m/s.

(a) What was its acceleration, assuming it was constant? (b) How long will the

electron be in this region?
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Fig. 3.11

2cm

Solution: (a) Taking the motion to be along the x-axis, and using v◦ = 2 ×
104 m/s, v = 3 × 105 m/s, and x −x◦ = 2 cm = 2×10−2 m, we can find the accel-

eration a from the relation v2 = v2◦ + 2 a (x − x◦) as follows:

a = v2 − v2◦
2 (x − x◦)

= (3 × 105 m/s)2 − (2 × 104 m/s)2

2 × 2 × 10−2 m
= 2.24 × 1012 m/s2

(b) Since the displacement and velocities are known, we can use x − x◦ =
1
2 (v◦ + v) t to find the time t that the electron will be electrically accelerated as

follows:

t = 2(x − x◦)
v◦ + v

= 2 × 2 × 10−2 m

2 × 104 m/s + 3 × 105 m/s
= 1.25 × 10−7 s = 0.125 µs

Another way to find t is to use equation v = v◦+a t. In this case, v = 3×105 m/s,

and a = 2.24 × 1012 m/s2. Thus:

t = v − v◦
a

= 3 × 105 m/s − 2 × 104 m/s

2.24 × 1012 m/s2 = 1.25 × 10−7 s = 0.125 µs

Even though a is very high in this example, but such an acceleration occurs

over a very short time interval which is a typical value for such an electrically

accelerated charged particle.

∗Example 3.6

The remote-controlled truck shown in Fig. 3.12 moves along the x-axis with a

constant acceleration of −2 m/s2. As it passes the origin, i.e. x◦ = 0, its initial

velocity is 14 m/s. (a) At what time t′ and position x′ does v′ = 0 (i.e. when the
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truck stops momentarily)? (b) At what times t1 and t2 is the truck at x = 24 m,

and what is its velocity then?

0

0

x

24mx

x

x

0, 14 m/st ° 1 1,t , 0t

22 m/sa

2 2,t

24mx

22 m/sa 22 m/sa

22 m/sa

Fig. 3.12

Solution: (a) Given v◦ = 14 m/s, v′ = 0, and a = −2 m/s2, we can find t′ by

using v′ = v◦ + a t′ as follows:

t′ = v′ − v◦
a

= 0 − 14 m/s

−2 m/s2 = 7 s

To find the position x′ we can use v′ 2 = v2◦ + 2 a (x′ − x◦), since we are given

v◦ = 14 m/s, v′ = 0, x◦ = 0, and a = −2 m/s2. Thus:

x′ = x◦ + v′ 2 − v2◦
2 a

= 0 + 0 − (14 m/s)2

2 × (−2 m/s2)
= 49 m

(b) Using x = 24 m, x◦ = 0, v◦ = 14 m/s, and a = − 2 m/s2 in x − x◦ = v◦ t +
1
2 a t2, we find, after omitting the units temporarily, that:

24 − 0 = 14 t + 1
2 (−2) t2 ⇒ t2 − 14 t + 24 = 0

Solving this quadratic equation yields:

t = 14 ± √
(−14)2 − 4 × 1 × 24

2 × 1
= 14 ± 10

2
⇒ t =

{ t1 = 2 s

t2 = 12 s

Thus, t1 = 2 s is the time the truck takes from the origin to the position x = 24 m.

Furthermore, t2 = 12 s is the time the truck takes from O, passing the point

x = 24 m, reaching the point x′ = 49 m and returning back to x = 24 m.
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For x = 24 m, v◦ = 14 m/s, a = −2 m/s2, and t1 = 2 s, we use the formula

v = v◦ + a t to get v1 as follows:

v1 = v◦ + a t1 = 14 m/s + (−2 m/s2) × (2 s) = 10 m/s

Also, for x = 24 m, v◦ = 14 m/s, a = −2 m/s2, and t2 = 12 s, we use the

formula v = v◦ + a t to get v2 as follows:

v2 = v◦ + a t2 = 14 m/s + (−2 m/s2) × (12 s) = −10 m/s

Observe that the two speeds are equal, i.e. |v1| = |v2| = 10 m/s.

In this example, we do not pay any attention to the cause of this constant

acceleration, but this will be clarified later on when we study the dynamical

aspect of mechanics.

3.6 Free Fall

Due to gravity, it is well known that all dropped objects near the Earth’s surface

will accelerate downward with a nearly constant acceleration when the effect of air

resistance is very small and can be neglected. We use the term “free fall” for this

motion and the same will be applied to objects that are either thrown up or down.

We shall denote the magnitude of the acceleration due to gravity by the symbol g,

which is very close to 9.8 m/s2 near the Earth’s surface.

Therefore, for free falls near the Earth’s surface, the constant acceleration equa-

tions of motion Eqs. 3.11 through 3.16, and hence equations of Table 3.1, can be

applied. However, we can make them simpler to use with the following minor

changes:

(1) The motion is along the vertical y-axis.

(2) The free-fall acceleration is negative if the y-axis is chosen to be upward, and

hence we replace the acceleration a with −g.

(3) The free-fall acceleration is positive if the y-axis is chosen to be downward, and

hence we replace the acceleration a with +g.

Table 3.2 lists the four kinematic equations that are frequently used in solving

free-fall problems with constant acceleration, where always |a| = g = 9.8 m/s2 for

motions near the Earth’s surface.
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Table 3.2 Equations for free-fall motion with constant acceleration

y (up), a = −g Equation y (down), a = g Equation

y ↑ v = v◦ − g t y↓ v = v◦ + g t

y − y◦ = 1
2 (v◦ + v) t y − y◦ = 1

2 (v◦ + v) t

y − y◦ = v◦ t − 1
2 g t2 y − y◦ = v◦ t + 1

2 g t2

v2 = v2◦ − 2 g(y − y◦) v2 = v2◦ + 2 g(y − y◦)

Example 3.7

A ball is dropped from a tall building, as shown in Fig. 3.13. Choose the positive

y to be downward with its origin at the top of the building, i.e. y◦ = 0. Find the

following for the ball’s motion: (a) its acceleration, (b) the distance it falls in 2 s,

(c) its velocity after falling 15 m, (d) the time it takes to fall 25 m, and (e) the time

it takes to reach a velocity of 29.4 m/s.

Fig. 3.13

y

y
≈≈

Solution: (a) Since the positive y is downward, then the ball’s acceleration is

positive (downward) and will be given by a = g = 9.8 m/s2. Also, the ball’s

velocity will be always positive.

(b) We are given v◦ = 0, y◦ = 0, a = g = 9.8 m/s2, and t = 2 s. To find y,

we use y − y◦ = v◦ t + 1
2 g t2 as follows:

y = 0 + 1
2 (9.8 m/s2) × (2 s)2 = 19.6 m

(c) We are given v◦ = 0, y◦ = 0, a = g = 9.8 m/s2, and y = 15 m. To find

v, we use v2 = v2◦ + 2 g(y − y◦) as follows:

v2 = 0 + 2 × (9.8 m/s2) × 15 m ⇒ v = ±√
294 m/s ⇒ v = 17.2 m/s

(d) We are given v◦ = 0, y◦ = 0, y = 25 m, and a = g = 9.8 m/s2. To find

t, we use y − y◦ = v◦ t + 1
2 g t2 as follows:

25 = 0 + 1
2 (9.8 m/s2) × t2 ⇒ t = ±√

5.1 s ⇒ t = 2.3 s
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(e) We are given v◦ = 0, v = 29.4 m/s, and a = g = 9.8 m/s2. To find t, we

use v = v◦ + g t as follows:

t = v − v◦
g

= 29.4 m/s − 0 m/s

9.8 m/s2 = 3 s

Example 3.8

A boy throws a ball upwards, giving it an initial speed v◦ = 15 m/s. Neglect air

resistance. (a) How long does the ball take to return to the boy’s hand? (b) What

will be its velocity then?

Solution: (a) We choose the positive y upward with its origin at the boy’s hand, i.e.

y◦ = 0, see Fig. 3.14. Then, the ball’s acceleration is negative (downward) during

the ascending and descending motions, i.e. a =−g = −9.8 m/s2. When the ball

returns to the boy’s hand its position y is zero. Since v◦ = 15 m/s, y◦ = 0, y = 0,

and a = −g, then we can find t from y − y◦ = v◦ t − 1
2 g t2 as follows:

0 = (15 m/s) t − 1
2 (9.8 m/s2) × t2 ⇒ t = 2 × (15m/s)

9.8 m/s2 = 3.1 s

(b) We are given v◦ = 15 m/s, y◦ = 0, y = 0, and a = −g = −9.8 m/s2. To

find v, we use v2 = v2◦ − 2 g(y − y◦) as follows:

v2 = v2◦ − 0 ⇒ v = ±
√

v2◦ = ±v◦ = ±15 m/s

We should select the negative sign, because the ball is moving downward just

before returning to the boy’s hand, i.e. v = −15 m/s.

Fig. 3.14 y

o

o
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Example 3.9

A ball is thrown upward from the top of a building with an initial velocity

v◦ = 20 m/s. The building is 40 m high and the ball just misses the edge of the

building roof on its way down; see Fig. 3.15 and take g = 10 m/s2. Neglecting air

resistance, find: (a) the time t1 for the ball to reach its highest point, (b) how high

will it rise, (c) how long will it take to return to its starting point, (d) the velocity

v2 of the ball at this instant, and (e) the velocity v3 and the total time of flight t3
just before the ball hits the ground.

Fig. 3.15

4
0

m

y

2

1=0

o

3

o

Solution: (a) We choose upward as positive, i.e. a = −g = −10 m/s2 during

ascending and descending motions. Also, we choose the origin at the top of

the building, i.e. y◦ = 0, see Fig. 3.15. Since at the maximum height the ball

stops momentarily, we use v◦ = 20 m/s and v1 = 0 in v1 = v◦ − g t1 to find t1 as

follows:

0 = 20 m/s − (10 m/s2) t1

t1 = 20 m/s

10 m/s2 = 2 s

(b) For the maximum height, we use the notation y1 ≡ ymax. To find the max-

imum height from the position of the thrower, we use the formula ymax − y◦ =
v◦ t1 − 1

2 g t2
1 as follows:

ymax = (20 m/s) × (2 s) − 1
2 (10 m/s2)× (2s)2 = 20 m
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(c) When the ball returns to its starting point, the y coordinate is zero again,

i.e. y2 = 0. To find t2 we use y2 − y◦ = v◦ t2 − 1
2 g t2

2 as follows (after omitting

the units temporarily, since they are consistent):

0 = 20 t2 − 1
2 × 10 × t2

2

This equation can be factored to give:

t2[20 − 5 t2] = 0

One solution is t2 = 0, which corresponds to the time that the ball starts its motion.

The other solution is t2 = 4 s, which is the solution we are after. Thus:

t2 = 4 s

(d) The value t2 = 4 s found in part (c) can be inserted into the formula

v2 = v◦ − g t2 as follows:

v2 = 20 m/s − (10 m/s2) × (4 s) = −20 m/s

Note that the velocity of the ball when it returns to its starting point is equal in

magnitude to its initial velocity but opposite in direction. This indicates that the

motion is symmetric, and generally we have:

v2 = −v◦

(e) When the ball reaches the ground, its position is y3 = −40 m. We can

insert this value in v2
3 = v2◦ − 2 g(y3 − y◦) to find v3 as follows:

v2
3 = (20 m/s)2 − 2 × (10 m/s2)[(−40 m) − 0] = 1,200 m2/s2

Thus:

v3 = ±
√

1,200 m2/s2 = ±34.64 m/s

Since the ball is moving downward, we choose the negative value. Thus:

v3 = −34.64 m/s

To find the total time of flight t3, we use v3 = v◦ − g t3 as follows:

t3 = v◦ − v3

g
= (20 m/s) − (−34.64 m/s)

10 m/s2 = 54.64 m/s

10 m/s2 = 5.5 s
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3.7 Exercises

Section 3.2 Average Velocity and Average Speed

(1) A runner on a straight track covers 1 km in 4 minutes. What is his average

velocity in: (a) km/min, (b) km/s, and (c) km/h?

(2) A car travels in the positive x direction for 20 km at 40 km/h. It then continues

in the same direction for another 20 km at 80 km/h. (a) What is the average

velocity of the car during this 40 km trip? (b) What is its average speed?

(3) Suppose the motion of the particle in Fig. 3.2 is described by the equation

x = a + b t2, where a = 10 m and b = 2 m/s2. (a) Find the displacement of the

particle in the time interval between ti = 2 s and tf = 4 s. (b) Find the average

velocity and the average speed during this interval of time.

(4) On an average, an eye blink lasts 100 ms. How far does a rocket moving with

an average speed of s = 3,600 km/h, see Fig. 3.16, travel during a pilot’s blink?

Fig. 3.16 See Exercise (4)

(5) A graph of position (in meters) versus time (in seconds) for a boy traveling in

the positive x direction is displayed in the Fig. 3.17. Find the average velocity

for the following cases: (a) ti = 2 s and tf = 4 s, (b) ti = 2 s and tf = 6 s, and

(c) xi = 12 m and xf = 30 m.

Fig. 3.17 See Exercise (5)
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(6) A body moves along a straight line with position given by x = 8 t − 2 t2, where

x is in meters and t is in seconds. Find the average velocity and average speed

of the body in the intervals: (a) from ti = 0 to tf = 2 s, and (b) from ti = 0 to

tf = 5 s.

Section 3.3 Instantaneous Velocity and Speed

(7) The position of a plane during take-off along a straight runway is given by

x = k t2, where k = 1.2 m/s2,is measured in meters, and t is in seconds.

(a) Find the displacement and the average velocity of the plane in the time inter-

vals 0 ≤ t ≤ 4 s and 4 s ≤ t ≤ 10 s. (b) Find the velocity of the plane at t = 4 s

and at t = 10 s.

(8) A particle moves along the x-axis according to the relation x = 6 − 6 t + t2,

where x is measured in meters and t is measured in seconds. (a) Find the

values of x for t = 1, 2, 3, 4, and 5 s. (b) Find the values of the velocity v for

t = 1, 2, 3, 4, and 5 s. (c) For each value of t indicate whether the particle is

moving toward an increasing or decreasing x. (d) Is there ever an instant when

the velocity is zero? (e) Is there a time after t = 5 s when the particle is moving

toward decreasing x?

(9) The position-time graph for a particle moving along the x-axis is shown in the

Fig. 3.18. Determine whether the velocity is positive, negative, or zero at the

times t1, t2, t3, t4, t5, and t6.

Fig. 3.18 See Exercise (9) x

0 t
t1

t2 t3
t4 t5 t6

(10) The graph of Fig. 3.19 shows the velocity of a runner plotted as a function of

time. What is the interval where the velocity of the runner: (a) increases rapidly,

(b) decreases rapidly, and (c) stays constant?
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Fig. 3.19 See Exercise (10)
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(11) How far does the runner whose v − t graph is shown in the previous exercise

travel in 8 s if at t = 0 the runner is at x = 0?

Section 3.4 Acceleration

(12) A particle is moving along the x-axis with velocity vi = 50 m/s at ti = 0. Its

velocity decreases uniformly and reaches vf = 0 at tf = 10 s. What was the

average acceleration during this 10 s interval?

(13) A car moving along the x-axis has a position given by the formula x = 6 +
8 t + 2 t2, where x is measured in meters and t is in seconds. (a) Find the

car’s instantaneous velocity as a function of time. (b) Find its instantaneous

acceleration as a function of time. (c) What will its velocity and acceleration

be at t = 5 s?

(14) The velocity of a rocket during the first 6 s of its initial launch stage, see the

Fig. 3.20, is given by v = 20 t − 0.4 t2, where v is measured in meter/second

and t is measured in seconds. (a) Find the average acceleration of the rocket

from ti = 0 to tf = 1 s, and from ti = 5 s to tf = 6 s. (b) Find the acceleration

a of the rocket at any time t during the interval 0 ≤ t ≤ 6 s.

Fig. 3.20 See Exercise (14)



3.7 Exercises 65

(15) Using the formula for the velocity given in the previous exercise, find the

position x of the rocket at any time t during the interval 0 ≤ t ≤ 6 s. Then,

find the values of the position, velocity, and acceleration at t = 0, t = 3 s, and

t = 6 s.

(16) A particle has x = 0 at t = 0 and its velocity as a function of time is shown

in the Fig. 3.21. (a) Sketch the acceleration as a function of time. (b) Find

the average acceleration of the particle in the time interval ti = 0 to tf = 5 s.

(c) Find the acceleration of the particle at t = 4 s.

Fig. 3.21 See Exercise (16)
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(17) A particle in one-dimensional motion has a velocity at any instant of time t

given by v = 6 + 4 t + 3 t2. (a) Find the initial velocity when t = 0. (b) Find the

velocity when 2 s have passed. (c) Find the expression for the acceleration, and

then its value when 2 s have elapsed. (d) Find the expression for the displacement

�x = x − x◦.

Section 3.5 Constant Acceleration

(18) An object starts from rest and moves with constant acceleration of 4 m/s2. Find

its speed and the distance it has traveled after 5 s have elapsed.

(19) A box slides down an incline with a uniform acceleration, see Fig. 3.22. It starts

from rest and attains a speed of 12 m/s in 4 s. Find: (a) the acceleration, and

(b) the distance moved in the first 4 s.

(20) A plane starts from rest and accelerates uniformly along a straight runway

before takeoff. If the plane moves 1 km in 10 s, then find: (a) the acceleration,

(b) the speed at the end of the 10 s period, (c) the distance moved in the first

20 s.
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Fig. 3.22 See Exercise (19)
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(21) A particle moving at 25 m/s in a straight line slows uniformly at a rate of 2 m/s

every second. In an interval of 10 s, find: (a) the acceleration, (b) the final

velocity, (c) the distance moved.

Section 3.6 Free Fall

(22) A stone strikes the ground with a speed of 25 m/s. (a) From what height was it

released? (b) How long was it falling? (c) If the stone is thrown down with a

speed of 10 m/s from the same height, then what will be its speed just before

hitting the ground?

(23) A ball is thrown upward with a speed of 19.6 m/s. (a) How high does it go until

its upward speed decreases to zero? (b) How long does the ball take in this

upward trip? (c) How long does the ball take to return to the initial position?

(d) What will be its velocity then?

(24) A bottle is dropped from a bridge and strikes the water after 5 s. (a) Find the

speed of the bottle when it strikes the water. (b) Find how high the bridge is

located above the water level.

(25) A sandbag dropped from a balloon reaches the ground in 5 s, see Fig. 3.23. Find

the height of the balloon if: (a) it was at rest in the air, (b) it was ascending with

a speed of 10 m/s when the sandbag was dropped, (c) it was descending with a

speed of 10 m/s when the sandbag was dropped.

(26) A ball is thrown vertically downward from the edge of a cliff with an initial

speed of 23 m/s. After a period of 1.4 s has elapsed, find: (a) how fast is it

moving? and (b) how far has it moved?

(27) A ball is thrown vertically upward from the edge of a building with an initial

velocity of 23 m/s. After a period of 1.4 s has elapsed, find: (a) how fast is it

moving? and (b) how far has it moved?

(28) A ball is thrown vertically upward with a speed of 50 m/s from a building 20 m

high, see Fig. 3.24. Find:(a) the time t1 for the ball to reach the highest point,
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(b) how high it will rise, (c) how long it will take to return to the starting point,

(d) the velocity v2 of the ball at this instant, (e) the velocity v3 with which the

ball strikes the ground, and (f) the total time of flight t3.

Fig. 3.23 See Exercise (25)
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Fig. 3.24 See Exercise (28)

O

(29) A child drops balls from a bridge at regular intervals of 1s, see Fig. 3.25. At the

moment the fourth ball is released, the first strikes the water. (a) How high is the

bridge? (b) How far above the water are each of the falling balls at this moment:

(c) If the child decided to drop a ball once the previous one has reached the

water surface, how long should he wait between every ball drop?

(30) A rubber ball is released from a height of 2 m above the floor, see the Fig. 3.26.

The ball bounces repeatedly, always rising to 1/2 of the height through which

it falls. Treat the ball as a particle that bounces an infinite number of times and

take g = 10 m/s2. (a) What is the average speed of the ball during the first fall?

(b) Show that its total distance traveled during an infinite number of bounces

is 6 m? (c) Show that the total elapsed time for an infinite number of bounces



68 3 Motion in One Dimension

is 2[√2 + 1]2/
√

10 s. (d) Find the average speed from the time of release to

the end of the infinite number of bounces.

[Hint: Use the binomial series (1 − x)−1 = 1 + x + x2 + x3 + ..., |x| < 1]

Fig. 3.25 See Exercise (29)
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Fig. 3.26 See Exercise (30)
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(31) An acrobat jumps straight up in the air and his center of mass (CM) took 0.2 s

from the moment he just left the ground to the moment he just reached the
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highest point, see the Fig. 3.27. Neglecting air resistance, (a) what was his

initial vertical velocity just before his legs left the ground, (b) how high did his

CM rise above the ground, and (c) what will be his velocity just before touching

the ground in his way back?

Fig. 3.27 See Exercise (31)

t= 0 t= 0.2s
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Before jump
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(32) Show that the vertical trajectory of a particle thrown upward is symmetric

about its maximum when we neglect air resistance. That is, its height above

the ground at time �t before reaching its maximum equals its height above the

ground after the same time interval Δt measured after reaching its maximum.

(33) A student drops a dartboard to the ground from a window, i.e. v◦b = 0. One

second after dropping the board, he throws a dart at the board with initial speed

of 20 m/s in order to score just before the board reaches the ground. See Fig. 3.28

and take g = 10 m/s2. (a) Find the time of flight T of the dartboard. (b) Find the

height of the window. (c) Find the velocity of both the dart and the dartboard

just before hitting the ground.

(34) The remote-controlled truck shown in Fig. 3.12 is used to pick up a package

from a shelf in a factory. From rest and at t = 0, the truck accelerate at a1 for

a time interval t1, then travels with constant speed for a time interval t2, and

finally decelerate at −a3 for a time interval t3. Show that the total distance

traveled by the truck is a1t1(t2 + t3) + 1
2 (a1t2

1 − a3t2
3).

(35) A diver drops his body from a diving board at a distance H above the water’s

surface into a deep swimming pool. The diver’s motion stops at a distance

h below the surface of the water. By choosing the downward direction to be
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positive, see Fig. 3.29, prove that the average acceleration of the diver while he

is under the water is a = −(H/h)g.

t = 0 t = 1 s

o = 20m/s

'b

b

t = T

ob = 0

Fig. 3.28 See Exercise (33)
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Fig. 3.29 See Exercise (35)
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This chapter extends the study of the preceding chapter to two dimensions. We divide

the study into two parts: motion of a particle in a plane, and circular motion of a

particle in a plane.

4.1 Position, Displacement, Velocity, and Acceleration Vectors

The Position Vector

We describe the position of a particle with the position vector →r , which is a vector

that extends from the origin of a certain coordinate system to the particle. Using the

unit vector notation of Chap. 2, →r can be written in two-dimensional form as:

→r = x
→
i + y

→
j (4.1)

where x
→
i and y

→
j are the vector components of →r along the x and y axes respectively,

and the coefficients x and y are the scalar components, i.e., the particle has the

rectangular coordinates (x, y). In three dimensions the position vector becomes →r =
x

→
i + y

→
j + z

→
k .

The Displacement Vector

Now, consider a particle moving in the xy plane as shown in Fig. 4.1. At point P,

let its position be →r i when the time was ti. At point Q, let its position be →r f when

the time was tf (the indices i and f refer to the initial and final values for our study).

Accordingly, during the time interval �t = tf − ti, the particle’s displacement is:

�
→r = →r f − →r i (4.2)

H. A. Radi and J. O. Rasmussen, Principles of Physics, 71
Undergraduate Lecture Notes in Physics, DOI: 10.1007/978-3-642-23026-4_4,
© Springer-Verlag Berlin Heidelberg 2013
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That is, the displacement vector �
→r equals the difference between the final and initial

position vectors. As seen from Fig. 4.1, the magnitude of the displacement vector is

less than the distance traveled along the curved path, which was the particle’s actual

path of motion.

Fig. 4.1 The displacement

�
→r = →r f − →r i of a particle

moving in a plane as it moves

from P to Q during the time

interval �t = tf − ti

x

P

Particle’s path

y

Q
ir

Δr

it

ft

fr

O

Average Velocity

One of several quantities associated with the phrase “how fast” a particle moves is

the average velocity, v̄, which is defined as follows:

Average velocity

The average velocity, →
v , of a particle is defined as the ratio of its displacement,

�
→r , to the time interval, �t. That is:

→
v = �

→r
�t

=
→r f − →r i

tf − ti
(4.3)

From this definition, →
v , has the dimension of length divided by time, that is m/s

in SI units. It is also a vector quantity that has a magnitude and direction along the

displacement vector �
→r .

Instantaneous Velocity

Consider the motion of a particle between the two points P and Q in the xy

plane, see Fig. 4.2. As the point Q is brought closer and closer to point P (through

points Q1, Q2, . . .), the time intervals (�t1,�t2, . . .) get progressively smaller. The

average velocity for each time interval is directed along the displacement vector.

As Q approaches P, the time interval approaches zero, and the direction of the
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instantaneous velocity →
v , which is the direction of the displacement vector,

approaches the direction of the tangent at P. We define →
v as follows:

Instantaneous velocity

The instantaneous velocity, →
v , of a particle is defined as the limiting value of

the ratio �
→r /�t as �t approaches zero, i.e.

→
v = lim

�t→0

�
→r

�t
(4.4)

Fig. 4.2 The average velocity

is in the direction of �
→r . As

Q approaches P, the direction

of �
→r and hence the direction

of the instantaneous velocity
→v approaches the tangent line

to the curve at P
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In calculus notation, the above limit is called the derivative of →r with respect to t,

and written as d→r /dt (simplified as →̇r ). Thus:

→
v = d→r

dt
≡ →r f − →r i =

tf∫
ti

→
v dt (4.5)

From here on, we use the word velocity to designate instantaneous velocity, and

speed is defined as the magnitude of that velocity.

In unit vector notation, the position vector can be written in the form →r = x
→
i + y

→
j ,

and hence we get:

→
v = d→r

dt
= d(x

→
i + y

→
j )

dt

= dx

dt

→
i + dy

dt

→
j

(4.6)
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or

→
v = vx

→
i + vy

→
j (4.7)

where the two components of the velocity vector are given by:

vx = dx

dt
,

vy = dy

dt

(4.8)

Figure 4.3 shows a velocity vector →
v and its scalar components for a particle moving

in two dimensions.

Fig. 4.3 The velocity →v
of a particle at point P along

with its scalar components

vx and vy
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Particle’s path

We should notice that, in a three dimensional study, the velocity vector can be

written in the general form →
v = vx

→
i + vy

→
j + vz

→
k .

Average Acceleration

As the particle moves from P to Q along a certain path in the xy plane as in Fig. 4.4,

its velocity changes from →
v i at time ti to →

v f at time tf .

We define the average acceleration as:

Average acceleration

The average acceleration, →a , of a particle is defined as the ratio of the change

in velocity �
→
v = →

v f − →
v i to the time interval �t = tf − ti. That is:
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Fig. 4.4 The average acceleration →a for a particle moving from P to Q is in the direction of the change

in velocity �→v = →v f − →v i shown in the right side of the figure

→a = �
→
v

�t
=

→
v f − →

v i

tf − ti
(4.9)

Since �t is a scalar quantity, the direction of →a is in the direction of the change in

velocity �
→
v = →

v f − →
v i.

Instantaneous Acceleration

It is useful to define instantaneous acceleration as the limit of the average acceleration

when �t approaches zero. When we consider the motion of the particle between the

two points P and Q of the graph shown in Fig. 4.4, we see that as point Q approaches

P, the time interval approaches zero, and we define the instantaneous acceleration →a
as follows:

Instantaneous acceleration

The instantaneous acceleration, →a , of a particle is defined as the limiting value

of the ratio �
→
v /�t when �t approaches zero. Mathematically →a can be

expressed as:

→a = lim
�t→0

�
→
v

�t
(4.10)
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In calculus notation, the above limit is called the first derivative of →
v with respect

to t, and written as d→
v /dt (simplified sometimes as →̇

v ), or the second derivative of
→r with respect to t, and written as d2→r /dt2 (simplified sometimes as →̈r ). Thus:

→a = d→
v

dt
= d2→r

dt2 ≡ →
v f − →

v i =
tf∫
ti

→a dt (4.11)

From here on, we use the word acceleration to designate instantaneous acceler-

ation.

In unit vector notation, we use →
v = vx

→
i + vy

→
j , so that:

→a = d→
v

dt
= d(vx

→
i + vy

→
j )

dt

= dvx

dt

→
i + dvy

dt

→
j

(4.12)

or

→a = ax
→
i + ay

→
j (4.13)

where the two components of the acceleration vector are given by:

a x = dvx

dt
,

a y = dvy

dt

(4.14)

Figure 4.5 shows a general view of both the acceleration →a and the velocity →
v for

a particle moving in a plane. On the same figure, we display the scalar components

of the acceleration vector →a .

Fig. 4.5 A general view of

the acceleration vector →a of a

particle at point P at a

particular time t. The figure

also displays the acceleration

scalar components ax and ay ,

as well as the position vector
→r and the velocity vector →v
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We should notice that in a three dimensional study, the acceleration vector will

take the general form →a = ax
→
i + ay

→
j + az

→
k .

A particle can accelerate for several reasons. One way is to change with time

the magnitude of the velocity vector (called the speed) such as in one-dimensional

motion. Another way is to change with time the direction of the velocity vector, as

in circular motion. Finally, the acceleration may change due to a change in both the

magnitude and the direction of the velocity vector.

Example 4.1

A particle moves over a path such that the components of its position with respect

to an origin of coordinates are given as a function of time by:

x = −t2 + 12 t + 5

y = −2 t2 + 16 t + 10

where t is in seconds and x and y are in meters. (a) Find the particle’s position

vector →r as a function of time, and find its magnitude and direction at t = 6 s. (b)

Find the particle’s velocity vector →
v as a function of time, and find its magnitude

and direction at t = 6 s. (c) Find the particle’s acceleration vector →a as a function

of time, and find its magnitude and direction at t = 6 s.

Solution: (a) The position vector is given at time t by:

→r = x
→
i + y

→
j = (−t2 + 12 t + 5)

→
i + (−2 t2 + 16 t + 10)

→
j

Figure 4.6 shows the variation of x and y as a function of time. At t = 6 s we have:

→r = x
→
i + y

→
j = 41

→
i + 34

→
j

The magnitude of →r is:

r =
√

x2 + y2 =
√

412 + 342 = 53.26 m

The angle θ between →r and the direction of increasing x is:

θ = tan−1
( y

x

)
= tan−1

(
34 m

41 m

)
= tan−1(0.83) = 39.7◦

Figure 4.7 shows the path of the particle in the xy plane, and also shows its position

vector →r at t = 6 s.
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Fig. 4.6
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(b) The velocity components along the x and y axes are:

vx = dx

dt
= d

dt
(−t2 + 12 t + 5) = −2 t + 12,

vy = dy

dt
= d

dt
(−2 t2 + 16 t + 10) = −4 t + 16

At t = 6 s the components of →
v are:

vx = 0, vy = −8 m/s

That is, →
v = −8

→
j . The magnitude of →

v at this time is:

v =
√

v2
x + v2

y =
√

0 + (−8 m/s)2 = 8 m/s

Hence, the angle θ between →
v and the direction of increasing x is:

θ = tan−1
(

vy

vx

)
= tan−1

(−8 m/s

0 m/s

)
= tan−1(−∞) = 270◦
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where we used the fact that →
v = −8

→
j is a downward vector and its angle should

be measured in a counterclockwise sense from the direction of increasing x, see

the Fig. 4.7.

(c) The components of the acceleration along the x and y axes are:

ax = dvx

dt
= d

dt
(−2t + 12) = −2 m/s2,

ay = dvy

dt
= d

dt
(−4t + 16) = −4 m/s2

We see that the acceleration does not vary with time, i.e. it is a constant. We define

the magnitude and direction of →a as follows:

a =
√

a2
x + a2

y =
√

(−2 m/s2)2 + (−4 m/s2)2 =
√

20 (m/s2)2 = 4.47 m/s2

θ = tan−1
(

ay

ax

)
= tan−1

(−4 m/s2

−2 m/s2

)
= 180◦ + tan−1(2)

= 180◦ + 63.4◦ = 243.4◦

where we used Table 2.1 to calculate θ for a negative ax and ay .

4.2 Projectile Motion

Any object that is thrown into the air is called a projectile. Near the Earth’s surface,

we assume that the downward acceleration due to gravity is constant and the effect

of air resistance is negligible. Based on these two assumptions, we find that: (1) the

horizontal motion and vertical motion are independent of each other and (2) the two

dimensional path of a projectile (also called its trajectory) is always a parabola.

If we choose the axes of the xy plane such that the y axis is vertically upward, then

ax = 0 and ay = −g (as in one-dimensional free fall). Furthermore, let us assume

that at t = 0 the projectile leaves the origin (i.e. x◦ = y◦ = 0) with initial velocity
→
v ◦ that makes an angle θ◦ with the positive x direction as in Fig. 4.8.

The projectile’s initial velocity can be written as:

→
v ◦ = vx◦

→
i + vy◦

→
j (4.15)

The components vx◦ and vy◦ can then be found in terms of the initial speed v◦ and

the launch angle θ◦ as follows:
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Fig. 4.8 The path of a projectile launched from the origin with initial velocity →v ◦ makes an angle θ◦ with

the x axis. The horizontal velocity component vx◦ remains constant, but the vertical velocity component

vy changes continuously. At the peak of the parabolic trajectory vy = 0 and y is maximum (y = H). The

horizontal range R is the distance traveled by the projectile when it returns to y = 0

vx◦ = v◦ cos θ◦,

vy◦ = v◦ sin θ◦
(4.16)

Now, we decompose the horizontal motion and vertical motion as described below.

Horizontal Motion of a Projectile

Since ax = 0, the horizontal velocity component vx◦ remains constant throughout

the motion, as in Fig. 4.8. Thus, the horizontal velocity vx and the horizontal position

x are described as follows:

vx = vx◦ = constant ⇒ vx = v◦ cos θ◦ = constant (4.17)

x = vx◦ t ⇒ x = (v◦ cos θ◦)t (4.18)

Vertical Motion of a Projectile

Since ay = −g, then the vertical motion is the motion we discussed in Sect. 3.6 for

a particle in free fall. Thus, the vertical velocity vy and the vertical position y can be

described as follows:

vy = vy◦ − gt ⇒ vy = v◦ sin θ◦ − gt (4.19)
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y = vy◦t − 1
2 gt2 ⇒ y = (v◦ sin θ◦)t − 1

2 gt2 (4.20)

v2
y = v2

y◦ − 2gy ⇒ v2
y = (v◦ sin θ◦)2 − 2gy (4.21)

As illustrated in Fig. 4.8, the vertical velocity component vy and the coordinate

y behave like those of an object that is thrown upwards. The initial upward velocity

component steadily decreases reaching zero at the maximum height. The vertical

component then reverses direction, and its magnitude becomes larger with time.

Horizontal Range of a Projectile

The horizontal range R is the distance traveled by the projectile when it returns to

y = 0 after time t = T , as seen in Fig. 4.8. To find an expression for R we use Eq. 4.18

and set x = R at time t = T . We also use Eq. 4.20 and set y = 0. Thus:

R = (v◦ cos θ◦)T

0 = (v◦ sin θ◦)T − 1
2 gT 2

From the last result, we get the following relation for T :

T = 2v◦ sin θ◦
g

(4.22)

Substituting with the expression of T in R = (v◦ cos θ◦)T and using the identity

sin 2θ◦ = 2 sin θ◦ cos θ◦, we get:

R = v2◦ sin 2θ◦
g

, 0 ≤ θ◦ ≤ π/2 (4.23)

The range is maximum when sin 2θ◦ = 1, i.e. when θ◦ = 45◦, and is the same for

the two angles θ◦ and 90◦ − θ◦ since sin 2θ◦ = sin(180◦ − 2θ◦).

Maximum Height of a Projectile

Since the trajectory is symmetric about the peak, then we can find the time t = t1 =
T/2 at the peak from Eq. 4.22. That is:

t1 = 1
2 T = v◦ sin θ◦

g
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Note that we get the same answer when we set vy = 0 in Eq. 4.19. Substituting with

t1 in Eq. 4.20 we get:

H = (v◦ sin θ◦)
v◦ sin θ◦

g
− 1

2 g

(
v◦ sin θ◦

g

)2

Thus:

H = v2◦ sin2 θ◦
2g

, 0 ≤ θ◦ ≤ π/2 (4.24)

Although θ◦ and 90◦ − θ◦ are two angles that have the same range R, sin θ◦ is not

equal to sin(90◦ − θ◦). Therefore, the maximum height H is greater for the bigger

angle. For the same initial speed v◦, Fig. 4.9 shows these properties by displaying

three trajectories, where two of them are with the same range R when θ◦ = 30◦ and

90◦ − θ◦ = 60◦, and the third trajectory has a maximum range Rmax when θ◦ = 45◦.

Fig. 4.9 The trajectories of a

projectile fired from the origin

with the same initial speed v◦.

For the two angles θ◦ = 30◦

and θ◦ = 60◦, we get the same

range R, but when θ◦ = 45◦,

we get the maximum range

Rmax for the projectile motion x
0

y

Rmax

R

=45 o

°

°=60
o

=30 o

°

°
°

°

Equation of the Trajectory

We can find the equation of the projectile’s trajectory by solving Eq. 4.18 for t and

substituting into Eq. 4.20. After performing a few manipulations, we get:

y =
( −g

2v2◦ cos2 θ◦

)
x2 + (tan θ◦)x, 0 ≤ θ◦ < π/2 (4.25)

This can be written in the form y = ax2 + bx, which is the equation of a parabola

that passes through the origin. The angle θ◦ = 90◦ is excluded from Eq. 4.25 since

it represents a projectile that is fired vertically up, i.e. the path of the projectile is a

straight line.
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Example 4.2

An airplane is flying horizontally with a constant speed v◦ = 400 km/h at a con-

stant elevation h = 2 km above the ground, see Fig. 4.10. (a) If the pilot decided

to release a package of supplies very close to a truck on the ground, then what

is the time of flight of the package? (b) What is the horizontal distance covered

by the package in that time (which is the same horizontal distance covered by the

plane)?

Fig. 4.10

x

y

x

o

h

o

Solution: (a) The initial velocity of the package is the same as the velocity of the

plane. Therefore, the initial velocity of the package →
v ◦ is horizontal (i.e., θ◦ = 0)

and has a magnitude of 400 km/h. Since we know the vertical distance that the

package falls, then we find its time of flight from Eq. 4.20 as follows:

y = (v◦ sin θ◦) t − 1
2 gt2

Substituting with y = −2,000 m (we use the negative sign because the package

is bellow the origin) and θ◦ = 0, we get:

−2,000 m = 0 − 1
2 (9.8 m/s2)t2

Solving for t and taking the positive root yields:

t =
√

2,000 m

4.9 m/s2 = 20.2 s

(b) The horizontal distance covered by the package in that time is:

x = (v◦ cos θ◦) t

= (400 km/h)(1 h/3600 s)(cos 0◦)(20.2 s) = 2.244 km

= 2,244 m
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Example 4.3

A basketball player throws a ball at an angle θ◦ = 60◦ above the horizontal, as

shown in the Fig. 4.11. At what speed must he throw the ball to score?

Fig. 4.11

3 m2 m

4 m

y

vo

x°o

Solution: In terms of the unknown speed v◦, we must first use the horizontal

Eq. 4.18 to find the time needed for the ball to reach the net after moving a

horizontal distance of 4 m. Thus, after omitting the units temporarily since they

are consistent, we get:

x = (v◦ cos θ◦)t ⇒ 4 = v◦(cos 60◦)t = 0.5v◦t ⇒ t = 8

v◦

Since y is up, then a = −g = −9.8 m/s2 during ascending and descending

motions. Also, choosing the origin of the xy plane to be at the player’s hands

makes y◦ = 0. When the ball reaches the net, it gains vertical height y = 1 m.

Then, by using Eq. 4.20 we get:

y = (v◦ sin θ◦)t − 1
2 gt2 ⇒ 1 = (v◦ sin 60◦) 8

v◦
− 1

2 × 9.8 ×
(

8

v◦

)2

or,

1 = 6.93 − 313.6

v2◦

Thus, solving for v◦ and taking the positive root gives:

v◦ =
√

313.6

6.93 − 1
= 7.27 m/s
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Example 4.4

A ball thrown from the top of a building has an initial speed of 20 m/s at an angle

of 30◦ above the horizontal. The building is 40 m high and the ball takes time t ′

before hitting the ground, see the Fig. 4.12. Take g = 10 m/s2. (a) Find the time

t1 for the ball to reach its highest point. (b) How high will it rise? (c) How long

will it take to return to the level of the thrower? (d) Find the time of flight t ′. (e)

What is the horizontal distance covered by the ball during this time? (f) What is

the velocity of the ball before striking the ground?

Fig. 4.12 y

x

x

o

t = t'

t = T
t = 0

 

t = t1

40
m

Solution: (a) Since y is up, then a = −g = −10 m/s2 during ascending and

descending motions. Also, since the origin is at the top of the building, then

y◦ = 0. The initial components of the velocity are:

vx◦ = v◦ cos θ◦ = (20 m/s) (cos 30◦) = 17.32 m/s,

vy◦ = v◦ sin θ◦ = (20 m/s) (sin 30◦) = 10 m/s

Since at the maximum height the ball stops momentarily, we use vy◦ = 10 m/s and

vy = 0 in vy = vy◦ − g t to find t1 as follows:

0 = 10 m/s − (10 m/s2) t1 ⇒ t1 = 10 m/s

10 m/s2 = 1 s

(b) To find the maximum height H from the position of the thrower, we use

t1 = 1 s and y = vy◦t − 1
2 gt2, or Eq. 4.24, as follows:
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H = (10 m/s) × (1 s) − 1
2 (10 m/s2)× (1 s)2 = 5 m

Thus, the maximum height of the ball from the ground is 45 m.

(c) When the ball returns to the level of the thrower, the y coordinate is zero

again, i.e. y = 0, and t = T . To find the time T the ball takes to reach this location,

we use y = vy◦t − 1
2 gt2 as follows (after omitting the units temporarily since

they are consistent):

0 = 10T − 1
2 × 10 × T 2 = (10 − 5T )T ⇒ T = 2 s

We can also use T = 2t1 = 2 s for the symmetric part of the path.

(d) To find t ′, we can use y = vy◦t − 1
2 gt2 with y = −40 m and vy◦ = 10 m/s

so that (after omitting the units):

−40 = 10 t ′ − 5 t ′2 ⇒ 5 t ′2 − 10 t ′ − 40 = 0

Solving this quadratic equation yields:

t ′ = 10 ± √
(−10)2 − 4 × 5 × (−40)

2 × 5
= 10 ± 30

10
⇒ t ′ =

{+4 s

−2 s

We reject the negative time and take only the positive root, i.e. t ′ = 4 s.

(e) The horizontal distance x covered by the ball at t ′ = 4 s is:

x = (v◦ cos θ◦) t ′ = vx◦ t ′

= (17.32 m/s)(4 s) = 69.28 m

(f) The vertical component of the ball’s velocity at t ′ = 4 s is given by:

vy = vy◦ − gt ′ = 10 m/s − (10 m/s2) (4 s) = −30 m/s

The negative sign indicates that the vertical component is directed downwards.

Since vx = vx◦ = 17.32 m/s, the required speed would be:

v =
√

v2
x + v2

y =
√

(17.32 m/s)2 + (−30 m/s)2 = 34.64 m/s

The direction of →
v at t ′ = 4 s is indicated in the Fig. 4.12 by the angle θ. Thus,

according to this figure we have:

θ = tan−1
( |vy |

vx

)
= tan−1

(
30 m/s

17.32 m/s

)
= tan−1(1.73) = 60◦
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4.3 Uniform Circular Motion

A particle that moves around in a circle with a constant speed, like the car shown

in Fig. 4.13a, is said to experience a uniform circular motion. In this case, the accel-

eration arises only from the change in the direction of the velocity vector.

We can use Fig. 4.13b to find the magnitude and direction of this acceleration.

In this figure, the particle is seen first at point P with velocity →
v i at time ti and at

point Q with velocity →
v f at time tf , where →

v i and →
v f are different only in direction,

i.e. vi = vf = v. In order to calculate the acceleration we start with the average

acceleration:

→a = �
→
v

�t
=

→
v f − →

v i

tf − ti
(4.26)

where �
→
v can be accomplished graphically as shown in Fig. 4.13c.

The triangle OPQ in Fig. 4.13b, which has sides �s and r, is similar to the triangle

of Fig. 4.13c, which has sides �v and v . This similarity enables us to write the

following relationship:

�v

v
= �s

r
(4.27)

Substituting with �v from Eq. 4.27 into the magnitude form of Eq. 4.26 we get:

a = �v

�t
= v

r

�s

�t
(4.28)
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Δ

Fig. 4.13 (a) Circular motion with constant speed v. (b) Velocity vectors →v i and →v f at P and Q.

(c) Graphical method to obtain �→v
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When �t is very small, the two points P and Q of Fig. 4.8b becomes extremely

close, and hence �s and �θ are very small too. In this limit, �→
v would point toward

the center of the circular path, and because the acceleration is in the direction of �
→
v ,

it will also be toward the center. Consequently, in this limit the arc PQ (P Q = r �θ)

will be equal to �s and the ratio�s/�t approaches the speedv . Thus, when �t → 0,

the magnitude of the radial acceleration will be:

ar = v2

r
, (Radial acceleration) (4.29)

where the subscript “r” indicates that the acceleration of the particle is always

toward the center of the circle. Because of this, the acceleration associated with uni-

form circular motion is called centripetal acceleration (meaning “center-seeking”

acceleration).

Figure 4.14 shows the velocity and acceleration vectors at various stages of a

body in circular motion, where both vectors have constant magnitude as the motion

progresses. The velocity is always tangent to the circle and the acceleration is always

directed toward the center.

Fig. 4.14 Directional change

of the velocity and

acceleration vectors in uniform

circular motion, where both

have constant magnitude
o

ar

ar

ar

ar

r

In addition, during this circular motion with constant speed, the particle travels

the circumference of the circle in a time T giving by:

T = 2πr

v
(4.30)

where T is called the period of revolution, or simply the period.



4.3 Uniform Circular Motion 89

Example 4.5

A satellite is circulating the Earth at an altitude h = 150 km above its surface,

where the free fall acceleration g is 9.4 m/s2. The Earth’s radius is 6.4 × 106 m.

What is the orbital Speed and period of the satellite?

Solution: As shown in Fig. 4.15, the radius of the satellite’s circular motion equals

the sum of the Earth’s radius R and the altitude h, i.e.

r = R + h

Fig. 4.15

h
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r

r
Satellite’s
path

Satellite

Earth

R

By using the centripetal acceleration given by Eq. 4.29, we find that the magnitude

of the satellite’s acceleration can be written as:

ar = v2

r
= v2

R + h

For the uniform circular motion of the satellite around the Earth, the satellite’s

centripetal acceleration is then equal to the free fall acceleration g at this altitude.

That is:

ar = g = 9.4 m/s2

From the preceding two equations we have:

g = v2

R + h
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Solving for v and taking the positive root gives:

v = √
g(R + h)

=
√

(9.4 m/s2)(6.4 × 106 m + 150 × 103 m) = 7,847 m/s ≈ 28,000 km/h

With this high speed, the satellite would take T = 2πr/v = 1.46 h to make one

complete revolution around the Earth.

4.4 Tangential and Radial Acceleration

When the velocity of a particle changes in both direction and magnitude, the particle

can move in a curved path as shown in Fig. 4.16. In this situation, the velocity →
v

is always tangent to the path and usually the acceleration →a makes an angle with

the velocity. The vector →a can be resolved into two component vectors: a tangential

component vector, →a t , and a radial component vector, →a r. That is:

→a = →a r + →a t (4.31)

aar

aar

aat

aat

a

a

Particle’spath

Fig. 4.16 When the velocity →v of a particle changes in both direction and magnitude, the acceleration
→a can be decomposed to a radial component vector →a r and a tangential component vector →a t

The tangential acceleration at a particular point arises from the time rate of the speed

of the particle and has a magnitude given by:

at = dv

dt
(Tangential acceleration) (4.32)
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The radial acceleration at a particular point arises from the time rate of change in

the direction of the velocity vector and has a magnitude:

ar = v2

r
(Radial acceleration) (4.33)

where r is the particle’s radius of curvature at the point in question.

Since →a t and →a r are perpendicular component vectors, then the total acceleration
→a , its magnitude a, and its direction θ relative to the radius of curvature will be given

by:

→a = →a t + →a r a =
√

a2
t + a2

r , and tan θ = at

ar
(4.34)

In the case of uniform circular motion, where v is constant, we have at = dv/dt = 0

and acceleration is always radial, i.e. →a = →a r. Furthermore, if the direction of the

velocity →
v does not change, then ar = 0 and the motion will be in one dimension,

i.e. →a = →a t.

4.5 Non-uniform Circular Motion

A particle that moves around a circle with a variable speed, is said to experience

a non-uniform circular motion. In this case, the total acceleration arises from the

change in magnitude of →
v (represented by →a t) and the change in direction of →

v

(represented by →a r), see Fig. 4.17a. Thus:

→a = →a t + →a r (4.35)

To describe acceleration in terms of unit vectors, we consider the unit vectors →̂r
and

→̂
θ as in Fig. 4.17b, where →̂r is a unit vector directed outwards along the radius

vector, and
→̂
θ is a unit vector tangent to the circular path in the direction of increasing

θ (measured in a counterclockwise sense from the positive x axis).

Using this notation, we can write the particle’s total acceleration →a as:

→a = →a t + →a r = dv

dt

→̂
θ − v2

r
→̂r (4.36)

These vectors are described in Fig. 4.17a. The negative sign of →a r indicates that it is

always directed inward, opposite to →̂r.
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Fig. 4.17 (a) The acceleration

of a particle moving in a circle

with a tangential component
→a t and a radial component →a r

directed toward the center of

the circle. (b) Definitions of

the unit vectors →̂r and
→̂
θ
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Particle’s path
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Example 4.6

A sphere attached to a cord of length L = 1 m swings in a vertical circle under the

influence of gravity. The sphere has a speed of 2 m/s when the cord has an angle

θ = 30◦ with the vertical, as shown in Fig. 4.18. At this instant, find its acceleration

in terms of tangential and radial components.

Fig. 4.18

ar

at

a

θ

φ

g

θ

L = r

Solution: When the cord makes an angle θ to the vertical line, the component of

the gravitational acceleration →g that is tangent to the circular path has a magnitude

g sin θ. Thus the magnitude of the tangential acceleration is:

at = g sin θ = (9.8 m/s2)(sin 30◦) = 4.9 m/s2

Since the speed of the sphere at this instant is v = 2 m/s and the radius of the circle

that the sphere swings about equals the length of the cord, i.e. r = L = 1 m, then

the magnitude of the radial acceleration is:
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ar = v2

r
= (2 m/s)2

1 m
= 4 m/s2

Therefore, T − mg cos θ = mar, where T is the cord’s tension. From the relation

Eq. 4.34 we can find the magnitude of a at θ = 30◦ as follows:

a =
√

(4.9 m/s2)2 + (4 m/s2)2 = 6.32 m/s2

The angle φ between the vector →a and the cord will be:

φ = tan−1
(

at

ar

)
= tan−1

(
4.9 m/s2

4 m/s2

)
= tan−1 (1.225) = 50.77◦

4.6 Exercises

Section 4.1 Position, Displacement,Velocity, and Acceleration Vectors

(1) The initial position vector of a butterfly can be described in unit vectors by
→r i = 3

→
i − 7

→
j + 4

→
k , and five seconds later by →r f = −2

→
i + 3

→
j − →

k (all

units in meters). (a) What is the butterfly’s displacement vector? (b) What is

the butterfly’s average velocity?

(2) The position vector of a particle moving in two dimensions is given by →r =
x(t)

→
i + y(t)

→
j , where x(t) = 2 t + 1, y(t) = 2 t2, t is the time in seconds,

and all numerical coefficients have the proper units so that →r is in meters.

(a) Find the average velocity vector during the time interval from t = 0 to

t = 2 s. (b) Find the particle’s velocity vector →
v as a function of time, and

find its magnitude and direction at t = 2 s. (c) Find the particle’s acceleration

vector →a .

(3) The position vector of a particle moving in two dimensions is described by
→r = (4 t3 − 12 t + 9)

→
i + (6 t + 4)

→
j , where t is the time in seconds and

all numerical coefficients have the proper units so that →r is in meters.

(a) Find the average velocity vector between t = 1 s and t = 2 s. (b) Find the

particle’s instantaneous velocity vector →
v as a function of time, and then find

its magnitude and direction at t = 1 s. (c) Find the velocity and the speed of

the particle at t = 3 s. (d) Find the average acceleration vector between t = 1 s

and t = 2 s. (e) Find the instantaneous acceleration vector →a as a function of

time, and find its magnitude and direction at t = 2 s. (f) Find the time at which
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the x component of the particle’s displacement vector is at a relative maxi-

mum/minimum, showing how you can determine whether it is a maximum or

a minimum.

(4) The position vector of a particle moving in three dimensions is given by
→r = 3 t

→
i − 2t2 →

j + 2
→
k , where t is the time in seconds and all numerical

coefficients have the proper units so that →r is in meters. (a) Find the magnitude

of the particle’s position vector →r as a function of time, and then find its value

when t = 2 s. (b) Find the particle’s velocity vector →
v as a function of time, and

find its magnitude and direction at t = 2 s. (c) Find the particle’s acceleration

vector →a as a function of time, and find its magnitude and direction at t = 2 s.

Section 4.2 Projectile Motion

(Neglect air resistance and take g = 10 m/s2 in all projectile Exercises)

(5) A small ball is projected horizontally from a tall building with a speed v◦ of

10 m/s, see Fig. 4.19. Find its position and its velocity components after 1
2 s.

Fig. 4.19 See Exercise (5)
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(6) A student running with a constant speed v◦ goes straight over the cliff shown

in Fig. 4.20. The student is at a height h = 45 m above water level once he

leaves the cliff. The student lands in the water at a point where x = 39 m.

(a) How fast was the student running when he jumped over the cliff? (b) What

is his speed and what is the angle of his impact with the water?

(7) A long jumper leaves a cliff at θ◦ = 45◦ above the horizontal with an initial

speed v◦ and lands 6 m away, see Fig. 4.21. The cliff is at a height h = 2 m

above sea level. (a) What is the speed of the jumper? (b) How long will it take

him to reach the water?
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Fig. 4.20 See Exercise (6) y

x

x

h

Fig. 4.21 See Exercise (7)

xo

°

x = 6 m

h = 2 m

x = 2 m

θ
°

y

(8) After the long jumper in exercise 7 lands in water, he swims 2 m to the bank of

the river, and then decides to go back to the cliff by making a long jump from

the edge of the bank of the river at θ◦ = 45◦ above the horizontal, see Fig. 4.22.

(a) What must be the minimum speed of the jumper to reach the cliff? (b) How

long will it take him to reach the cliff?

Fig. 4.22 See Exercise (8)

x = 10 m

h = 2 m

°

y

x

(9) A ball is thrown with an initial speed v◦ of 30 m/s at an angle θ◦ above the

horizontal, where sin θ◦ = 4/5 and cos θ◦ = 3/5, see Fig. 4.23. (a) Find the
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x and y components of →
v ◦. (b) When t = 2 s, find the position of the ball and

the magnitude and direction of its velocity →
v . (c) What is the value of the H

(the highest point of the ball’s trajectory) and how much time t1 has elapsed for

the ball to reach that point? (d) Calculate the values of the total time of the

ball’s flight T and the horizontal range R.

Fig. 4.23 See Exercise (9)
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(10) A projectile is fired from the ground with an initial velocity →
v ◦ = (6

→
i +

12
→
j ) m/s, see Fig. 4.24. (a) What are the vertical and horizontal velocity com-

ponents after time t = 1 s? (b) What are the time and the coordinates of the

projectile when it reaches the highest point? (c) What are the values of the total

time of the projectile’s flight T and the horizontal range R?

Fig. 4.24 See Exercise (10)

x0

y

R

H

t=T

t=t1

(11) A ball is launched from the ground with an initial speed v◦ of 40 m/s at an angle

θ◦ = 60◦ towards a cliff of height h, see Fig. 4.25. The ball strikes the cliff after

5 s. Find: (a) the height h of the cliff, (b) the maximum height H, (c) the speed

of impact, and (d) the horizontal distance between the cliff and the firing point.
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Fig. 4.25 See Exercise (11)
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t 5s
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H

(12) A stunt driver tries to jump with his car over 4 cars parked sequentially one

after another, as shown in Fig. 4.26. The horizontal distance that he must cover

is 15 m and the vertical height of the tip of the ramp is 1.5 m above the cars.

(a) What is the minimum speed that he must drive off the horizontal ramp

of Fig. 4.26a? (b) When the ramp is tilted upwards with angle θ◦ = 8◦, as in

Fig. 4.26b, what is the new minimum speed?

1.5 m

1.5 m

(a)

(b)

15 mx

L

L

L

Fig. 4.26 See Exercise (12)

(13) Figure 4.27 shows a blasted chunk of a solid rock ejected from a volcano.

It is safe to live at the foot of the volcano, but away from its center by 9 km (or

more), i.e. x = 9 km when θ◦ = 45◦ and the speed v◦is maximum. (a) At what

maximum initial speed would a rock need to be ejected from the volcano’s

mouth and reach x = 9 km? (b) What would be its time of flight? (c) Does the

maximum initial speed of part (a) increases or decreases when air resistance is

taken into account?

(14) Figure 4.28 shows a fighter plane that has a speed v◦ of 300 km/h, flying at

an angle θ◦ = 15◦ below the horizontal when a decoy rocket is released. The

horizontal distance between the release point and the point where the decoy
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strikes the ground is x = 600 m. (a) How long was the decoy in the air?

(b) How high was the plane when the decoy was released?

0

→

3.
5 

km

45 °

9 km

Volcano

θ

Fig. 4.27 See Exercise (13)

Fig. 4.28 See Exercise (14)
0

y

15°

Point of release

Path of the decoy
°

x

x=600m

→

(15) At what initial angle θ◦ will the maximum height attained by a projectile be

equal to its horizontal range?

(16) A girl sitting on a hill aims her cork slingshot at a boy hanging from a tree at

a horizontal distance L away and a vertical distance h up from the slingshot,

see Fig. 4.29. At the instant the cork-projectile is fired, the boy releases himself

from the tree, hoping to avoid being hit. Ignoring air resistance, show that the

ycork = yboy and thus the cork collides with the boy.

(17) An inclined plane makes an angle φ with the horizontal. At the lowest point of

the incline, a projectile is fired with a speed v◦ that makes an angle θ◦ above the

horizontal, see Fig. 4.30. At what angle θ◦ does the range R along the incline

reach its maximum?
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Fig. 4.29 See Exercise (16)
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Fig. 4.30 See Exercise (17)
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(18) A projectile is fired with a speed v◦ that makes an angle θ◦ above the horizontal.

Find the horizontal range R when the projectile is at a vertical position y = +h,

see Fig. 4.31.

Fig. 4.31 See Exercise (18)

£
z

{=
{

T

θ

j
£

(19) What is the effect on the horizontal range R of Exercise 18 when the vertical

position is y = −h.

Section 4.3 Uniform Circular Motion

(20) Calculate the magnitude of the acceleration of a particle moving in a circle of

radius r = 0.5 m with a constant speed v of 10 m/s.
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(21) A boy attaches a stone to the end of a rope of length r = 0.25 m, and rotates the

stone at a constant speed in a circular fashion. Find the stone’s radial acceler-

ation when the period T is 2 s.

(22) As an approximation, assume the moon revolves about the Earth in a perfectly

circular orbit with a radius r = 3.85 × 108 m and takes 27.3 days (which is

2.36 × 106 s) to make a complete revolution, see Fig. 4.32. (a) What is the

speed of the moon? (b) What is the magnitude of the radial acceleration of the

moon toward the Earth’s center?

Fig. 4.32 See Exercise (22)

ra

r

Moon

Moon's
path

Earth

(23) A car moves in a circle of radius r = 15 m with a constant speed v = 30 m/s,

see Fig. 4.33. (a) What is the change in velocity (magnitude and direction) when

the car goes around an arc of �θ = 60◦, as shown in the right part of Fig. 4.33?

(b) What is the magnitude of the radial acceleration?

f

rr

s

π

Fig. 4.33 See Exercise (23)

(24) In the model of the hydrogen atom proposed by Niels Bohr, an electron circu-

lates a stationary proton in a circle of radius r = 5.28 × 10−11 m with a speed
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v = 2.18 × 106 m/s, see Fig. 4.34. (a) Find the magnitude of the electron’s

radial acceleration in this model. (b) What is the period of the motion?

Fig. 4.34 See Exercise (24)

Proton

r

Electron

ar

A model of the
hydrogen atom

-

+

(25) A point P is located on the latitude that passes through Egypt’s soil at exactly

30◦N, and at a distance r = 6.4×106 m away from Earth’s center, see Fig. 4.35.

As the Earth revolves about its axis, calculate the magnitude of the acceleration

of the point P.

Fig. 4.35 See Exercise (25)
Top view

Rotation of P about 
the Earth's axis

30cosr °

ra P

(26) The rotor of an ultracentrifuge has a radius r = 6 cm and rotates at 5 × 104

revolutions per minute. Find the centripetal acceleration of a particle at the

circumference of the rotor in terms of the value of the acceleration due to

gravity, g.

(27) A jet pilot performs a vertical loop when the speed of his aircraft is 1,200 km/h.

Find the smallest radius of the circle when the centripetal acceleration at the

lowest point does not exceed 6 g.

Sections 4.4 and 4.5 Tangential and Radial Acceleration,
Non-uniform Circular Motion

(28) The speed of a particle moving in a circle of radius r = 4.5 m increases with a

constant rate of 2 m/s. If at some instant, the magnitude of the total acceleration
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→a is 6 m/s2, then find: (a) the magnitude of the tangential acceleration, (b) the

magnitude of the radial acceleration, and (c) the speed of the particle.

(29) A particle has a non-uniform motion on a circular path of radius r = 2 m. At

a given instant of time, the magnitude of its total acceleration a was 10 m/s2,

see Fig. 4.36. At this instant, find: (a) the magnitude of both the centripetal and

tangential accelerations, and (b) the speed v of the particle.

Fig. 4.36 See Exercise (29)
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(30) A spaceship is in a circular orbit at an altitude of h = 150 km above the Earth’s

surface, see Fig. 4.37 (consider the Earth’s radius to be 6.4 × 106 m). The

spaceship requires time T = 5.25 × 103 s to complete one revolution around

the Earth. In order to leave this orbit and head for the moon, an astronaut starts

the engine of the spaceship, resulting in a tangential acceleration of magnitude

at = 25 m/s2. (a) Find the spaceship’s orbital speed v and the magnitude of its

radial acceleration ar before the engine is started. (b) What is the astronaut’s

total acceleration (magnitude and direction) just after starting the engine?

h

R

r

Earth

h

R

r

Earth

ar

at

a

New pathCircular path

at d /dt
(b)(a)

ar

Fig. 4.37 See Exercise (30). (a) Before starting the engine, (b) just after starting the engine



Force and Motion 5

The kind of interaction that accelerates an object is called a force, which could be a

push or pull. From now on, we shall use the capital letter
→
F (with an arrow over it)

to represent a general force vector. In addition, we shall use the symbol �
→
F for the

vector sum of several forces, which we call the resultant force or the net force.

5.1 The Cause of Acceleration and Newton’s Laws

The relationship between forces and the produced acceleration is an aspect of

mechanics called dynamics. Isaac Newton (1642–1727) first formulated this rela-

tionship in terms of laws known by his name.

Newton’s First Law of Motion

Newton’s original first law reads:

Newton’s First Law

An object will remain at rest, or in motion with constant velocity, unless it

experiences a net external force.

If �
→
F = 0, then

⎧⎪⎨
⎪⎩

→
v = 0

or
→
v = constant

(Newton’s first law) (5.1)

H. A. Radi and J. O. Rasmussen, Principles of Physics, 103
Undergraduate Lecture Notes in Physics, DOI: 10.1007/978-3-642-23026-4_5,
© Springer-Verlag Berlin Heidelberg 2013
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Newton’s first law is sometimes called the law of inertia, and the set of

coordinates that are used to describe the object are called the inertial reference

frames or alternatively inertial frames.

Inertial Frames

An inertial frame is one in which an object experiences zero net force.

Consequently, Newton’s first law declares that if the net force on an object is zero, it

must stay at rest or move with constant velocity with respect to any inertial frame.

Newton’s Second Law of Motion

All observations reveal that the acceleration of an object is directly proportional to

the net acting force. These observations are expressed in Newton’s second law.

Newton’s Second Law

The acceleration of an object, →a, is related to its mass, m, and the resultant

force acting on it, �
→
F, by the relation:

�
→
F = m→a (Newton’s second law) (5.2)

This equation is valid only when the speed of the object is much less than the speed

of light. In SI units, we define the unit of force that accelerates a standard 1 kg by

1 m/s2 as 1 newton (abbreviated to 1 N). Thus, according to Eq. 5.2, we have:

1 N = (1 kg)(1 m/s2) = 1 kg.m/s2, (5.3)

Although we shall use SI units only from now on, other systems like the CGS

(centimeter-gram-second) system and the British system are still in use. Table 5.1

compares lists of all systems currently in use.

Table 5.1 Units in Newton’s second law

System Forcea Mass Acceleration

SI Newton (N) Kilogram (kg) m/s2

CGS dyneb gram (g) cm/s2

British Pound (lb)c slug ft/s2

a 1 N = 105 dyne = 0.255 lb. b 1 dyne = 1 g.cm/s2. c 1 lb = 1 slug.ft/s2
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Newton’s Third Law of Motion

Forces come in pairs. For example, if you lean against a wall with a certain force, the

wall reacts and pushes back on you with a force of equal magnitude. Another example

of two interacting bodies is shown in Fig. 5.1, where body 1 exerts an action force
→
F21 (a pull) on body 2. (

→
F21 is read: force exerted on body 2 by body 1). Experiments

show that body 2 would also exert a reaction force
→
F12 on body 1. These two forces

are equal in magnitude and opposite in direction. That is:

→
F12 = −→

F21 (Newton’s third law) (5.4)

Equation 5.4 implies that F12 = F21. Moreover, this equation holds true regardless

of whether the two bodies move or remain stationary.

1 2
12F 21F

12 21F F= −

Fig. 5.1 The force exerted by body 1 on body 2 is equal in magnitude but opposite to the force exerted

by body 2 on body 1

All observations similar to the previous two examples are summarized in Newton’s

third law, which states that:

Newton’s Third Law

To every action there must be a reaction equal in magnitude and opposite in

direction.

Forces of an action-reaction pair act on different bodies, i.e. they do not combine

to give a net force. In Fig. 5.2, we display an orbiting satellite, where the only force

that acts on it is
→
FSE (the gravitational force). The corresponding reaction force is

→
FES. This force causes the Earth to attain a very small yet undetectable acceleration.
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Fig. 5.2 Forces on a satellite

and the Earth as

action-reaction pair

Satellite

SEF

Earth

ESF

5.2 Some Particular Forces

Weight (
→

W )

The weight
→
W of a body is the force exerted by the Earth on the body. This force is

directed toward the center of the Earth and is primarily due to an attraction (called a

gravitational attraction) between the body and the Earth.

Since a freely falling body experiences an acceleration →g acting toward the center

of the Earth, then applying Newton’s second law to a body of mass m, with →a = →g
and �

→
F = →

W , gives the following:

→
W = m→g (5.5)

The magnitude of
→
W in SI units is in newtons. We can weigh a body with a spring

scale (see Fig. 5.3a). The body stretches the spring, moving its pointer along a scale

that has been calibrated and marked in either mass or weight units. Alternatively, we

can weigh a body by placing it on one pan of an equal-arm balance (Fig. 5.3b) and

then adding reference masses on the other pan until we achieve a balance.

Fig. 5.3 (a) A spring scale.

The reading gives the weight if

marked in weight units. (b) An

equal-arm balance. When

balance is achieved, the

masses on the left (L) and right

(R) pans are equal
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Normal Force (
→
N )

The reaction of a block of weight
→
W is the force exerted on the Earth

→
W

′
, see

Fig. 5.4a. When this block rests on a table, the table exerts an upward action force,
→
N , called the normal force; the name comes from the mathematical term normal,

meaning “perpendicular”, see Fig. 5.4b. The normal force is the force that prevents

the block from falling through the table, and can have any value up to the point of

breaking the table. The reaction to
→
N is the force that the block exerts on the table,

→
N

′
, see Fig. 5.4c. Therefore, we conclude that:

→
W = −→

W
′
,

→
N = −→

N
′

(5.6)

Block

Earth
Block

(a) (b) (c) (d)

W

W

W

NN

W'

N'

Fig. 5.4 (a) The reaction of a block of weight
→
W is the force

→
W

′
. (b) A block resting on a table

experiences a normal force
→
N perpendicular to the table. (c) The reaction force

→
N

′
exerted on the table.

(d) The free-body diagram used to solve the block problem

The forces acting on the block are only
→
W = m→g and

→
N , as seen in Fig. 5.4b.

So, the normal force balances the weight of the block and provides equilibrium

(→a = 0). To solve problems with Newton’s laws, we often draw a free-body dia-

gram, representing the body by a dot (or a sketch of the body) and each external

force by a vector with its tail on the dot, see Fig. 5.4d. With this figure �
→
F = m→a

becomes:

�
→
F = 0 ⇒ →

N + →
W = 0 ⇒ N − W = 0

Thus: N = W = mg (5.7)
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Foces of Friction (
→
f )

When we attempt to slide a block over a surface, the intended motion is resisted

by a bonding between the block and the surface. We represent this resistance by a

force
→
f called the force of friction or simply friction. This force is directed along

the surface, opposite to the intended motion. Sometimes, we simplify situations by

neglecting friction, and the surface is said to be frictionless.

Consider a block resting on a horizontal table, as in Fig. 5.5a, where its weight
→
W

is balanced by an equal but opposite normal force
→
N . In Fig. 5.5b, we apply a force

→
F on the block, attempting to pull it to the right. The block will remain stationary

if
→
F is not large enough. The frictional force

→
f acts to the left and keeps the block

stationary, i.e. F = f. We call this frictional force the force of static friction
→
fs.

If we increase F, the static frictional force
→
fs increases, while the block remains at

rest. When the applied force F reaches a certain value, the block will be on the verge

of slipping and the frictional force will be maximum and denoted by fs,max, see

Fig. 5.5c. When F exceeds fs,max, the block moves to the right, see Fig. 5.5d. When

the block is in motion, the frictional force becomes less than
→
fs,max and is called

the force of kinetic friction
→
fk, see Fig. 5.5e. The horizontal net force F − fk

accelerates the block to the right.

Experimentally, one finds that both fs and fk are proportional to the magnitude

of the normal force N acting on the block through a dimensionless constant μ. These

observations can be summarized as:
1. If the block is not moving, the force of static friction is opposite to the applied

force and can have values given by:

fs ≤ μs N (5.8)

where the constant μs is called the coefficient of static friction.

2. When the block is on the verge of slipping, we have:

fs,max = μs N (5.9)

3. If the block begins to move along the surface, the magnitude of the frictional

force rapidly decreases to the value fk given by:

fk = μk N, μk < μs (5.10)

where the constant μk is called the coefficient of kinetic friction.
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N

(a)

(b)

(c)

(e)

(d)

W

N

W

fs

N

W

Ffs,max

N

W

fk

On the verge of slipping Motion

F

F
=

f s

fs,max = s N

F

F

Static region kinetic region0

f k = kN

a

f

F = fs

F = fs,max
F > fk

Fig. 5.5 (a) A block at rest on a horizontal table. The static frictions fs and fs,max are shown in parts

(b) and (c). When the block moves, the kinetic friction fk becomes less than fs,max as in parts (d) and (e)

The values of the dimensionless coefficients μs and μk depend on the nature of the

surfaces, not on their areas. Regardless, μk < μs since fk < fs,max as in Fig. 5.5e.

Typical values of the coefficients lie in the range 0.05 ≤ μ ≤ 1.5. Table 5.2 lists

some reported values.

A highly polished surface is far from being perfectly flat on the atomic scale.

Moreover, the surfaces of everyday objects have layers of oxides and other conta-

minants. When two such surfaces are placed together, only high points touch each

other, see Fig. 5.6. In addition, many contact points weld together, which is called

cold-welding.
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Table 5.2 Some approximate coefficients of friction

Material surfaces μs μk

Ice on ice 0.1 0.03

Wood on ice 0.08 0.06

Metal on metal (lubricated) 0.15 0.06

Wood on wood 0.25–0.5 0.2

Copper on steel 0.53 0.36

Glass on glass 0.94 0.4

Aluminum on steel 0.61 0.47

Steel on steel 0.74 0.57

Rubber on concrete ∼ 0.9 ∼ 0.7

F

Motion

fk

Fig. 5.6 A highly magnified cross section showing some welding at high spots. Force is required to break

these welds to maintain motion

When two surfaces are pulled across each other, there is first a tearing of formed

welds and then a continuous tearing of reforming welds as additional contacts are

made. The kinetic friction
→
fk is the vector sum of all forces (against motion) at those

many contacts.

Foces of Tension (
→
T )

When a rope (or a cord, cable, etc) is attached to a body and pulled, the rope is said

to be in tension. The rope’s function is to transfer force between two bodies. The

tension in the rope is defined as the force that the rope exerts on the body. This force

is denoted usually by the symbol
→
T , see Fig. 5.7a and b.

A rope is considered to be massless (i.e., its mass is negligible compared to

the body’s mass) and non-stretchable. It pulls on both bodies with a force of the

magnitude T, even if the two bodies are accelerating, or the rope is run around a pulley

as in Fig. 5.7c and d. Such a pulley is massless (has a negligible mass compared to

the bodies) and frictionless (has negligible friction on its rotational axel).
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Fig. 5.7 When a rope is under

tension, it pulls the block and

the hand of parts (a), (c), and

(d) with a force of magnitude

T. According to Newton’s third

law, the block and the hand

both exert a force on the rope

of magnitude T, as shown in

part (b) only

T T

Force on the block
by the rope

Force on the hand
by the rope

T

Force on the rope
by the block

T

Force on the rope
by the hand

(a)

(b)

(c) (d)
T

T TT

Drag Forces (
→
FD)—Small Objects

When a small object moves at a low speed v through a viscous medium, it experiences

a resistive drag force
→
FD that opposes its motion. In such situations, the force has a

magnitude given by:

FD = bv (5.11)

where b is a proportionality constant that depends on the properties of the medium

and on the shape of the object, and b has the units kg/s.

If we assume that a sphere of mass m and weight W = mg is released from rest

in a fluid as in Fig. 5.8, then application of Newton’s second law �
→
F = m→a in the

vertical direction will give:

mg − bv = ma ⇒ mg − bv = m
dv

dt
(5.12)

Note that when the initial speed v = 0, the resistive force is zero and the accelera-

tion a = dv/dt is g. As the time t increases, the speed increases and the resistive force

increases, while the acceleration decreases. Finally, the acceleration becomes zero

when the resistive force equals the weight mg. At this stage, the speed has reached
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its terminal speed vt. The terminal speed can be obtained from Eq. 5.12 by setting

v = vt and a = dv/dt = 0. Thus:

vt = mg

b
(5.13)

Fig. 5.8 A small sphere

falling through a viscous fluid

with a low speed. The resistive

drag force
→
FD opposes the

motion of the sphere

F

m g

D

{

t

Drag Forces (
→
FD)—Large Objects

When a large object (such as a baseball, skydiver, or an airplane) moves at a high

speed v in a medium (gas or liquid) of density ρ (mass per unit volume), it experiences

a drag force
→
FD that opposes the motion. From experiments, it was found that in

these situations the magnitude FD will be given by:

FD = 1
2 Cρ Av2 (5.14)

where C is a dimensionless proportionality constant called the drag coefficient,

and A is the effective cross sectional area of the object, taken to be perpendicular

to its velocity →
v . If v varies significantly, C can vary as well, but we ignore such

complications.

If we assume a body of mass m and weight W = mg falls from rest in air, as

shown in Fig. 5.9, then application of Newton’s second law �
→
F =m→a in the vertical

direction as in part (c) of the figure gives:

mg − 1
2 Cρ Av2 = ma ⇒ mg − 1

2 Cρ Av2 = m
dv

dt
(5.15)

By setting a = 0 in this equation, the terminal speed is given by:

vt =
√

2mg

CρA
(5.16)
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m g m g

m g

FD

m g

FD

t

(d)(a) (b) (c)
y

Fig. 5.9 Part (a) shows a body (cat) when it has just begun to fall through air and part (b) shows its

corresponding free-body diagram. (c) Later, the drag force FD has developed. (d) FD has increased until

it balances mg and the body falls with constant terminal speed vt

5.3 Applications to Newton’s Laws

This section is devoted to applications related to Newton’s three laws of motion. The

idea behind the examples is to let you know how to tackle a problem and how to

translate a sketch of a situation to a free-body diagram with appropriate axes.

Example 5.1

(a) How much force is needed to give a 20,000 kg heavy loaded truck on a leveled

track an acceleration of 1.5 m/s2, and what is the force exerted by the track on

the truck? (b) If the truck starts from rest, find its speed and position after 2 s.

Solution: Part (a) of Fig. 5.10 depicts the truck’s travel. In part (b) we choose

the coordinate axes and show the truck’s free-body diagram. In this part we show

the truck’s weight
→
W (acting downwards), the normal force

→
N (acting perpendic-

ularly to the track), and the driving force
→
F (acting to the right).

0t = a
0=

(a)

d
mg

(b)

x

y

N Fa2 st=

Fig. 5.10
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(a) Applying Newton’s second law in the component form, we find:

�Fx = F = ma and �Fy = N − mg = 0

From the first and second equations we find F and N as follows:

F = ma = (20,000 kg)(1.5 m/s2) = 30,000 N

N = mg = (20,000 kg)(9.8 m/s2) = 196,000 N

(b) Since a is constant, we can use v = v◦ + at and x = v◦ t + 1
2 at2 to find

the speed v and the distance d after 2 s as follows:

v = v◦ + at = 0 + (1.5 m/s2)(2 s) = 3 m/s = 10.8 km/h

d = v◦ t + 1
2 at2 = 0 + 1

2 (1.5 m/s2)(2 s)2 = 3 m

Example 5.2

A block of mass m = 21 kg hangs from three cords as shown in part (a) of Fig. 5.11.

Taking sin θ = 4/5, cos θ = 3/5, sin φ = 5/13, and cos φ = 12/13, find the ten-

sions in the three cords.

 

θφ

T1

T2 T3

mBlock

Knot

m g

T1

Block

Knot

T2

T1

T3

θ
 

φ
 x

y

(a) (b) (c)

Fig. 5.11

Solution: We construct a free-body diagram for the block as shown in part (b) of

Fig. 5.11. The tension in the vertical cord balances the weight of the block. Thus,

by taking g = 10 m/s2, we get:

T1 = mg = (21 kg)(10 m/s2) = 210 N
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In part (c) of Fig. 5.11, we first construct a free-body diagram of the stationary

knot that holds the three cords together, and then we choose the coordinate axes.

By applying Newton’s second law in the x and y directions of part (c) of the figure,

we find that:

�Fx = T3 cos θ − T2 cos φ = 0 and �Fy = T3 sin θ + T2 sin φ − T1 = 0

From the x-component equation we get the following relation:

T3 = cos φ

cos θ
T2 = 12/13

3/5
T2 = 20

13
T2

When we substitute the result of T3 into the y component equation, after putting

T1 = mg = 210 N, we get:

20

13

4

5
T2 + 5

13
T2 − 210 = 0 ⇒

(
16

13
+ 5

13

)
T2 = 210 ⇒ T2 = 130 N

Consequently, one can find the value of the third tension to be:

T3 = 20

13
T2 = 20

13
× 130 N = 200 N

Example 5.3

Two masses m1 and m2 (m2 > m1), are connected by a light cord that passes over a

massless, frictionless pulley as shown in part (a) of Fig. 5.12. This arrangement is

called Atwood’s machine and sometimes is used to measure the acceleration due

to gravity. Find the magnitude of acceleration of the two masses and the tension

in the cord (consider m1 = 4 kg and m2 = 6 kg).

Solution: We construct a free-body diagram for the two masses as shown in parts

(b) and (c) of Fig. 5.12. When Newton’s second law is applied to m1 in part (b) of

the figure, we find:

�Fy = T − m1g = m1a

Also, we do the same for m2 of part (c) of the figure, to get:

�Fy = m2g − T = m2a
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(a) (b)

m1

m 2

T

m1 g

T

m2  g

a

a

(c)

y

y

m 1 m 2

Fig. 5.12

When we add the last two equations, T will cancel out, and we get:

m2g − m1g = m2a + m1a

Thus: a = m2 − m1

m1 + m2
g ⇒ a = 6 kg − 4 kg

6 kg + 4 kg
× 9.8 m/s2 = 1.96 m/s2

If we substitute with a into the first equation we get:

T = 2m1m2

m1 + m2
g ⇒ T = 2(4 kg)(6 kg)

6 kg + 4 kg
× 9.8 m/s2 = 47 N

Example 5.4

A car moving with an initial speed v◦ = 30 m/s suddenly brakes, locking its wheels

(i.e. it starts to skid). The car travels on the road a distance d = 75 m before it comes

to a complete stop. Find the coefficient of kinetic friction between the tires of the

car and the road.

Solution: Part (a) of Fig. 5.13 depicts the car’s travel. In part (b) we choose the

coordinate axes and show the car’s free-body diagram during its skid. In this part
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we show the car’s weight
→
W (acting downwards), the normal force

→
N (acting

perpendicularly to the road), and kinetic frictional force
→
fk (acting to the left).

x

y

N

mg

fk

o = 0a

(a) (b)

d

Fig. 5.13

Applying Newton’s second law in the component form, we find that:

�Fx = − fk = ma

�Fy = N − mg = 0

From the last equation we get N = mg. Since fk = μkN = μkmg, then the first

equation gives:

−μkmg = ma

Thus: a = −μkg

The negative sign means that the acceleration is to the left. Since a is constant,

we can use v2 = v2◦ + 2ax, with v = 0 and x = d. This gives:

0 = v2◦ + 2ad = v2◦ − 2μk gd

Thus: μk = v2◦
2gd

= (30 m/s)2

2(9.8 m/s2)(75m)
= 0.61

Example 5.5

A block of mass m = 2 kg is placed on an inclined plane of angle θ = 30◦, as

shown in Fig. 5.14. The block is released from rest at the top of the plane, where the

distance from the bottom is d = 10 m. (a) Find the magnitude of the acceleration



118 5 Force and Motion

of the block and the normal force exerted on the block. (b) How long does it take

the block to reach the bottom, and what is its speed just as it gets there?

Solution: (a) We construct a free-body diagram to this example as shown in part

(b) of Fig. 5.14. The only forces on the block are the weight
→
W (acting downward)

and the normal force
→
N (acting perpendicular to the inclined plane). We choose a

coordinate system with x axis parallel to the incline and y-axis perpendicular to it.

With this choice, the angle between the weight vector and the negative direction

of the y-axis equals the angle θ of the inclined plane. After that, we decompose

the weight to a component of magnitude mg cos θ along the negative y-axis and

a component of magnitude mg sin θ along the x axis. The block will slide along

the inclined plane with acceleration ax and will never leave the plane; i.e. ay = 0.

Applying Newton’s second law to the x and y components gives:

�Fx = mg sin θ = m ax

�Fy = N − mg cos θ = 0

(a)

N

W=mg

(b)

θ

θ

x

y

θ

θ
m g sin

m
 g 

co
s

a
xd

Fig. 5.14

From the x-component form, we see that the acceleration along the incline is

provided by the component of the weight down the incline. By taking g = 10 m/s2,

we get:

ax = g sin θ = (10 m/s2)(sin 30◦) = 5 m/s2



5.3 Applications to Newton’s Laws 119

Notice that when θ = 0 (i.e. when the plane is horizontal) we have ax = 0 (the

minimum acceleration value). Also, we see that when θ = 90◦ (i.e. when the

plane is vertical) the case resembles a free fall scenario, resulting in ax = g

(the maximum acceleration value).

From the y component of Newton’s second law we find N to be:

N = mg cos θ = (2 kg)(10 m/s2)(cos 30◦) = 17.32 N

Also, notice that when θ = 0, we have N = mg = 20 N (its maximum value),

and when θ = 90◦, we have N = 0 (its minimum value).

(b) Since ax = constant, we apply the equation x = vx◦ t + 1
2 ax t2 to the block

with vx◦ = 0 and x = d = 10 m to get the following relation:

d = 1

2
ax t2

Then, Solving for t and taking the positive root yields:

t =
√

2d

ax
=

√
2 × (10 m)

5 m/s2 = 2 s

Also, we can apply the kinematics equation v2
x = v2

x◦ + 2ax x with vx◦ = 0 and

x = d = 10 m to get the following relation:

v2
x = 2ax d

Then, solving for vx and taking the positive root yields:

vx = √
2ax d =

√
2(5 m/s2)(10 m) = 10 m/s

Example 5.6

A block of mass m1 = 4 kg lying on a rough horizontal surface is connected to a

second block of mass m2 = 6 kg by a light non-stretchable cord over a massless,

frictionless pulley as shown in part (a) of Fig. 5.15. The coefficient of kinetic

friction between the block and the surface is μk = 0.5. (a) Find the magnitudes

of the acceleration of the system and the tension in the cord. (b) Find the relation

between m1 and m2 in the case when the system is on the verge of slipping.
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(a) (c)

m1

m 2

(b)

T

m1 g

a
y

T

m2  g
a

ym 2

m1

xfk

N

x

Fig. 5.15

Solution: (a) Since the cord is non-stretchable, the two masses have the same

magnitude of acceleration. Consequently, we construct a free-body diagram for

the two masses as shown in parts (b) and (c) of Fig. 5.15, where we take the x axis

always along any of the body’s motion. In this case a cannot take negative values.

When Newton’s second law is applied to m2 in part (b) of the figure, we find:

(1) �Fx = m2g − T = m2a

�Fy = 0

From (1), we can find the magnitude of the tension in terms of g and a. That is:

(2) T = m2g − m2a

Doing the same for m1 (see part (c) of Fig. 5.15) we get:

(3) �Fx = T − fk = m1a

(4) �Fy = N − m1g = 0

Since fk = μkN, and from (4) we have N = m1g, then:

(5) fk = μkm1g

When this result is substituted into (3), we get:

(6) T = μkm1g + m1a

Equating the magnitude of the tension in (2) and (6), we get:

μkm1g + m1a = m2 (g − a)
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Solving for a we get:

a = m2 − μk m1

m1 + m2
g

Note that, when m2 >μkm1 we have accelerated motion, and when m2 = μkm1,

we have motion with zero acceleration, i.e. the speed is constant. The value of a

can then be evaluated as follows:

a = 6 kg − 0.5(4 kg)

6 kg + 4 kg
× 9.8 m/s2 = 3.92 m/s2

We can find T by substituting the expression of a into (6), to get:

T = (μk + 1) m1 m2

m1 + m2
g

Thus: T = (0.5 + 1)(4 kg)(6 kg)

6 kg + 4 kg
× 9.8 m/s2 = 35.28 N

(b) When the system is on the verge of slipping, the magnitude of the force T

that acts on mass m1 must equal the maximum static friction fs,max = μsN, i.e.

T = μsN = μsm1g. Also, the weight of the mass m2 must equal the magnitude

of the tension, i.e. T = m2g. Thus:

m2g = μsm1g

Finally:

m2 = μs m1 (On the verge of slipping)

Example 5.7

A block is at rest on a rough inclined plane of angle θ, as shown in Fig. 5.16.

(a) Find the static frictional force fs in terms of N and θ. (b) When the angle

is increased until the block is on the verge of slipping at θ = θc = 38.7◦, find

the value of the coefficient of static friction μs. (c) After we increase θ further to

allow the block to accelerate and then decrease θ again to the value θ = θ ′ = 26.6◦
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to allow the block to move with constant speed, find the coefficient of kinetic

friction μk.

Fig. 5.16 N

mg x

y

θ

θ θ

m
 

g co
s

m
 g sin

θ

fs

Solution: (a) The block is balanced under its weight mg, the normal force N, and

the static frictional force fs. Taking x parallel to the plane and y perpendicular to

it, then Newton’s second law will give:

�Fx = mg sin θ − fs = 0

�Fy = N − mg cos θ = 0

From the last equation we find mg = N/ cos θ. Therefore, we can eliminate

mg from the first equation to get:

fs = mg sin θ = N

cos θ
sin θ = N tan θ

(b) When the inclined plane is at the critical angle θc, the block is on the verge

of slipping and fs = fs,max = μsN . So, at this angle the last equation becomes

μsN = N tan θc.

Thus:
μs = tan θc −−−−−−−−−→

when θc=38.7◦
μs = tan 38.7◦ = 0.8

(c) When the block moves with constant speed at θ ′ = 26.6◦, the kinetic friction

fk = μkN equals the weight component mg sin θ ′.

Thus:
μk = tan θ ′ −−−−−−−−−→

when θ ′=26.6◦
μk = tan 26.6◦ = 0.5
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Example 5.8

A small sphere of mass m = 1.5 g is released from rest in a large vessel filled

with liquid, see Fig. 5.17. The sphere reaches a terminal speed of vt = 2.45 cm/s.

Assume that the resistive drag force is given by Eq. 5.11.∗ (a) Solve Eq. 5.12 to

find the speed of the sphere as a function of time. (b) Find the time t it takes the

sphere to reach a speed of 0.9 vt.

Fig. 5.17

FD

t

y
m g

Solution: ∗ (a) To solve Eq. 5.12, we set τ = m/b, which is called the time con-

stant, and perform the following steps:

mg − bv = m
dv

dt
⇒

v�
0

dv

vt − v
= τ−1

t�
0

dt

The previous integration can be performed to get:

v = vt(1 − e−t/τ )

One can find from this result that the time τ = m/b is the time it takes the

sphere to reach 63% of its terminal speed.

(b) Let us first determine the coefficient b in Eq. 5.11. Since the terminal speed

is given by the relation FD = bvt = mg, i.e. vt = mg/b, then the value of b will

be given by:

b = mg

vt
= (1.5 × 10−3 kg)(9.8 m/s2)

2.45 × 10−2 m/s
= 0.6 kg/s

Therefore, the value of the time τ is given by:

τ = m

b
= 1.5 × 10−3 kg

0.6 kg/s
= 2.5 × 10−3 s = 2.5 ms
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We set v = 0.9 vt in the resulting formula of part (a), and we perform the

following steps, to find the corresponding time t:

0.9 = 1 − e−t/τ ⇒ e−t/τ = 0.1 ⇒ t = −τ ln(0.1)

Thus: t = −(2.5 × 10−3 s)(−2.303) = 5.76 × 10−3 s = 5.76 ms

5.4 Exercises

Section 5.3 Applications to Newton’s Laws

(Take g = 10 m/s2 in all the following exercises unless g is given)

(1) A 10 g bullet accelerates from rest to 500 m/s in a gun barrel of length 10 cm,

see Fig. 5.18. Find the accelerating force (assuming it constant).

Fig. 5.18 See Exercise (1) 10 cm

(2) A horizontal cable pulls a golf cart of mass 400 kg along a horizontal track. As

in Fig. 5.19, the tension in the cable is 800 N. (a) Starting from rest, how long

will it take the cart to reach a speed of 10 m/s? (b) Find the distance covered

during this time.

Fig. 5.19 See Exercise (2)

800 N
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(3) A block of mass 2 kg is accelerated by the two forces
→
F1 = 8

→
i + 3

→
j and

→
F2 = −5

→
i − 7

→
j , (all units in newtons). (a) What is the net force on the block

in unit vector notation, and what is its magnitude and direction? (b) What is

the magnitude and direction of the acceleration?

(4) Assume only five forces are acting in the xy plane on a block of mass 4 kg as

shown in Fig. 5.20. (a) Taking sin θ = 4/5 and cos θ = 3/5, find the block’s

acceleration in unit-vector notation. (b) Find the acceleration’s magnitude and

direction.

Fig. 5.20 See Exercise (4)

5N
θ

x

y 20N

15N

10N

1N

(5) Consider a block of weight W hanging from three ropes as shown in Fig. 5.21.

(a) At what angle θ will the magnitude of the tensions T2 and T3 each be equal

to the weight W. (b) Is this angle independent of W?

Fig. 5.21 See Exercise (5)

θ

T2 T3
T1

W

θ
 

(6) A traffic light of mass m = 10 kg is suspended over a road as shown in Fig. 5.22.

The ropes are connected to the top of two vertical and identical posts at an angle

θ = 65◦. Find the magnitude of the tension in all three cables.

(7) A block of mass 20 kg is suspended from the ceiling and the wall by three

cords tied together as shown in Fig. 5.23. Find the magnitude of the tensions

T1, T2, and T3 in the ropes.

(8) After applying its brakes on a dry road, a 1,000 kg car moving at v◦ = 40 m/s

requires a minimum distance d of 50 m to come to a complete stop without

skidding, see Fig. 5.24. (a) Find the car’s acceleration. (b) Find the frictional

force exerted on the car by the road. (c) Find the coefficient of static friction.
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Fig. 5.22 See Exercise (6)  

θ

m

θ

 

T2 T2

T1

Fig. 5.23 See Exercise (7)

70ο

60ο

T2 T3

T1

W

Fig. 5.24 See Exercise (8)
o =0

d

a

(9) A small sphere of mass m is attached to one end of a massless thread. The

other end of that thread is fixed in the roof of a truck when it is at rest.

Take g = 9.8 m/s2. (a) What angle θ does the thread make with the verti-

cal when the truck has a constant acceleration a = 1.5 m/s2, see Fig. 5.25?

(b) Find θ when the truck is moving with a constant velocity of magnitude

v = 100 km/h?

Fig. 5.25 See Exercise (9)

m θ

a



5.4 Exercises 127

(10) A small object is hanging by a thread from the rearview mirror of a sports car.

The car accelerates uniformly from rest to 90 km/h in 10 s. What angle θ does

the thread make with the vertical?

(11) Two blocks of masses m1 = 4 kg and m2 = 12 kg are in contact on a smooth

horizontal surface. A horizontal force of magnitude F = 12 N pushes them as

shown in Fig. 5.26. (a) Find the magnitude of the acceleration of the system.

(b) Find the magnitude of the force P that block m1 exerts on block m2.

Fig. 5.26 See Exercise (11)

F
1m

P P

a

2m

(12) Repeat exercise 11 if block m2 is before block m1 and the same force acts

on m2.

(13) Two toys of masses m1 = 40 g and m2 = 120 g are connected by a massless rope

and lie on a horizontal frictionless surface as shown in Fig. 5.27. The toys are

pulled to the right by a horizontal force of magnitude F = 0.04 N. (a) Find the

acceleration of the system. (b) Find the magnitude of the tension force T in the

connecting rope.

Fig. 5.27 See Exercise (13)

2m 1mT

a

T F

(14) When the surface of exercise 13 is rough, it is found that the toys move with a

constant velocity. Find the common coefficient of kinetic friction μk between

the toys and the surface.

(15) In Fig. 5.28, the pulley is assumed massless and frictionless and rotates freely

about its axle. The block has a mass m = 6 kg and the pulley is pulled to the right

by a horizontal force of magnitude F = 24 N. As the block moves a distance sB

in time t, the pulley moves half that distance in the same time t, i.e., sP = sB/2.

(a) Find the acceleration ratio aP/sB. (b) Find the magnitudes of the tension

in the cord and the acceleration of the block if there is no friction between the
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block and the surface. (c) Answer part (b) assuming that the kinetic friction

between the block and the surface is μk = 0.1.

Fig. 5.28 See Exercise (15)

m

Ba
pa

F

(16) A block of mass m1 = 6 kg is hanging by a massless cord connected to another

block of mass m2 = 4 kg, which is also hanging by a massless cord, as shown

in Fig. 5.29. (a) What is the tension in the cords when the system is at rest? (b)

What is the tension in the cords when the two blocks are pulled up by the upper

cord with an acceleration of 2 m/s2?

Fig. 5.29 See Exercise (16)
2T

2m

1T

1m

(17) In Fig. 5.30, the pulley is assumed massless and frictionless and rotates freely

about its axle. The blocks have masses m1 = 40 g and m2 = 20 g, and block m1

is pulled to the right by a horizontal force of magnitude F = 0.03 N. Find the

magnitude of the acceleration of block m2 and the tension in the cord if the

surface is frictionless.

Fig. 5.30 See Exercise (17)

a

2m

2
2T

2T
1T

1m

1a

F
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(18) Figure 5.31 shows a bucket connected to a massless rope, which runs over a

massless frictionless pulley. A man standing inside the bucket pulls the rope

downwards in order to raise himself upwards. The mass of the man is 80 kg and

the mass of the bucket is 20 kg. (a) How hard must the man pull the rope for

him and the bucket to ascend at a constant speed? (b) Calculate the force that is

needed for an upward acceleration of 1.2 m/s2. (c) Using the man’s free-body

diagram, find the normal force exerted on the man by the bucket in parts (a)

and (b).

Fig. 5.31 See Exercise (18)

(19) A block of mass m1 = 2 kg rests on the top of a second block of mass m2 = 8 kg,

as shown in Fig. 5.32. The left sides of the two blocks ate connected by a

massless cord, which runs over a fixed massless frictionless pulley. The right

side of block m2 is pulled to the right by a horizontal force of magnitude F.

How large must F such that block m2 accelerates at 2 m/s2?

F
2a

2m

1m

Fig. 5.32 See Exercise (19)

(20) Repeat exercise 19, this time assuming that the coefficient of kinetic friction

between the surfaces at the top and bottom of the block m2 is 0.5.
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(21) A block of mass m1 = 4 kg lies on a frictionless inclined plane of angle θ = 30◦.
This block is connected by a cord over a massless, frictionless pulley to a

second block of mass m2 = 6 kg hanging vertically, as shown in Fig. 5.33.

(a) For each block, find the magnitude and direction of its acceleration. (b) What

is the magnitude of the tension in the cord? (c) Repeat parts (a) and (b) after

replacing each block by the other.

Fig. 5.33 See Exercise (21)

m1

θ
m2

(22) The Atwood’s machine in Fig. 5.34 consists of two masses m1 = 6 kg and m2 =
4 kg that are connected by a light long cord that passes over a massless,

frictionless pulley. Find the magnitude and direction of the acceleration of

the two masses and the tension in the cord.

Fig. 5.34 See Exercise (22)

m1 m2

(23) If the two blocks in exercise 22 are initially at rest and are 2.25 m above the

ground, find the speed of m1 before hitting the ground.

(24) Two blocks having masses m1 and m2 (m2 > m1) are connected to each other by

a light non-stretchable cord that passes over two identical massless frictionless

pulleys, which rotate freely about their axles, as shown in Fig. 5.35. (a) Find

the acceleration of each block and the tensions T1, T2, and T3 in the cord.
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Fig. 5.35 See Exercise (24)

 2

m

m

1

1T
2T

3T

(25) A block of mass m1 = 6 kg lying on a rough horizontal surface is connected

to a second block of mass m2 = 3 kg by a light non-stretchable cord over a

massless, frictionless pulley as shown in Fig. 5.36. Assuming the two blocks

move with constant speed, find the coefficient of kinetic friction between m1

and the rough horizontal surface, and find the tension in the cord.

Fig. 5.36 See Exercise (25)

m1

m2

= constant

(26) A block of mass m1 located on a horizontal frictionless surface is connected by

a light non-stretchable cord that passes over a massless frictionless pulley to

a second block of mass m2, which is allowed to move on an inclined friction-

less plane of angle θ, as shown in Fig. 5.37. Find the acceleration of the two

blocks and the tension in the cord when m1 = 2 kg, m2 = 6 kg, sin θ = 4/5, and

cos θ = 3/5.

Fig. 5.37 See Exercise (26)

m2

m1

θ
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(27) Repeat exercise 26, this time assuming that the coefficient of kinetic friction

for the two blocks on the horizontal and inclined planes are μk1 = 0.3 and

μk2 = 0.5, respectively.

(28) A locomotive engine is pulling three cars behind it, see Fig. 5.38. Assume that

the engine has mass m, and that each car also has mass m. If the driving force that

is generated by the engine has a magnitude F, find the tension in the coupling

between the cars in terms of F. Generalize this result when the number of the

locomotive engine plus the cars is n.

mmmm

2T
F

1T3T

Fig. 5.38 See Exercise (28)

(29) A block is on the verge of skidding on a rough inclined plane of angle

θ = θc = 30◦, as shown in Fig. 5.39. (a) Find the value of the coefficient of

static friction μs. (b) After we increase θ further to allow the block to accel-

erate and then decrease θ again to the value θ = θ ′ = 20◦ to allow the block to

move with constant speed, find the coefficient of kinetic friction μk.

Fig. 5.39 See Exercise (29)

mg θ

,maxsf

(30) A box of mass m = 200 kg is pushed at a constant speed up an inclined fric-

tionless ramp of angle θ = 30◦ by a horizontal force
→
F, as shown in Fig. 5.40.

(a) What is the magnitude of the horizontal force? (b) What is the magnitude

of the force exerted by the ramp on the box?

(31) A block of mass m = 100 kg is placed on an incline of angle θ = 25◦, see

Fig. 5.41. What force is required to pull it up at a constant speed if the coefficient

of kinetic friction between the block and the incline is 0.2?
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Fig. 5.40 See Exercise (30)

m
F

θ

Fig. 5.41 See Exercise (31)
F

m

θ

(32) Two blocks of masses m1 = 4 kg and m2 = 8 kg are connected by a massless

rope and slide down an inclined plane of angle θ = 30◦, see Fig. 5.42. The

coefficient of kinetic friction is μk1 = 0.25 between block m1 and the plane,

and μk2 = 0.45 between block m2 and the plane. Find the acceleration of each

block and the tension in the rope.

Fig. 5.42 See Exercise (32)

m1

m2

θ

(33) What happens if the two blocks in exercise 31 are reversed such that block m1

is located behind block m2 on the plane?

(34) A ball of mass m = 1.6 kg hangs by a thread from the roof of an elevator. The

thread can withstand only a tension force of 20 N. When the system accelerates

upwards, see Fig. 5.43, the thread breaks. Within what range is the elevator

accelerating?

(35) Assume that while ascending, an elevator has the same magnitude of accelera-

tion a during starting (accelerating) and stopping (decelerating), see Fig. 5.44.

A person stands on a scale in that elevator, and hence pushes downwards on

the scale. The scale also reacts with an upward normal force. The maximum



134 5 Force and Motion

and minimum scale readings are Nacc = 591 N and Ndec = 391 N, respectively.

(a) Find the person’s weight and mass. (b) Find the magnitude of the elevator’s

acceleration.

Fig. 5.43 See Exercise (34)

m

a

a

Nacc

m  g

y

Ndec

m  g

acc dec

starting period stopping period

Scale

a

Fig. 5.44 See Exercise (35)

(36) Repeat exercise 35, this time assuming descending situation.

(37) A small sphere of mass m = 2 g is released from rest in a large vessel filled with

oil. The sphere reaches a terminal speed of vt = 3 cm/s, see Fig. 5.45. Assume

that the resistive drag force is given by Eq. 5.11. Find the time it takes the sphere

to reach a speed of 0.99 vt. [Use v = vt(1 − e−t/τ ), where τ = m/b is the time

constant]

(38) A spherical rain drop of radius r = 2 mm falls from a cloud at height h = 1,000 m

above the ground. Assume that the drag coefficient C for the drop is 0.7, and

that the density of water ρw is 1,000 kg/m3, and that the density of air ρa is

1.2 kg/m3. (a) What is the terminal speed of the drop? (b) If there is no drag

force, what is the speed of the drop when it reaches the ground?
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Fig. 5.45 See Exercise (37)

mg

FD

t

y

(39) A canonical pendulum consists of a bob of mass m attached to the end of a

cord of length �. The bob whirls around in a horizontal circle of radius r at a

constant speed v while the cord always makes an angle θ with the vertical, see

Fig. 5.46. Show that the bob’s speed v and period T (the time for one complete

revolution) are given by:

v =√
rg tan θ = √

�g sin θ tan θ,

T = 2π

√
� cos θ

g

Fig. 5.46 See Exercise (39)

m

θ

θ

r

(40) What condition must be imposed on the relationship that governs the period of

a canonical pendulum in order to reach to the period of a simple pendulum?



Work, Energy, and Power 6

Work, energy, and power are words that have different meanings in our everyday

life. Nevertheless, physicists give them specific definitions, which we present in this

chapter.

The work-energy power approach provides identical results to those obtained by

Newtonian mechanics, but usually with simpler analysis, especially when dealing

with complex situations where forces are not constant. Therefore, we will introduce

two extremely important concepts: the work-energy-theorem and conservation of

energy.

6.1 Work Done by a Constant Force

Consider a body that experiences a constant force
→
F while undergoing a displace-

ment →s as it moves, see Fig. 6.1. We then define the work done by the constant force

as follows:

Work done by a constant force:

Is defined as the product of the component of the force in the direction of the

displacement and the magnitude of the displacement.

Thus: W = (F cos θ) s = →
F • →s =

⎧⎪⎪⎨
⎪⎪⎩

+Fs if θ = 0◦

0 if θ = 90◦

−Fs if θ = 180◦
(6.1)

H. A. Radi and J. O. Rasmussen, Principles of Physics, 137
Undergraduate Lecture Notes in Physics, DOI: 10.1007/978-3-642-23026-4_6,
© Springer-Verlag Berlin Heidelberg 2013
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Fig. 6.1 The work done by a

constant force
→
F while

undergoing a displacement →s
is W = F s cos θ

Fcos

F

s

Motion

The unit of work in SI units is N.m [abbreviated by joule (J)], i.e., 1 J = 1 N.m,

and in cgs units is dyne.cm (abbreviated by erg), i.e. 1 erg = 1 dyne.cm. Note that

1 J = 107 erg, see Table 6.1.

Table 6.1 Units of work System Unit of work Name of combined unit

SI N.m joule (J)

cgs dyne.cm erg

British ft.lb ft.lb

Work Done by a Weight

Consider a block of mass m to be lifted up with almost zero acceleration (i.e., a � 0)

by a constant force
→
F applied by a person, see Fig. 6.2. While in motion, the force

→
F and the weight m→g will be oppositely directed but equal in magnitude, i.e.

→
F =

−m→g . That is:

F = mg (6.2)

Fig. 6.2 Lifting a block with

almost zero acceleration

L
if

tin
g

F

mg

s

Initial

Final

If the upward displacement of the block is denoted by →s , as in Fig. 6.2, then we can

calculate the work done by
→
F as follows:
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WF = →
F • →s = Fs cos 0◦ = Fs = m g s (6.3)

where we have used the fact that the angle between the two parallel vectors
→
F and

→s is zero.

Also, we can calculate the work done by the gravitational force m →g as follows:

Wg = m →g • →s = m g s cos 180◦ = −m g s (6.4)

Thus, we conclude that:

WF = m g s and Wg = −m g s (Lifting case) (6.5)

where we have used the fact that the angle between the two antiparallel vectors m →g
and →s is 180◦. The net work WF +Wg done on the block is zero, as expected, because

the net force on the block is zero. This is not, of course, to say that it takes no work

to lift a block through a vertical height s. In such a context, we do not refer to the net

work, but to the work done by the person.

When we lower the block vertically downward with almost zero acceleration for

a displacement →s , see Fig. 6.3, the sign of the work done by
→
F and m →g will be

reversed, since the sign of →s has reversed.

Following similar steps, one can easily find:

WF = →
F • →s = F s cos 180◦ = −F s = −m g s (6.6)

Wg = m →g • →s = m g s cos 0◦ = m g s (6.7)

Thus, we conclude that:

WF = −m g s and Wg = m g s (Lowering case) (6.8)

Fig. 6.3 Lowering down a

block with almost zero

acceleration
F

mg

L
ow

er
in

g

s

Initial

Final
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Work Done by Friction

A common example in which the work is always negative is the work done by

friction. When a block slides over a rough surface due to an applied force
→
F , as

shown in Fig. 6.4, the work done by the frictional force
→
f k while the block undergoes

a displacement →s is:

Wf = →
f k • →s = fk s cos 180◦

= −fk s
(6.9)

F

θ

s

f k

N
Motion

Initial Final

m g

Fig. 6.4 The work done by the kinetic frictional force
→
f k while the block undergoes a displacement →s

is always negative and equals Wf = −fk s

From Fig. 6.4, one can easily find the work done by gravity, the normal force, and

the applied force as follows:

Wg = m →g • →s = m g s cos 90◦ = 0 (6.10)

WN = →
N • →s = N s cos 90◦ = 0 (6.11)

WF = →
F • →s = F s cos θ (6.12)

Example 6.1

A block of mass m is pushed up a rough inclined plane of angle θ by a constant

force
→
F parallel to the incline, as shown in Fig. 6.5. The displacement of the block

up the incline is
→
d . (a) Find the work done by: the force

→
F, the kinetic friction

→
f k, the force of gravity m →g , and the normal force

→
N. (b) Calculate the work done

of part (a) for m = 2 kg, μk = 0.5, θ = 30◦, F = 20 N, and d = 5 m.
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N

mg θm 
g c

os
θ

θ
m

 g sin

θ
fk

F
d

h

yi

yf

Fig. 6.5

Solution: (a) Since
→
F is in the same direction as the displacement

→
d , we get:

WF = →
F •

→
d = F d cos 0◦ = F d

The work done by gravity is:

Wg = m→g •
→
d = m g d cos(90◦ + θ) = −m g d sin θ = −m g h

where h = yf − yi = d sin θ is the value of the vertical height. That is, the work

done by gravity is negative and has a magnitude m g multiplied by height h. This

result and Eq. 6.4 proves that the work is independent of the path taken between

any two points.

Since the force of friction
→
f k is opposite to the displacement

→
d , fk = μk N ,

and N = mg cos θ , the work done by friction will be:

Wf = →
f k •

→
d = −fk d = −μk m g d cos θ

Since
→
N is perpendicular to

→
d ,we get:

WN = →
N •

→
d = N d cos 90◦ = 0

(b) Using the values given, the work done by each force will be:

WF = F d = (20 N)(5 m) = 100 J

Wg = −m g d sin θ = −(2 kg)(9.8 m/s2)(5 m)(sin 30◦) = −49 J

Wf = −μkm g d cos θ = −0.5× (2 kg)(9.8 m/s2)(5 m)(cos 30◦) = −42.4 J

Thus: Wnet = WF + Wg + Wf + WN = 100 − 49 − 42.4 + 0 = 8.6 J
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6.2 Work Done by a Variable Force

One-Dimensional Analysis

Consider an object that is being displaced along the x-axis from xi to xf due to

the application of a varying positive force F(x), as shown in Fig. 6.6a. To calculate

the work done by this force, we imagine that the object undergoes a very small

displacement �x from x to x +�x due to the effect of an approximate constant force

F(x) as shown in Fig. 6.6b. For this very small displacement, we represent the amount

of work done by the force by the expression:

�W = F(x) �x (6.13)

which is just the area of the magnified rectangle shown in Fig. 6.6b. Then, the total

work done from xi to xf by the variable force F(x) is approximately equal to the sum

of the large number of rectangles in Fig. 6.6b, i.e. the total area under the force curve.

Thus:

W �
xf∑
xi

F(x) �x (6.14)

In the limit where �x approaches zero, the value of the sum in the last equa-

tion approaches the exact value of the area under the force curve, see Fig. 6.6c. As

you probably know from calculus, the limit of that sum is called an integral and is

represented by:

lim
�x→0

xf∑
xi

F(x) �x =
xf�
xi

F(x) dx (6.15)

x
x

F (x)

Area= F (x) x
F (x)

xi

F (x) F (x)

(a) (b) (c)

Work=Area
x

xf x i x ixf xfx
xx

Fig. 6.6 (a) A variable force F(x) displaces a body in the positive x direction from xi to xf. (b) The area

under the curve is divided into narrow strips of thickness �x, so that the approximate work done by the

force F(x) for the small displacement �x is �W = F(x) �x. (c) In the limiting case, the work done by

the force is the colored area under the force curve
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Therefore, we can express the work done by a variable force F(x) on an object that

undergoes a displacement from xi to xf as follows:

W =
xf�
xi

F(x) dx (6.16)

If F(x) is positive in some regions and negative in others, the last sum is called the

net signed area and is equal to the area of the regions where F(x)> 0 minus the area

of the regions where F(x)> 0.

Example 6.2

A force acting on an object varies with x as shown in Fig. 6.7. Find the work done

by the force when the object undergoes a displacement from x = 0 to x = 7 m.

Fig. 6.7

0

2
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6

1 2 3 4 5 6 7

-2

-4

b

a

c

H

h

F
(x

) 
(N

)

x

Solution: The work done by the force equals the net signed area between the curve

and the displacement from x = 0 to x = 7 m. That is, the area of the trapezoid minus

the area of the triangle. Thus:

W = Area of the trapeziod − Area of the triangle

= 1
2 (a + b) H − 1

2 ch

= 1
2 × (4 m + 2 m) × (6 N) − 1

2 × (3 m)(4 N)

= 18 J − 6 J = 12 J
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Work Done by a Spring

A spring is one type of common physical system in which the force (known as

the spring force) varies with position. Figure 6.8a, shows a massless block on a

horizontal frictionless surface attached to the free end of a relaxed spring. If the

spring is stretched or compressed a small distance from equilibrium, the spring will

exert a force on the block. This force is given by Hooke’s law as follows:

F = − kH x (Hooke’s law) (6.17)

where x is the displacement of the block from its equilibrium position (x = 0) and

kH is a positive constant known as the spring constant (or the force constant).

The negative sign in Hooke’s law indicates that the direction of the force is always

opposite to the displacement. The spring force is positive (to the right) when x < 0,

as in Fig. 6.8b, and is negative (to the left) when x > 0, as in Fig. 6.8c. This type of

force always acts toward the equilibrium and is called a restoring force.

Fig. 6.8 The variation of the

force of a spring on a block.

(a) When x = 0, the force is

zero (equilibrium position).

(b) When x is negative, the

force is positive (compressed

spring). (c) When x is positive,

the force is negative (stretched

spring). (d) Graph of F versus

x. The work done by the spring

force as the block moves from

−xm to 0 is the colored

triangular area which equals
1
2 kH x2

m

38.97

F

F

21x

21x

x = 0

x = 0

x = 0

F
x

F
x

F

0
x

xm

Area

x

x

x
(a)

(b)

(c)

(d)

F=0
x=0

Equilibrium position

- xm

2
H m

1
2Area x

H mx HF x

Frictionless
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If we allow the block to compress the spring a distance of xm from its equilibrium

position and then release the block, it will move from −xm through the equilibrium

position x = 0 to xm. In the absence of friction, the block will oscillate indefinitely

between −xm and xm. In this case xm is called the amplitude of the oscillations.

To calculate the work done by the spring force on the body as it moves from

xi = −xm to xf = 0, we use Hooke’s law in Eq. 6.16 as follows:

Ws =
xf�
xi

F(x) dx =
0�

−xm

(−kH x) dx =
[
− 1

2kH x2
]0

−xm
= 1

2kH x2
m (6.18)

Note that the work done by the spring force is positive because the spring force

is in the same direction as the displacement. We can reach the same result of Eq.

6.18 if we plot F versus x, as shown in Fig. 6.8d, and then calculate the area of the

colored triangle that has a base xm and height kH xm. On the other hand, when xi = 0

and xf = xm, we can find that Ws = − 1
2kH x2

m. In this part of the motion, the spring

force is to the left and the displacement is to the right, resulting in a negative work.

Generally, if the block undergoes an arbitrary displacement from xi to xf , the work

done by the spring force will be given by:

Ws =
xf�
xi

F(x) dx =
xf�
xi

(−kH x) dx = 1
2kH x2

i − 1
2kH x2

f (6.19)

This shows that the work done is zero for any motion that has xi = xf .

Let us calculate the work done by the applied force
→
Fapp when the block moves

very slowly from xi to xf , see Fig. 6.9a and b. To find this work we notice that
→
Fapp

is equal and opposite to the spring force
→
F at any displacement, i.e. Fapp = −F =

−(−kH x) = kH x. Thus:

WFapp =
xf�
xi

Fapp dx =
xf�
xi

kH x dx =
[

1
2kH x2

]xf

xi
= 1

2kH x2
f − 1

2kH x2
i (6.20)

Comparing Eq. 6.19 and Eq. 6.20 we find that WFapp = − Ws, as expected. If we plot

Fapp versus x, as shown in Fig. 6.9c, then the work done by F in compressing the

spring very slowly from xi = 0 to xf = −xm equals the area of the colored triangle

that has a base xm and height kH xm, i.e. Wapp = 1
2kH x2

m(Fapp and the displacement

are negative).
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Fig. 6.9 (a) When x = 0, the

applied force is zero

(equilibrium position).

(b) When x is negative, the

applied force is negative

(compressed spring). (c) Graph

of the applied force versus x.

The work done by the applied

force as the block moves very

slowly from x = 0 to x = −xm

is the colored triangular area

which equals 1
2 kH x2

m

x = 0

x

(a)

(b)

Fapp=0
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28.31x
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Example 6.3

An applied force Fapp = −5 N is exerted on the block that is attached to the free

end of the spring of Fig. 6.9b. As a result of this force, the spring is compressed

by 1 cm from its relaxed length. (a) What is the spring constant of the spring? (b)

What force does the spring exert on the block if the spring is compressed by 2.5

cm? (c) How much work does the spring force do on the block as the spring is

compressed from the relaxed state by 2.5 cm? (d) How much work does the spring

force do on the block during a total displacement starting from a compression of

2.5 cm, passing through the equilibrium, and then to a stretch of 2.0 cm?

Solution: (a) The compressed spring pushes the block with a force F = −Fapp =
+5 N. From F = −kH x, with x = −1 cm, we have:

kH = −F

x
= − 5 N

(−1 × 10−2 m)
= 500 N/m

(b) Using Hooke’s law, with x = −2.5 cm = −2.5 × 10−2 m, we have:

F = −kHx = −(500 N/m)(−2.5 × 10−2 m) = 12.5 N
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(c) Since the spring is initially at its relaxed state, the work done by the spring

force on the block from xi = 0 to xf = −2.5 × 10−2 m will be:

Ws = 1
2kH x2

i − 1
2kH x2

f = 0 − 1
2 (500 N/m)(−2.5 × 10−2 m)2 = −0.156 J

The work is negative because the spring force and the displacement are in opposite

directions. Note that the amount of work done by the spring on the block would

be the same when stretching by 2.5 cm.

(d) For this case, we have xi = −2.5 × 10−2 m (the spring is initially com-

pressed) and xf = +2.0 × 10−2 m (the spring is finally stretched). Then Eq. 6.19

becomes:

Ws = 1
2kH x2

i − 1
2kH x2

f = 1
2kH(x2

i − x2
f )

= 1
2 (500 N/m)[(−2.5 × 10−2 m)2 − (+2.0 × 10−2 m)2] = 0.06 J

Three-Dimensional Analysis

Consider a particle that is acted upon by a three-dimensional force of the following

form:

→
F = Fx

→
i + Fy

→
j + Fz

→
k (6.21)

where the components Fx, Fy, and Fz are generally a function of the position vec-

tor →r of the particle. Furthermore, let the particle move through an incremental

displacement d→r , i.e.

d→r = dx
→
i + dy

→
j + dz

→
k (6.22)

In this case, the increment of work dW done on the particle by the force
→
F during

the incremental displacement d→r is giving by:

dW = →
F • d→r = (Fx

→
i + Fy

→
j + Fz

→
k ) • (dx

→
i + dy

→
j + dz

→
k )

= Fx dx + Fy dy + Fz dz
(6.23)

The work W done by the force
→
F on the particle when it moves from an initial

position ri of coordinates (xi, yi, zi) to a final position rf of coordinates (xf , yf , zf)

can be represented by:
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W =
rf�
ri

dW =
xf�
xi

Fx dx +
yf�
yi

Fy dy +
zf�
zi

Fz dz (6.24)

When
→
F has only an x component, this equation reduces to Eq. 6.16.

6.3 Work-Energy Theorem

Consider a particle of mass m, moving with acceleration a = a(x) along the x-axis

under the effect of a net force F(x) that points along this axis. Thus, according to

Newton’s second law of motion we have F(x) = ma. The work done by this net

force on the particle as it moves from an initial position xi to a final position xf can

be found using Eq. 6.16 as follows:

W =
xf�
xi

F(x) dx =
xf�
xi

m a dx (6.25)

We can write the quantity ma dx in the last equation as:

m a dx = m
dv

dt
dx (6.26)

Since v is a function of time, then we can use the “chain rule” to have:

dv

dt
= dv

dx

dx

dt
= dv

dx
v (6.27)

Then Eq. 6.26 becomes:

m a dx = m
dv

dx
v dx = m v dv (6.28)

Substituting this result back into Eq. 6.25 yields:

W =
vf�
vi

m v dv = m
vf�
vi

v dv = m
[

1
2v2

]vf

vi
= 1

2 m v2
f − 1

2 m v2
i (6.29)

Note that when we change the integration variable from x to v we are required to

change the limits of the integration to the new variable.

For a particle of mass m that has a speed v well below the speed of light, we define

its kinetic energy as:
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Kinetic Energy

The kinetic energy K of a particle is defined as the product of one half of its

mass and the square of its speed, i.e.

K = 1
2 m v2 (6.30)

Kinetic energy is a scalar quantity and has the same units as work. In SI units we

have:

1 J = 1 kg.m2/s2 = 1 N.m (6.31)

We can view kinetic energy as the energy associated with the motion of an object. It

is more convenient to express Eq. 6.29 as:

W = �K = Kf − Ki (6.32)

where Ki is the particle’s initial kinetic energy and Kf is its final kinetic energy after

the work is done. That is, the work done by the net force in displacing a particle

equals the change in its kinetic energy. If there are many forces, such as an applied

force
→
F , a gravitational force m→g , a spring force

→
Fs, a frictional force

→
f , etc, the work

done by the net force in displacing a particle will be equal to the sum of the work

done by all the forces acting on the particle. That is:

Wnet = WF + Wg + Ws + Wf + . . . = Kf − Ki = �K (6.33)

Equation 6.32 is known as the work-energy theorem. This theorem is valid even

when the force varies in direction and magnitude while the particle (or the object)

moves along an arbitrary curved path in three dimensions.

Example 6.4

A box of mass m = 10 kg is initially at rest on a rough horizontal surface,

where the coefficient of kinetic friction between the box and the surface is

μk = 0.2. The box is then pulled horizontally by a force F = 50 N that makes

an angle θ = 60◦ with the horizontal, see Fig. 6.10. (a) Use the work-energy

theorem to find the speed vf of the box after it moves a distance s of 4 m.

∗(b) Repeat part (a) using Newtonian mechanics.
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Fig. 6.10

Solution: (a) Both the weight-gravitational force m→g and the normal force
→
N do

no work, since the displacement is horizontal, i.e. Wg = WN = 0. The work done

by the applied force is:

WF = →
F • →s = F s cos θ = (50 N)(4 m)(cos 60◦) = 100 J

The magnitude of the frictional force is fk = μkN , where in this case

N = mg − F sin θ . Therefore, the work done by friction is:

Wf = →
f k • →s = −fk s = −μk(mg − F sin θ) s

= −0.2 × [(10 kg)(9.8 m/s2) − (50 N)(0.866)](4 m)

= −43.76 J

Thus, the net work done on the box is:

Wnet = WF + Wg + WN + Wf = 100 J + 0 + 0 + (−43.76 J) = 56.24 J

Applying the work-energy theorem with vi = 0 gives:

Wnet = Kf − Ki = 1
2 m v2

f ⇒ vf =
√

2 Wnet

m
=

√
2 × 56.24 J

10 kg
= 3.35 m/s

∗(b) Applying Newton’s second law in the component form, then for the horizontal

component, we find that:

�Fx = F cos θ − fk = m a
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Thus, the acceleration of the box will be given by:

a = F cos θ − μk(mg − F sin θ)

m

= (50 N)(cos 60◦) − 0.2 × [(10 kg)(9.8 m/s2) − (50 N)(0.866)]
10 kg

= 1.406 m/s2

To find the final speed, we use the kinematic equation v2
f = v2

i +2as when vi = 0

to get:

vf = √
2as =

√
2 × (1.406 m/s2)(4 m) = 3.35 m/s

Because the forces are constants in this example, the analysis used by Newtonian

mechanics is easier than that of the work-energy theorem.

6.4 Conservative Forces and Potential Energy

In the previous section we introduced the concept of kinetic energy and found that it

can change only if work is done on the object. In this section we introduce another

form of energy, called potential energy, associated with the position or configuration

of an object, and can be thought of as a stored energy that can be converted to kinetic

energy or to work. We begin by defining the following:

(a) Conservative and Non-conservative Forces

Conservative Forces

In Example 6.1 we were able to see that the work done by gravity depends only on

the initial and final vertical coordinates and hence is independent of the path taken

between any two points. Also, we found the same holds true in the case of a spring.

In addition, we can easily see from Sect. 6.2 that the net work done on the object

by the gravitational force during a round trip is zero. When a force exhibits these

properties, it is called a conservative force.

With reference to the arbitrary paths of Fig. 6.11a, we can write the first condition

for a conservative force as:

Wab(path 1) = Wab(path 2) (6.34)



152 6 Work, Energy, and Power

a

b
1

2

a

b
1

2
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Fig. 6.11 (a) A conservative force acts on a particle moving from point a to point b by following either

path 1 or path 2. (b) A conservative force acts on a particle moving in a round trip from point a to point b

along path 1 and then back to point a along path 2

i.e., the work done by a conservative force on a particle moving from a to b along

path 1 is the same as from a to b along path 2. In words:

Spotlight

The net work done by a conservative force on a particle moving between any

two points does not depend on the path taken.

Also, with reference to the arbitrary paths of Fig. 6.11b, we can write the second

condition for a conservative force as:

Wab(path 1) = −Wba(path 2)

or

Wab(path 1) + Wba(path 2) = 0

⎫⎪⎪⎬
⎪⎪⎭

(6.35)

That is, the work done by a conservative force on a particle that moves in a round trip

from a to b along path 1 and then from b to a along path 2 is zero. In other words:

Soptlight

The net work done by a conservative force on a particle that is moving around

any closed path is zero.

From the work-energy theorem, W = 0 for a round trip, which means that the particle

will return to its starting point with the same kinetic energy it had when it started its

motion.
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We recall from Example 6.1 that the work done by the gravitational force as a

particle of mass m moves between two points of elevations yi and yf can be written

as:

Wg = −mgh = −mg(yf − yi) (6.36)

which satisfies the two conditions of a conservative force.

Non-conservative Forces

Not all forces are conservative. For example, let us allow a book to slide across a table

that is not frictionless, see Fig. 6.12a. During the sliding, the kinetic frictional force

does negative work on the book, slowing it by transferring energy from its kinetic

energy to thermal energy of the book-table system. This energy transfer cannot be

reversed. So, this force is not conservative. Therefore, all types of frictional forces

are non-conservative forces. That is:

Soptlight

The work done by a non-conservative force on a particle that is moving between

any two points depends on the path taken by the particle.

With reference to the arbitrary paths of Fig. 6.12a, we can write the first condition

for a non-conservative force as:

WAB(path 1) �= WAB(path 2) (Non-conservative forces) (6.37)

i.e., the work done by a non-conservative force on a particle moving from A to B

along path 1 is always not the same along path 2.

Also, with reference to the arbitrary paths of Fig. 6.12b, we can write the second

condition for a non-conservative force as:

WAB(path 1) �= −WBA(path 2)

or

WAB(path 1) + WBA(path 2) �= 0

⎫⎪⎪⎬
⎪⎪⎭

(6.38)

That is, the work done by a non-conservative force on a particle that moves in a round

trip from A to B along path 1 and then from B to A along path 2 is not zero.
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(a) (b)

1

2A
B

1
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B

book book

Fig. 6.12 (a) The work done by the force of friction depends on the path taken as the book is moved

from A to B. (b) The work done by the force of friction in a round trip from point A to point B along path

1 and then back to point A along path 2 is not zero

(b) Potential Energy

We found that the work done by a conservative force is a function of the particle’s

initial and final coordinates and neither depends on the path taken nor depends on its

velocity. Therefore, we can define a function U called the “potential energy” such

that the work done by a conservative force equals the decrease of potential energy.

That is:

Wc = −�U = Ui − Uf (6.39)

where the subscript “c” refers to a conservative force and the change in potential

energy is defined as �U = Uf −Ui. For a particle moving along the x axis under the

effect of a conservative force
→
F that has an x component Fx , we can express Eq. 6.39

as follows:

�U = Uf − Ui = −
f�
i

Fx dx or Fx = −dU

dx
(6.40)

It is often convenient to choose some selected initial configuration that has a

potential Ui as a reference point and measure all potential energy differences with

respect to this point. Usually, we set Ui = 0 at this point because it does not really

matter what value we assign to Ui.

Gravitational Potential Energy

Consider a particle with mass m moving vertically along the y axis from point yi

to point yf . Of course, the displacement will be an upward vector while the weight
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m→g will be a downward vector. To find the corresponding change in gravitational

potential energy of the particle-Earth system, we change the integration in Eq. 6.40

to be along the y axis and substitute −mg for the force Fx . Thus:

�U = Uf − Ui = −
yf�
yi

(−mg) dy = mg
yf�
yi

dy = mg
[
y
]yf

yi
= mg(yf − yi)

That is:
�U = Uf − Ui = mg(yf − yi) = mg�y (6.41)

Only the change in gravitational potential energy �U is physically important. So,

according to the previous result, we can set Ui = 0 when yi = 0. This gives:

Uf − 0 = mg(yf − 0)

which is generally written as follows:

U = mgy (Gravitational potential energy) (6.42)

That is, the gravitational potential energy associated with the particle-Earth system

depends on the vertical position y (or the height) of the particle relative to the reference

position y = 0, and does not depend on the horizontal position. We can think of

U = mgy as the configuration energy stored in the particle-Earth system.

Elastic Potential Energy

Now Consider a block attached to a spring with a spring constant kH as in Fig. 6.8.

As the block moves from position xi to position xf the spring force F = −kH x does

work on the block. To find the corresponding change in elastic potential energy of

the block-spring system, we substitute −kH x for the force Fx in Eq. 6.40 to get:

�U = Uf − Ui = −
xf�
xi

(−kH x) dx = kH

xf�
xi

x dx = kH

[
1
2 x2

]xf

xi
= 1

2kH x2
f − 1

2kH x2
i

That is: �U = Uf − Ui = 1
2kH x2

f − 1
2kH x2

i (6.43)

We set Ui = 0 at the equilibrium position of the block, i.e. when xi = 0. This gives:

Uf − 0 = 1
2kH x2

f − 0
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which is generally written as follows:

U = 1
2kH x2 (Elastic potential energy) (6.44)

Example 6.5

A ball of mass m = 0.2 kg is at the level of a second balcony which is 10 m above

the ground, see Fig. 6.13. (a) What is the gravitational potential energy of the ball

if we take the reference point y = 0 to be: (1) at the ground, (2) at the first balcony,

(3) at the second balcony, and (4) at the top of the building? (b) If the ball drops

to the ground, for each of the reference points of part (a), what is the change of

potential energy of the ball due to the fall?

Fig. 6.13 Example 6.5 y

15
 m
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-10
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-15

(1) (2) (3) (4)

Solution: (a) Using Eq. 6.42, we can calculate the potential energy U of the ball

for each choice of y = 0 as follows:

coordinate choice (1): U = mgy = (0.2 kg)(9.8 m/s2)(10 m)= 19.6 J

coordinate choice (2): U = mgy = (0.2 kg)(9.8 m/s2)(5 m)= 9.8 J

coordinate choice (3): U = mgy = (0.2 kg)(9.8 m/s2)(0 m)= 0 J

coordinate choice (4): U = mgy = (0.2 kg)(9.8 m/s2)(−5 m)= − 9.8 J

(b) For all the coordinate choices, we have �y = −10 m. So Eq. 6.41 will give

the same change in potential energy as follows:
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�U = mg�y = (0.2 kg)(9.8 m/s2)(−10 m) = −19.6 J

Thus, although the value of U depends on the choice of where we let y = 0, the

change in potential energy does not. In fact, only the change �U, not the value

of U, in potential energy is physically important.

6.5 Conservation of Mechanical Energy

When a conservative force does work Wc on a particle, the work-energy theorem

tells us that there will be a change in its kinetic energy given by Eq. 6.32, which can

be rewritten as:

Wc = �K (6.45)

and a change in potential energy given by Eq. 6.39, rewritten:

Wc = −�U (6.46)

By equating the last two equations we get:

�K = −�U (6.47)

or:

�K + �U = �(K + U) = 0 (6.48)

If we define the total mechanical energy E as the sum of the kinetic energy K and

potential energy U, i.e.

E = K + U , (6.49)

then Eq. 6.48 gives:

�E = 0 (6.50)

which is called the principle of conservation of mechanical energy.
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Conservation of Mechanical Energy:

When only a conservative force acts on a system, the kinetic energy and the

potential energy can change. However, their sum, the mechanical energy E of

the system, does not change. That is:

Ei = Ef (6.51)

or:

Ki + Ui = Kf + Uf (6.52)

If more than one conservative force acts on the system, where each one is asso-

ciated with a potential energy, then the conservation of mechanical energy will take

the form:

Ki + ∑
Ui = Kf + ∑

Uf (6.53)

Example 6.6

A frictionless roller-coaster is given a maximum possible initial speed v◦ = 6 m/s

when it is at height y◦ = 6 m above the ground and moves freely afterwards, see

Fig. 6.14 and take g = 10 m/s2. (a) What will be the roller-coaster’s speed when

it reaches the lowest point at y1 = 4 m? (b) What will be its maximum height y2?

yo

y1

y2

o

1mg

Fig. 6.14
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Solution: (a) The only force that contributes to the work is the force of gravity.

Therefore, we can use the law of conservation of mechanical energy. Initially, we

have Ki = 1
2 m v2◦ and Ui = m g y◦. Finally, at the lowest point we have Kf = 1

2 m v2
1

and Uf = m g y1. Thus, according to Eqs. 6.51 and 6.52, we get:

Ei = Ef ⇒ Ki + Ui = Kf + Uf ⇒ 1

2
m v2◦ + m g y◦ = 1

2
m v2

1 + m g y1

i.e. v2
1 = v2◦ + 2g(y◦ − y1)

Then: v1 =
√

(6 m/s)2 + 2(10 m/s2)(6 m − 4 m) = 8.7 m/s

(b) The roller-coaster will stop momentarily when it reaches the maximum

height y2, i.e. v2 = 0. Accordingly, Eq. 6.52 gives:

Ei = Ef ⇒ Ki +Ui = Kf +Uf ⇒ 1
2 m v2◦ +m g y◦ = 1

2 m v2
2 +m g y2

Then: y2 = y◦ + 1
2v2◦/g ⇒ y2 = 6 m + 1

2 (6 m/s)2/(10 m/s2) = 7.8 m

6.6 Work Done by Non-conservative Forces

In real-life systems, the total mechanical energy is not constant due to the presence

of non-conservative forces, such as friction or any applied forces. When the work

done by all the non-conservative forces on a particle is Wnc and the work done by

the conservative force is Wc, then the work-energy theorem tells us that there will be

a change in the particle’s kinetic energy given by Eq. 6.32 as:

Wnc + Wc = �K (6.54)

Since Eq. 6.39 gives Wc = −�U, then this equation becomes:

Wnc = �K + �U = (Kf − Ki) + (Uf − Ui) (6.55)

Since E = K + U as we saw in Eq. 6.49, this equation becomes:

Wnc = �E = Ef − Ei (6.56)

which generally can be stated as:
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Spotlight

The work done by all non-conservative forces W (or Wnc) equals the change

in the total mechanical energy of the system.

When there are no non-conservative forces present, Wnc = 0 and hence Ef = Ei;

that is, the total mechanical energy is conserved.

Example 6.7

A block of initial speed v◦ slides across a floor, see Fig. 6.15. A kinetic fric-

tional force of magnitude fk = 50 N does work on the block, stopping it over a

displacement of magnitude d = 2 m. Find the dissipated mechanical energy.

Fig. 6.15

d

fk

Motion
o

Initial Final

Solution: From Eq. 6.9, the work done by friction is given by:

Wnc ≡ Wf = −fk d = −(50 N)(2 m) = −100 J

From Eq. 6.56 and the above result, the dissipated mechanical energy is:

�E = Wnc = −100 J

Example 6.8

A boy of mass m = 30 kg slides down a curved track of height h = 3 m, see

Fig. 6.16. The boy starts at point i with a speed vi = 0 and reaches the bot-

tom of the track at point f with a speed vf . (a) If the track is frictionless, i.e.

fk = 0, then find the speed vf . (b) If the track is rough and vf = 5 m/s, then find

the work done by friction.

Solution: (a) The normal force
→
N does no work on the boy since it is always

perpendicular to each displacement element on the curved track. The only force
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that has a change in potential energy is m→g . Therefore, we can use the law of

conservation of mechanical energy. Initially, we have Ki = 0 and Ui = m g h. At

the end we have Kf = 1
2 m v2

f and Uf = 0. Thus, according to Eq. 6.51, we get:

Ei = Ef ⇒ Ki + Ui = Kf + Uf ⇒ 0 + m g h = 1
2 m v2

f + 0

i.e., vf = √
2 g h =

√
2(9.8 m/s2)(3 m) = 7.67 m/s

(b) In the presence of a non-conservative frictional force, i.e. Wnc �= 0, then

mechanical energy is not conserved and we can use Eq. 6.56 to find the work done

by friction on the boy as follows:

Wnc ≡ Wf = Ef − Ei = (Kf + Uf ) − (Ki + Ui) = ( 1
2 m v2

f + 0) − (0 + m g h)

= 1
2 (30 kg)(5 m/s)2 − (30 kg)(9.8 m/s2)(3 m) = −507 J

Note that Wf is negative, since the work done by friction is negative.

h N

m g

fk

i

f

.

Fig. 6.16

Example 6.9

A block of mass m = 2 kg is placed on a rough horizontal surface against a com-

pressed spring with a spring constant of kH = 2,000 N/m. The spring is com-

pressed a distance of x = 20 cm, see Fig. 6.17. The block is released, and then it

moves to the right until it stops completely after rising onto a rough track of height

h = 0.5 m. Find the work done by friction.
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Fig. 6.17

Solution: As in Example 6.8, the normal force
→
N does no work on the block

since it is always perpendicular to each displacement element on the horizontal

and curved parts of the track. The only force that has a change in potential energy

is the force of gravity. Initially, we have Ki = 0 and only an elastic potential

energy 1
2k x2, i.e. �Ui = 1

2k x2. At the end we have Kf = 0 and only a gravitational

energy m g h, i.e. �Uf = m g h. In the presence of a non-conservative frict-

ional force, Wnc �= 0, the mechanical energy is not conserved. We then use Eq. 6.56

to find the work done by friction as follows:

Wnc = Ef − Ei

= (Kf + �Uf) − (Ki + �Ui)

= (0 + m g h + 0) − (0 + 0 + 1
2kH x2)

= m g h − 1
2kH x2

= (2 kg)(9.8 m/s2)(0.5 m) − 1
2 (2,000 N/m)(0.2 m)2 = −30.2 J

Wnc is negative since the work done by friction is always negative.

6.7 Conservation of Energy

When a block slides across a rough floor through a displacement
→
d , the frictional

force
→
f k (which is an external force) does work on the block, and we found from

Example 6.7 that Wnc = Wf = −fk d. This allows us to write the dissipated mechan-

ical energy given by Eq. 6.56 as follows:

�E = �K + �U = −fk d (6.57)
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In fact, this dissipated energy is transferred as thermal energy to the block and the

floor. So, the energy of the block, which is considered to be our system, is not

conserved.

When we expand our system to include both the block and the floor, the frictional

force is no longer an external force, and the energy transfer will be within the system.

So, again we have an isolated system within which energy is conserved.

To find this conservation principle, we look at the decrease �E in Eq. 6.57 as

the total amount of energy transferred as thermal energy to the block and floor. If

�Eint represents the change in the thermal energy (which is an internal energy) of

the system consisting of the block and floor, then we get:

�Eint = −�E (6.58)

which gives: �E + �Eint = �K + �U + �Eint = 0 (6.59)

This means that, although the mechanical energy of the block is not conserved, the

sum of the mechanical energy of the block and the thermal energy of the block and

floor is conserved. This sum is called the total energy Etot of the block-floor system.

This conservation principle is called the law of conservation of energy and written

as:

�Etot = �K + �U + �Eint = 0

{
conservation of energy

for an isolated system

}
(6.60)

This law of conservation is not derived, but instead based on countless experiments

done by scientists and engineers.

If the system is not isolated and applied external forces transfer energy to or from

the system, then the work done on the system by external forces will be:

W = �Etot = �K + �U + �Eint (non isolated system) (6.61)

For example, in Fig. 6.18, if we consider the rope to be external to the system, then

the frictional force exerted by the rope on the metal rings of the system does an

amount of work W on the system, transferring energy from the system to thermal

energy in the rope while the values of K, U, and Eint change.
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Fig. 6.18 A firewoman wrapping a rope around metal rings so that the rope rubs against the rings while

she is descending from a helicopter. Doing so, she will transfer energy from the gravitational potential

energy of a system consisting of her, her gear, and the Earth to thermal energy gained by the rope and the

rings. While descending slowly, this allows most of the transferred energy to go to the rope and the rings

rather than to her kinetic energy

Example 6.10

A steel ball of mass m = 5 g is projected vertically downward from a height

h = 14.8 m with an initial speed v◦ = 10 m/s, see part a of Fig. 6.19. The ball

penetrates itself in sand to a depth d = 20 cm, see part c of the figure. Neglect

air resistance and take g to be 10 m/s2. (a) What is the change in the mechanical

energy of the ball? (b) What is the change in the internal energy of the ball-Earth-

sand system? (c) What is the magnitude of the average force exerted by the sand

on the ball in part b of the figure?

Solution: (a) Let us take the reference point y = 0 to be at the point where the

ball stops completely, as shown in part c of the figure. Therefore, at the stopping

depth d, the kinetic energy and the potential energy are zero. Thus:

�E = Ef − Ei

= �K + �U

= (Kf − Ki) + (Uf − Ui)

= (0 − 1
2 mv2◦ ) + (0 − mg[h + d])

= − 1
2 mv2◦ − mg(h + d)
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Inserting the given data into the final expression, we find:

�E = − 1
2 (5 × 10−3 kg)(10 m/s)2

− (5 × 10−3 kg)(10 m/s2)(14.8 m + 20 × 10−2 m)

= −0.25 − 0.75 = −1 J
Sp
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Fig. 6.19

(b) This system is isolated, and we can apply Eq. 6.59 as follows:

�E + �Eint = 0

or

�Eint = −�E = −(−1 J) = 1 J

That is to say, as the ball moves through the sand, the sand exerts an upward force

on the ball and thus dissipates all the mechanical energy of the ball, transforming

it to thermal energy of the sand and ball.

(c) When the ball reaches the surface of the sand, its mechanical energy will

be the same as the initial mechanical energy Ei, since air resistance is neglected.
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Then, as the ball moves through the sand, an average upward force F dissipates

all its mechanical energy by the time the ball moves a distance d. Thus, the change

in mechanical energy �E = Ef − Ei will be transferred to thermal energy of the

sand and the ball. So, Eq. 6.57 can be written as:

�E = Ef − Ei = −F d

Solving this for F, we find the following:

F = −�E

d
= − (−1 J)

20 × 10−2 m
= 5 N

We can arrive at this answer by using the techniques of Chap. 3 by finding the

ball’s speed at the surface of the sand and then its average deceleration within the

sand. Then, using Newton’s second law, we can find F. Obviously, more algebraic

steps would be required.

6.8 Power

It is more interesting to know not only the work done on an object, but also the time

rate at which work is being done. This rate is defined as the power.

If �W is the work done by an applied force on an object during a time interval

�t, then the average power P during this time interval is defined as:

P = �W

� t
(6.62)

The instantaneous power P is the limiting value of this average power as �t

approaches zero, i.e.

P = lim
� t→0

�W

� t
= dW

dt
(6.63)

The SI unit of power is joule per second (J/s), called a watt (W). In the British system,

the unit of power is foot-pound per second (ft.lb/s). Often the term horsepower (hp)

is used. These units relate as follows:

1 watt = 1 W = 1 J/s = 0.738 ft.lb/s

1 horsepower = 1 hp = 550 ft.lb/s = 746 W

}
(6.64)

From Eq. 6.62, we see that the work can be expressed as power multiplied by time,

as in the common unit, the kilowatt-hour, Thus:
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1 kilowatt-hour = 1 kW.h = (103 W)(3,600 s)

= 3.6 × 106 J = 3.6 MJ
(6.65)

It is important to realize that a kW.h is a unit of energy, not power. For example,

our electric bills are usually in kW.h, and this gives the consumed amount of energy,

whereas an electric bulb rated at a power of 100 W means it would consume 3.6×105 J

of energy in 1 h.

We can express the rate at which a force
→
F does work on a particle (or a particle-

like object) in terms of that force and the body’s velocity →
v . In Eq. 6.23, we were

able to express the work done dW on the particle by a force
→
F during a displacement

d→r as dW = →
F • d→r . Therefore, the instantaneous power can be written as:

P = dW

d t
=

→
F • d→r

d t
= →

F •
d→r
d t

Recognizing d→r /d t as the instantaneous velocity →
v , we get:

P = →
F • →

v = F v cos θ =

⎧⎪⎪⎨
⎪⎪⎩

+F v if θ = 0◦

0 if θ = 90◦

−F v if θ = 180◦
(6.66)

Positive power means that energy is transferred to the particle, while negative power

means that energy is transferred from the particle.

Example 6.11

An elevator loaded fully with passengers has a mass M = 2,000 kg. When the

elevator ascends, an almost constant frictional force f = 5,000 N acts against its

motion, see Fig. 6.20. What power must be delivered by the motor (the tension T)

to lift the elevator at: (I) a constant speed v of 4 m/s, see part (a) of the figure?

(II) a constant acceleration a of 1.5 m/s2 that produces a speed v = at, see part

(b) of the figure?

Solution: (I) Let T be the force supplied by the elevator’s motor to pull the elevator

upward. From Newton’s second law and from the fact that a = 0 (since v is a

constant in part a of Fig. 6.20), we get:

T − f − M g = 0

Using M as the total mass of the elevator and the passengers and inserting the

given data into this expression, we find:
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T = f + M g

= 5,000 N + (2,000 kg)(9.8 m/s2)

= 24,600 N

0

(a) (b)

y

a

T

Mg

f

T

Mg

f
..

= const.

Fig. 6.20

Then, using Eq. 6.66 and the fact that
→
T is in the same direction as →

v gives:

P = →
T • →

v = Tv cos 0◦ = (24,600 N)(4 m/s)

= 98,400 W = 98.4 kW � 132 hp

This means that to maintain a constant speed of 4 m/s, a force of magnitude

24,600 N is required to transfer energy to the elevator at a rate of 98,400 J/s.

(II) Applying Newton’s second law to part (b) of the figure gives:

T − f − Mg = Ma

Inserting the given data into this expression, we find:

T = f + M(g + a)

= 5,000 N + (2,000 kg)[9.8 m/s2 + 1.5 m/s2]
= 27,600 N

Then, using Eq. 6.66 we get:

P = →
T • →

v = Tv cos 0◦ = T at

= (41,400 t) W

This indicates that the required power increases linearly with time t.
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Example 6.12

Two forces
→
F1 and

→
F2 are acting on a box that slides horizontally to the right across

a frictionless surface, see Fig. 6.21. Force
→
F1 has a magnitude of 5 N and makes

an angle θ = 60◦ with the horizontal. Force
→
F2 is against the motion and has a

magnitude of 2 N. The speed v of the box at a certain instant is 4 m/s. What is the

power due to each force that acts on the box at that instant, and what is the net

power? Is the net power changing with time?

Fig. 6.21
F1

F2

N

Motion

m g

Solution: The weight m→g and the normal force
→
N are perpendicular to the velocity

→
v . Thus, their work done is zero, and hence the power due to each of them on

the block is zero. We use Eq. 6.66 to find the power due to
→
F1 and

→
F2. First, for

the force
→
F1 that is applied at an angle θ = 60◦ to the velocity →

v , we have:

P1 = →
F1 • →

v = F1v cos 60◦ = (5 N)(4 m/s)(0.5) = 10 W

which indicates that the force
→
F1 is transferring energy to the box at a rate of 10 J/s.

Similarly, for
→
F2 we have:

P2 = →
F2 • →

v = F2v cos 180 ◦ = (2 N)(4 m/s)(−1) = −8 W

which indicates that the force
→
F2 is transferring energy from the box at a rate of

8 J/s.

The net power is the sum of the individual powers. Thus:

Pnet = P1 + P2 = 10 W + (−8 W) = 2 W

This indicates that the net rate of energy transfer to the box is positive. So, the

kinetic energy of the box will increase, and hence its speed. Consequently, the net

power will increase with time.
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6.9 Exercises

Section 6.1 Work Done by a Constant Force

(1) A 100 kg object moves in a straight line with a speed of 20 m/s. The object is to

be stopped by a deceleration of 2 m/s2. (a) What is the magnitude of the force

required? (b) What distance does the object travel? (c) What work is done by

the decelerating force? (d) Answer parts (a) to (c) for a deceleration of 4 m/s2?

(2) How much work is done in moving a body of mass 2 kg vertically upward from

an elevation of 1 m to an elevation of 3 m, (a) by gravity? (b) by an external agent

that is slowly moving the body? (c) Answer parts (a) and (b) for a downward

motion from an elevation of 3 m to an elevation of 2 m.

(3) Using Fig. 6.22, find the work done by the weight m→g of a particle of

mass m, as the particle is moved (by application of any other constant

forces) from: (a) A to B, (b) B to A, (c) A to B to C, (d) A to C directly,

and (e) A to B to C to A.

Fig. 6.22 See Exercise (3)

A(0,0)

C(d,h)B(0,h) ..

. x

y

mg

..
m g

(4) A coin of mass m = 0.5 g slides a distance d = 0.5 m along a tabletop. If the

coefficient of kinetic friction between the coin and the table is μk = 0.7, find

the work done on the coin by friction.

(5) A block of mass m is pushed along a rough horizontal surface by a constant

horizontal force
→
F . The displacement of the block along the surface is

→
d .

(a) Find the mathematical expression that represents the work done by: the

force
→
F , the kinetic friction

→
f k , the gravitational force m→g , and the normal

force
→
N . (b) Calculate the work done when m = 2 kg, μk = 0.5, F = 20 N,

and d = 5 m.

(6) A block moves up an incline of angle θ = 30◦ under the action of the three

forces shown in Fig. 6.23. Force
→
F1 has a magnitude of 30 N and is parallel to

the plane. Force
→
F2 has a magnitude of 20 N and is normal to the plane. Force
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→
F3 of 40 N is horizontal. Find the work done by each force as the block moves

a distance d = 2 m up the incline.

Fig. 6.23 See Exercise (6)

F1 d
F2

F3

Final

Initial

Section 6.2 Work Done by a Variable Force

(7) A force acting in the x direction on an object varies with x as shown in Fig. 6.24.

Find the work done by the force in the intervals: (a) 0 ≤ x ≤ 1 m, (b) 1 m ≤
x ≤ 3 m, (c) 3 m ≤ x ≤ 4 m, (d) 4 m ≤ x ≤ 7 m, and (e) 0 ≤ x ≤ 7 m.

Fig. 6.24 See Exercise (7)

0

2

4

6

1 2 3 4 5 6 7

- 2

- 4

x x

(8) A particle is subject to a force f (x)= (2+0.5 x) N. As the particle moves from

x = 0 to x = 8 m, find the work done by the force using: (a) Equation 6.16, and

(b) a graphical method.

(9) A smooth track in the form of a quarter of a circle of radius r = 40 cm lies in

a vertical plane as shown in Fig. 6.25. A bead of mass 4 g moves from P1 to P2

under the effect of a force
→
F (s) that is always acting tangentially to the track

and of magnitude F(s) = (10 − 2 s) N, where the arc length s is measured in

meters. (a) Find the work done by the applied force
→
F . (b) Find the work done

by weight m→g .

(10) A force is used to compress a spring with a spring constant kH = 300 N/m,

see Fig. 6.26. (a) How much work does the applied force do when compressing
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the spring a distance of 6 cm? (b) When the block is released, how much work

does the spring force do on the block during a total displacement starting from

a compression of 6 cm to a stretch of 4 cm?

Fig. 6.25 See Exercise (9)

m g

 

F(s)

s

r

r

P1

P2

Fig. 6.26 See Exercise (10) Fspring

x = 0

x

Fapp

Frictionless

Massless
block

x

(11) A small sphere of weight m g hangs from a string of length L, as shown in

Fig. 6.27. A variable horizontal force
→
F , which starts from zero and gradu-

ally increases, is used to pull the sphere slowly (i.e., equilibrium exists at

all the times) until the string makes an angle θ with the vertical. (a) Use

Eq. 6.16 to show that the work done by the force
→
F is WF = m g L(1 − cos θ).

(b) Use the concept of equilibrium to reach the same answer without performing

integration.

(12) The average resistive force against a nail penetrating a hard material is given

by
→
F = −kx4→

i , where k is a constant and x is the penetration depth. Find the

work done by this force when penetrating this material for a distance d.

(13) A bead is moving along the circumference of a circular hoop of radius R under

a constant force of magnitude F. The force always makes an angle θ with
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respect to the tangent to the circle. Find the work done by this force during one

revolution.

Fig. 6.27 See Exercise (11)

θ

θ

θ

Section 6.3 Work-Energy Theorem

(14) A car is moving at 100 km/h. If its mass is 1,000 kg, what is its kinetic energy?

(15) A 120 g mass has a velocity →
v = (3

→
i + 4

→
j )m/s at a certain instant. What is

its kinetic energy?

(16) Use the work-energy theorem to find the magnitude of the force required to

accelerate a car of mass 1,300 kg from rest to 25 m/s in a distance of 100 m?

(17) The speed of a 10 kg object changes from 4 to 10 m/s. What is its change in

kinetic energy?

(18) The velocity of a 0.4 kg object changes from →
vi = (4

→
i + 3

→
j ) to →

vf =
(12

→
i − 9

→
j ) m/s. What is its change in kinetic energy?

(19) A force acting on a body that moves along the x-axis produces a velocity-time

graph as shown in Fig. 6.28. If the body has a mass m = 2 kg, then find the

change in kinetic energy in the intervals: (a) 0 ≤ t ≤ 1 s, (b) 1 s ≤ t ≤ 3 s, (c)

3 s ≤ t ≤ 5 s, (d) 5 s ≤ t ≤ 7 s, and (e) 0 ≤ t ≤ 7 s.

(20) A force acts on a body of mass m = 2 kg that moves along the x-axis. The force

varies with x as shown in Fig. 6.29. If the body was initially at rest, then find

the change in kinetic energy in the intervals: (a) 0 ≤ x ≤ 1 m, (b) 0 ≤ t ≤ 2 m,

and (c) 0 ≤ x ≤ 3 m.
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Fig. 6.28 See Exercise (19)
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Fig. 6.29 See Exercise (20)
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x

x

(21) A block of mass m = 15 kg slides from rest down a frictionless incline of incli-

nation angle θ = 30◦ and is stopped by a spring that has a spring constant

kH = 5,000 N/m, see Fig. 6.30. The block moves a total distance d = 1.5 m

from the point of release to the point where it stops momentarily as the spring

reaches its maximum compression. Use the work-energy theorem to find the

maximum compression of the spring.

Fig. 6.30 See Exercise (21)

d
f = 0

i =
0

Spring at maximum compression

0 Frictionlessx

θ

(22) A force acts on a particle of mass m = 5 kg and changes its velocity from
→
vi = (3

→
i + 4

→
j ) to →

vf = (6
→
i + 8

→
j ) m/s. How much work is applied to this

particle by this force?
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Section 6.5 Conservation of Mechanical Energy

(23) A body of mass m = 5 kg is released from rest from a height of 2 m above

the ground. (a) What is the kinetic energy of the body just before hitting the

ground? (b) At that point, what is its speed?

(24) A freely falling ball of mass m = 0.5 kg passes a window 1.5 m high. (a) How

much did the kinetic energy of the ball increase as it fell past the window?

(b) If its speed at the top of the window was 2 m/s, what will its speed be at the

bottom of the window?

(25) A pendulum bob has a mass m = 0.5 kg. It is suspended by a cord of length L =
2 m which is pulled back through an angle of 90◦ and released, see Fig. 6.31.

(a) What is its maximum potential energy relative to its lowest position?

(b) What is its maximum speed at point B? (c) What is its speed at point C

when the cord makes an angle θ = 60◦ with the vertical?

Fig. 6.31 See Exercise (25)  

L 

m g

A

B

C

B

c

(26) In the track shown in Fig. 6.32, section AB is a quadrant of a circle of radius

r = 1 m. A block is released at A and slides without friction until it reaches

point B, then moves a distance d = 4 m on a horizontal rough plane before

stopping at point C. (a) Haw fast is the block moving at point B? (b) What is

the coefficient of kinetic friction between the block and the plane?

Fig. 6.32 See Exercise (26)
A=0

B

A

C

r

r

d

C=0
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(27) A pendulum bob is pulled aside from its equilibrium position through an angle θ

and then released, see Fig. 6.33. Show that the pendulum bob will pass through

the equilibrium position with a speed v = √
2gL(1 − cos θ), where L is the

length of the pendulum. When θ = 90◦, show that the relation of v will give

an identical result to the result obtained in part (b) of exercise 25.

Fig. 6.33 See Exercise (27)

mg

L 

v

(28) A spring has one of its ends fixed and the other attached to a block of mass m that

rests on a frictionless horizontal surface. The application of a horizontal force F

on the block causes the spring to stretch a distance d from its equilibrium. The

spring is held at this position momentarily and then the block is released. Find

the speed of the block when the spring returns: (a) to half its original extension

(d/2), and (b) to its natural length.

(29) Two blocks of masses m1 = 4 kg and m2 = 5 kg are connected by a massless

string that passes over a massless frictionless pulley as shown in Fig. 6.34.

Block m1 is initially at rest on a smooth horizontal plane while block m2 is at a

height h = 0.75 m above the ground. Use conservation of mechanical energy

to find the speed of the masses just before m2 hits the ground.

Fig. 6.34 See Exercise (29)
m1

m2

h
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(30) Figure 6.35 shows a proposed roller-coaster track. Each car starts from rest at

point A, where yA = 21 m and it will roll freely without friction along the track.

It is important that there be at least some small normal force exerted by the

track on the car at all points; otherwise, the car will leave the track. What is the

minimum safe value for the radius of the curvature at point B?

yA

yB

A = 0

B

m g

A

B

m g

N
r

Fig. 6.35 See Exercise (30)

(31) A skier of mass m starts sliding from rest at the top of a solid frictionless

hemisphere of radius r, see Fig. 6.36. At what angle θ will the skier leave the

sphere?

Fig. 6.36 See Exercise (31)

mg

N

r
mg
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Sections 6.6 and 6.7 Work Done by Non-conservative
Forces—Conservation of Energy

(32) If the mass of the block in Example 6.7 is 0.5 kg, then find the value of the

speed v◦.

(33) If the mass of the boy in Example 6.8 is 50 kg, then redo parts (a) and (b) of

the example and comment on the obtained results.

(34) In the rough track shown in Fig. 6.37, section AB is a quadrant of a circle of

radius r = 2 m. A block of mass m = 5 kg is released at A and slides until it

stops completely at point C. (a) Find the work done by friction. (b) What is the

effect of having a more/less rough track on the block?

Fig. 6.37 See Exercise (34) A= 0

B

A

C

r

r

C=0

Start point

End point

(35) A block of mass m = 5 kg is placed on the edge of a rough surface of height h =
0.5 m, see Fig. 6.38. The block is released and moves until it stops momentarily

after compressing a horizontal spring (with a spring constant kH = 2,000 N/m)

by a compression distance x = 10 cm. Find the work done by friction. Will the

block ever be able to go back to its original location and why?

Fig. 6.38 See Exercise (35)

x
x = 0

h

E i
E f

f 0

i 0

Equilibrium
position

(36) (a) If the block in Exercise 35 traveled a total distance of 50 cm before coming

to a momentary stop, estimate the average force of friction (assume it is roughly

constant) on the block. (b) After the maximum compression of the spring is

reached, the block starts its journey back on the surface. If the block reaches a
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second momentary stop after moving a distance of 20 cm on the surface, what

is the maximum height that the block can reach?

(37) A roller-coaster car of mass m = 750 kg starts from rest at the top of a hill 30 m

high, see Fig. 6.39. The roller-coaster travels a total distance of 250 m without

leaving the track and reaches a vertical height of only 25 m on the second hill

before coming to a momentary stop. Find the thermal energy produced during

the free motion and estimate the average frictional force on the car.

y A
 =

 3
0 

m

A=0

m g

A

B

  

 

 
B 

= 
0

y B
 =

 2
5 

m

.

.

Fig. 6.39 See Exercise (37)

(38) A steel ball of mass m = 0.5 kg is projected horizontally with an initial speed

v◦ = 10 m/s, see Fig. 6.40a. The ball penetrates into a wall of clay until it

stops at a depth d = 20 cm, see Fig. 6.40b–c. (a) What is the change in the

mechanical energy of the ball ? (b) What is the change in the internal energy

of the ball-Earth-wall system? (c) What is the magnitude of the average force

exerted by the wall on the ball during the penetration process?

(b)
Spring gun

(a)

t i , E i

o

d

(c)

t f , E ft , E

F
_

dd

Fig. 6.40 See Exercise (38)
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Section 6.8 Power

(39) How much average power in kilowatts and horsepower is required to lift a block

of 100 kg to a height of 10 m in 30 s?

(40) At 30 piasters (Egyptian pound = 100 Piaster) per kilowatt-hour of electricity,

what is the cost of operating a 5-hp motor for 2 h?

(41) An elevator fully loaded with passengers has a mass M = 2,000 kg. As the

elevator descends, an almost constant frictional force f = 4,000 N acts against

its motion. What power must be delivered by the motor to descend the elevator

at: (a) a constant speed v of 4 m/s, and (b) a constant acceleration a of 1.5 m/s2

that produces a speed v = at?

(42) A constant horizontal force F = 20 N acts on a block of mass m = 4 kg resting

on a horizontal plane. The block starts from rest at t = 0. Show that the instan-

taneous power delivered by the force at any time t is given by P = F2t/m, and

find its value at t = 5 s.

(43) A car generates 20 hp when traveling at a constant speed of 100 km/h. What is

the total resistive force that acts on the car?

(44) A car of mass m = 1,500 kg accelerates from rest to 100 km/h in 8 s. What is

the average power delivered by its engine?

(45) A car of mass m accelerates with acceleration a up an inclined plane of angle

θ as in Fig. 6.41. The drag force fD consists of rolling friction α (N) and air

drag β v2(N), i.e. fD = α + β v2, where α and β are constants and v is the

speed of the car. (a) Find the force F that propels the car. (b) Show that

P = mva + mvg sin θ + α v + β v3 is the power delivered to the wheels by the

engine, where mva is the power delivered to accelerate the car, mvg sin θ is the

power to overcome gravity, α v is the power to overcome rolling friction, and

β v3 is the power to overcome air drag. (c) Calculate the various components of

P and hence the total P if we take m = 1,000 kg, a = 2 m/s2, v = 20 m/s,

α = 200 N, β = 0.5 kg/m, and θ = 15◦.

Fig. 6.41 See Exercise (45)
N

mgx
θ

y fD
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Linear Momentum, Collisions, 7and Center of Mass

In this chapter, we introduce the linear momentum of a particle and the law of

conservation of linear momentum of a system of particles under certain conditions.

We use this law and the conservation of energy to analyze translational motion

when particles collide. For a system of isolated particles, or an extended object, we

introduce the concept of center of mass to show that conservation of linear momentum

applies under certain conditions, as it does for isolated particles. At the end of this

chapter, we treat systems with variable mass. We first consider cases where the mass

increases with time and then we consider cases where the mass decreases with time.

7.1 Linear Momentum and Impulse

First, let us consider Newton’s second law, when a net force
→
F acts on a particle of

mass m,
→
F = m→a . After replacing →a with d→

v /dt, we get:

→
F = m

d→
v

dt
= d(m→

v )

dt
(7.1)

According to this equation, the net force
→
F (abbreviation of

∑ →
F ) acting on a particle

is equal to the change in the product m→
v per unit time. This product is called the

linear momentum (or the momentum) of a particle having a mass m and velocity →
v ,

and it is assigned the symbol →p , that is:

→p = m→
v (7.2)

In the SI system, →p has the units kg.m/s. In Cartesian coordinates, this equation is

equivalent to the following component equations:

px = mvx, py = mvy, pz = mvz. (7.3)

H. A. Radi and J. O. Rasmussen, Principles of Physics, 181
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© Springer-Verlag Berlin Heidelberg 2013
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We can therefore rewrite Eq. 7.1 in a new form as follows:

→
F = d→p

dt
(Newton’s second law) (7.4)

The two forms of Newton’s second law
→
F = m→a and

→
F = d→p /dt are equivalent if

the mass m is constant.

Next, to derive the linear impulse-momentum theorem, we rewrite Eq. 7.4 in a

differential form as follows:

d→p = →
F dt (7.5)

If the momentum of the particle changes from →p i at time ti to →pf at time tf , we can

then integrate this expression to find the change in momentum as follows:

→p f�
→p i

d→p =
tf�
ti

→
F dt (7.6)

or

�
→p = →pf − →p i =

tf�
ti

→
F dt (7.7)

The right-hand side of this equation is called the impulse
→
J (kg.m/s or N.s) of the

net force
→
F for the time interval �t = tf − ti. Thus:

→
J =

tf�
ti

→
F dt = �

→p (7.8)

This is known as the impulse-momentum theorem. During collisions,
→
F jumps from

zero to a large value and abruptly returns to zero again, all in a very short time interval

�t = tf − ti, see Fig. 7.1a. The integral in Eq. 7.8 can be represented by
→
F �t, where

→
F is the average force exerted on the particle during the time interval �t, see Fig. 7.1b.

Therefore, the impulse-momentum theorem reduces to the following:

→
J =

tf�
ti

→
F dt = →

F �t = �
→p and

→
F = �

→p
�t

(7.9)
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(a) (b)

Fig. 7.1 (a) Variation of the force F with time t during a collision. (b) The average forceF acting over a

time interval �t = tf − ti gives the same impulse as the actual force F during the same time interval �t

Example 7.1

A billiard ball of mass m = 170 g has velocity components vx = vy = 4 m/s,

see Fig. 7.2. The ball bounces back from a table’s edge with the same speed

and angle after being in contact with the edge for 0.2 s. Assume that friction

and rotational motion are negligible. (a) What is the change in the horizontal

and vertical components of the ball’s momentum? (b) What is the average force

exerted on the ball by the wall?

Fig. 7.2

v y

vx

-vx

vy

v

v

x

y

o

Solution: (a) Bouncing with the same speed and angle means that the x component

of the velocity is reversed, while the y component remains unchanged (this is

known as an elastic collision). Since the x component of the ball’s momentum is

mvx before the collision and −mvx afterward, the change in the ball’s momentum

will be:

�px = (px)f − (px)i = −mvx − mvx

= −2mvx = −2(0.17 kg)(4 m/s) = −1.36 kg.m/s
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Because of the unchanged y component of the velocity, we get

�py = (py)f − (py)i = mvy − mvy = 0

(b) According to part (a), we have �
→p = �px

→
i = −2mvx

→
i, which by Eq. 7.9

means that the force exerted by the wall on the ball will be in the negative x

direction. Thus:

→
F = �

→p /�t = −2mvx/�t
→
i = (−1.36 kg.m/s)/(0.2 s)

→
i = −(6.8 N)

→
i

7.2 Conservation of Linear Momentum

Consider a system of n particles with linear momenta →p1,
→p2, . . . , and →pn. Some

forces on these particles are external to the system, and others are internal. These

forces may be of any type, including gravitational, electric, or magnetic.

Let
→
P be the total linear momentum of the system, which is the vector sum of all

individual momenta. Thus:

→p1 + →p2 + · · · + →pn =
∑ →pi = →

P (7.10)

When differentiating this equation with respect to time, we get:

∑ d→pi

dt
=

∑ →
Fi = d

→
P

dt
(7.11)

where
∑ →

Fi represents the sum of all forces (internal plus external) exerted on the

particles of the system. Then we can write the sum
∑ →

Fi as follows:

∑ →
Fi =

∑ →
Fext +

∑ →
Fint (7.12)

where
∑ →

Fext is the vector sum of all external forces acting on the particles of the

system. By Newton’s third law, the internal forces form action-reaction pairs and

their sum cancel each other out, i.e.,
∑ →

Fint = 0. Therefore, Eq. 7.11 reduces to:

∑ →
Fext = d

→
P

dt
(System of particles) (7.13)

This equation represents a generalization of the single-particle equation
∑ →

F =
d→p /dt that is deduced for a single particle.
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For an isolated system, the sum of the external forces is zero. Setting
∑ →

Fext = 0

in Eq. 7.13 yields d
→
P /dt = 0, or:

→
P = constant (Isolated system) (7.14)

Spotlight

Thus, the total linear momentum of an isolated system of particles remains

constant

This is the law of conservation of momentum, which can be written as:

→
Pi = →

Pf (Isolated system) (7.15)

where the subscripts refer to the total momentum of the system at initial time i and

final time f.

Example 7.2

Two trams, 1 and 2, have an equal mass of m = 5,000 kg each. Tram 1 is traveling

with a speed v1 = 15 m/s before striking tram 2, which was at rest. If the two

trams lock together as the result of the collision as shown in Fig. 7.3, what is their

common speed immediately after collision?

15m/s1 02

Before collision

After collision

Fig. 7.3

Solution: We consider a short time interval after the collision so that heat and

external forces such as friction can be ignored. Then we can apply the conservation

of the total horizontal momentum:

Pi = Pf
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The initial total momentum of the two trams before collision is:

Pi = m1v1 + m2v2 = m1v1 + 0 = (5,000 kg)(15 m/s) = 75,000 kg.m/s

The final total momentum of the two trams after collision is:

Pf = m1v
′ + m2v

′ = (m1 + m2)v
′ = (5,000 kg + 5,000 kg)v′ = (10,000 kg)v′

Applying the conservation of total momentum Pi = Pf , we get:

75,000 kg.m/s = (10,000 kg)v′ ⇒ v′ = 75,000 kg.m/s

10,000 kg
= 7.5 m/s

Example 7.3

A cannon of mass M = 1,500 kg shoots a projectile of mass m = 100 kg with a

horizontal speed v = 30 m/s, as shown in Fig. 7.4. If the cannon can recoil freely

on a horizontal ground, what is its recoil speed V just after shooting the projectile?

Before shooting After shooting

M M
V

m
m

Fig. 7.4

Solution: We take our system to be the cannon and the projectile, which both are

at rest initially before shooting. When the trigger is pulled, the forces involved in

the shooting are internal and hence cancel. During the very short time of shooting,

we can assume that the external forces such as friction are very small compared

to the forces exerted by the shooting. In addition, the external gravitational forces

acting on the system have no components in the horizontal direction. Then the

momentum conservation along the horizontal direction is:

Pi = Pf

The initial total horizontal momentum before the shooting is:

Pi = m × 0 + M × 0 = 0
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The final total horizontal momentum after the shooting is:

Pf = mv + MV

Applying the conservation of total momentum Pi = Pf , we get:

V = −mv

M
= − (100 kg)(30 m/s)

1,500 kg
= −2 m/s

The minus sign indicates that the velocity and momentum of the cannon is opposite

to that of the projectile. Since the cannon has a much larger mass than the projectile,

its recoil speed is much less than that of the projectile.

7.3 Conservation of Momentum and Energy in Collisions

During most types of collisions, forces are usually unknown. Nevertheless, by using

the conservation laws of momentum and energy we can determine much information

about the motion after collision in terms of information before collision. When objects

are very hard, so that no heat or other forms of energy are produced during collisions,

the kinetic energy is conserved before and after collision. Such a collision is referred

to as an elastic collision. Thus, in elastic collisions we have the following for a

system of particles:

{
Total kinetic energy before = Total kinetic energy after∑ 1

2 mv2
before = ∑ 1

2 mv2
after

}{
Elastic

collision

}

(7.16)

Collisions in which kinetic energy is not conserved are said to be inelastic collisions.

However, we should remember that the total energy is conserved even if kinetic

energy is not. Thus:

{
Total energy before = Total energy after∑ 1

2 mv2
before = ∑ 1

2 mv2
after + other forms of energy

}{
Inelastic

collision

}
(7.17)

7.3.1 Elastic Collisions in One and Two Dimensions

First, we apply the conservation laws of momentum and kinetic energy in an elastic

collision of two small objects that collide head-on. Figure 7.5 shows two objects of
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masses m1 and m2 (treated as particles) moving along the x-axis with velocities v1

and v2, respectively. Usually the object of mass m1 is called the projectile while the

object of mass m2 is called the target. After collision their velocities are v′
1 and v′

2,

respectively. If the sign of any velocity is positive, then the object is moving in the

direction of increasing x, whereas if the sign of the velocity is negative, then the

object is moving in the direction of decreasing x.

x

x

1 2 Before collision

During collision

1′ 2′After collision

x
(a)

(b)

(c)

1m 2m

2m

m21m

1m

Fig. 7.5 Two small objects of masses m1 and m2, (a) approaching each other before collision,

(b) colliding head-on, and (c) moving away from each other after collision

From the conservation of momentum, Pi = Pf , we have:

m1v1 + m2v2 = m1v
′
1 + m2v

′
2

From the conservation of kinetic energy of elastic collisions, we have:

1
2 m1v

2
1 + 1

2 m2v
2
2 = 1

2 m1v
′2
1 + 1

2 m2v
′2
2

If we know the masses and the velocities before collision, we can solve the above

two equations for the two unknowns v′
1 and v′

2. We rewrite the momentum and

kinetic-energy equations as follows:

m1(v1 − v′
1) = m2(v

′
2 − v2) (7.18)

m1(v
2
1 − v′2

1) = m2(v
′2
2 − v2

2) (7.19)

Using the identity a2 − b2 = (a − b)(a + b), we write the last equation as:

m1(v1 − v′
1)(v1 + v′

1) = m2(v
′
2 − v2)(v

′
2 + v2) (7.20)

When dividing Eq. 7.20 by Eq. 7.18, we get:

v1 + v′
1 = v′

2 + v2 (7.21)
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We can rewrite this equation as:

v1 − v2 = −(v′
1 − v′

2) (7.22)

This shows that for any elastic head-on collisions, the relative velocity of two objects

before collision equals the negative of their relative velocity after collision, regardless

of the masses of the objects.

In addition, Eqs. 7.18 and 7.21 can be used to find the final velocities (normally the

unknown quantities) in terms of the initial velocities (normally the known quantities)

as follows:

v′
1 = m1 − m2

m1 + m2
v1 + 2m2

m1 + m2
v2 (7.23)

v′
2 = 2m1

m1 + m2
v1 + m2 − m1

m1 + m2
v2 (7.24)

We can apply these equations to some very important special cases:

• Equal masses (m1 = m2). Equations 7.23 and 7.24 show that:

v′
1 = v2 and v′

2 = v1 (The objects exchange velocities)

• Object 2 (the target) is initially at rest (v2 = 0). Equations 7.23 and 7.24 becomes:

v′
1 = m1 − m2

m1 − m2
v1 and v′

2 = 2m1

m1 + m2
v1 (7.25)

(a) If m1 � m2, i.e., the projectile is heavier than the target, then:

v′
1 ≈ v1 and v′

2 ≈ 2v1

The much heavier object (projectile) continues with unaltered velocity, while

the light object (target) takes off with twice the velocity of the heavy object

(b) If m1 � m2, i.e., the projectile is much lighter than the target, then:

v′
1 ≈ −v1 and v′

2 ≈ 0

The light object (projectile) has its velocity reversed while the heavy object

(target) remains approximately at rest

The general Eqs. 7.23 and 7.24 should not be memorized. In each different problem

we can easily start from scratch by applying the conservation of momentum and

kinetic energy to solve questions in any elastic head-on collision.
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Example 7.4

A tennis ball of mass m1 = 0.04 kg, moving with a speed of 5 m/s, has an elastic

head-on collision with a target ball of mass m2 = 0.06 kg that was moving at

a speed of 3 m/s. What is the velocity of each ball after the collision if the two

balls are moving: (a) in the same direction as shown in Fig. 7.6a? (b) in opposite

direction as shown in Fig. 7.6b?

1 2
1m

Before collision
x(a)

1 2
1m

(b)
Before collision

x

2m

2m

Fig. 7.6

Solution: (a) In Fig. 7.6a, we have v1 = +5 m/s and v2 = +3 m/s. Using Eq. 7.22,

we find a relationship between the velocities as:

v1 − v2 = −(v′
1 − v′

2) ⇒ 5 m/s − 3 m/s = v′
2 − v′

1 ⇒ v′
2 = 2 m/s + v′

1

Using this result in the conservation of momentum, we have:

m1v1 + m2v2 = m1v
′
1 + m2v

′
2

m1v1 + m2v2 = m1v
′
1 + m2(2 m/s + v′

1)

v′
1 = m1v1 + m2(v2 − 2 m/s)

m1 + m2
= (0.04 kg)(5 m/s) + (0.06 kg)(3 m/s − 2 m/s)

0.04 kg + 0.06 kg

= (0.2 kg.m/s) + (0.06 kg.m/s)

0.1 kg
= 0.26 kg.m/s

0.1 kg
= 2.6 m/s

The other unknown velocity is v′
2, which can now be obtained from:

v′
2 = 2 m/s + v′

1 = 2 m/s + 2.6 m/s = 4.6 m/s

After the collision, the plus signs of v′
1 and v′

2 tell us that the tennis ball and the

target will move in the same positive x direction, but the tennis ball will slow

down, while the target will speed up; see Fig. 7.7.
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1
′v 2′v1m

After collision
x

1v 2v1m
Before collision

x2m 2m

Fig. 7.7

(b) In Fig. 7.6b, we have v1 = +5 m/s and v2 = −3 m/s. Using Eq. 7.22, we

find the relationship between the velocities as:

v1−v2 = −(v′
1−v′

2) ⇒ 5 m/s−(−3 m/s) = v′
2 − v′

1 ⇒ v′
2 = 8 m/s + v′

1

Similarly, using this result in the conservation of momentum, we get:

m1v1 + m2v2 = m1v
′
1 + m2v

′
2

m1v1 + m2v2 = m1v
′
1 + m2(8 m/s + v′

1)

v′
1 = m1v1 + m2(v2 − 8 m/s)

m1 + m2
= (0.04 kg)(5 m/s) + (0.06 kg)(−3 m/s − 8 m/s)

0.04 kg + 0.06 kg

= (0.2 kg.m/s) − (0.66 kg.m/s)

0.1 kg
= −0.46 kg.m/s

0.1 kg
= −4.6 m/s

The other unknown velocity can now be obtained from:

v′
2 = 8 m/s + v′

1 = 8 m/s − 4.6 m/s = 3.4 m/s

After the collision the minus sign of v′
1 tells us that the tennis ball reverses its

motion and moves in the negative x direction, while the positive sign of v′
2 tells

us that the target also reverses its motion and moves in the positive x direction,

see Fig. 7.8 with proper arrows.

1′v 2′v1m
After collision

x
1v 2v1m

Before collision
x

2m m2

Fig. 7.8
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Now, let us apply the conservation laws of momentum and kinetic energy to an

elastic collision of two objects that are not colliding head-on. Figure 7.9 shows one

common type of non-head-on collision at which one object (the “projectile”) of mass

m1 moves along the x-axis with a speed v1 and strikes a second stationary object (the

“target”) of mass m2. After the collision, the two masses m1 and m2 go off at the

angles θ1 and θ2, respectively, which are measured relative to the projectile’s initial

direction. We see this type of collision in nuclear experiments, or more commonly

in billiard games.

1

Before collision

1′

After collision

x

y

x

y

1θ

2θ
At rest

(a) (b)

2
′

1m
2m

1m

2m

Fig. 7.9 (a) A projectile of mass m1 moving in the x direction with velocity →v 1 toward a stationary

target of mass m2. (b) After collision, the projectile and target move away with velocities →v 1 and →v 2,

respectively

We apply the law of conservation of momentum along the x and y axes, and in

cases of elastic collisions we also apply the law of conservation of kinetic energy as

follows:

Momentum long x-axis : m1v1 = m1v
′
1 cos θ1 + m2v

′
2 cos θ2 (7.26)

Momentum long y-axis : 0 = m1v
′
1 sin θ1 − m2v

′
2 sin θ2 (7.27)

Kinetic energy : 1
2 m1v

2
1 = 1

2 m1v
′2
1 + 1

2 m2v
′2
2 (7.28)

If m1, m2, and v1 are known quantities, then we are left with the four unknowns

v′
1, θ1, v′

2, and θ2. Since we only have three equations, one of the four unknowns

must be provided; otherwise, we cannot solve the problem.
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Example 7.5

A projectile of mass m1= m moving along the x direction with a speed v1=
10

√
3 m/s collides elastically with a stationary target of mass m2 = 2m. After the

collision, the projectile is deflected at an angle of 90◦, as shown in Fig. 7.10. (a)

What is the speed and angle of the target after collision? (b) What is the final

speed of the projectile and the fraction of kinetic energy transferred to the target?

1

Before collision 1
′

After collision

x x

y

θAt rest

2
′

m
m

2m

2m

Fig. 7.10

Solution: (a) From the conservation of momentum in two dimensions and con-

servation of kinetic energy, we get the following relationships:

Momentum along x : mv1 = 2mv′
2 cos θ ⇒ v1 = 2v′

2 cos θ

Momentum along y : 0 = mv′
1 − 2mv′

2 sin θ ⇒ v′
1 = 2v′

2 sin θ

Kinetic energy : 1
2 mv2

1 = 1
2 mv′2

1 + 1
2 2mv′2

2 ⇒ v2
1 − v′2

1 = 2v′2
2

Squaring and adding the two momentum equations together, we get:

v2
1 + v′2

1 = 4v′2
2

Adding this result to the one obtained from the conservation of kinetic energy, we

get:

2v2
1 = 6v′2

2 ⇒ v′2
2 = 1

3
v2

1 ⇒ v′
2 = 1√

3
v1 = 1√

3
(10

√
3 m/s) = 10 m/s

Using this result in the x-momentum component, we find the angle:

v1 = 2v′
2 cos θ ⇒ v1 = 2√

3
v1 cos θ ⇒ cos θ =

√
3

2
⇒ θ = 30◦

(b) We can substitute v′
2 = 10 m/s and θ = 30◦ in the y-momentum component

to find the speed v′
1 as follows:
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v′
1 = 2(10 m/s)(sin 30◦) = 10 m/s

The fraction transferred is the final energy of the target divided by the initial

kinetic energy of the projectile.

Ktarget

Kprojectile
=

1
2 (2m)v′2

2
1
2 mv2

1

=
1
2 (2m)

(
v2

1/3
)

1
2 mv2

1

= 2

3
≡ 66.67%

7.3.2 Inelastic Collisions

In some collisions, part of the initial kinetic energy is transferred to other types of

energy (such as thermal or potential energy), or part of the internal energy (such as

chemical or nuclear) is released as a form of kinetic energy. These types of collisions

are called inelastic collisions because the total final kinetic energy can be less than or

greater than the total initial kinetic energy (i.e., the kinetic energy is not conserved).

If two objects stick together after collision, the collision is called a completely

inelastic collision. Even though kinetic energy is not conserved in those collisions,

total energy is conserved.

Example 7.6

A bullet of mass m = 10 g is fired horizontally with a speed v into a large wooden

stationary block of mass M = 2 kg that is suspended vertically by two cords. This

arrangement is called the ballistic pendulum, see Fig. 7.11. In a very short time,

the bullet penetrates the pendulum and remains embedded. The entire system

starts to swing through a maximum height h = 10 cm. Find the relation that gives

the speed v in terms of the height h, and then find its value.

V
m

M

M m+

h
Before collision After collision and before swinging At maximum height

M m+

Stage 1 Stage 2

Fig. 7.11
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Solution: In stage 1, momentum is conserved. Thus:

mv = (M + m)V ⇒ V = m

M + m
v

In stage 2, the mechanical energy, K + U, is conserved. Thus:

1
2 (M + m)V 2 + 0 = 0 + (M + m)gh ⇒ V 2 = 2gh ⇒ V = √

2gh

Inserting this result into the previous relation gives v in terms of h as:

v = M + m

m

√
2gh ⇒ v = 2.01 kg

0.01 kg

√
2(10 m/s2)(0.1 m) = 284.3 m/s

7.4 Center of Mass (CM)

Until now, we have dealt with translation motion of an object that can be approx-

imated by a point particle. In fact, real objects can undergo both translational and

rotational motions. From general practical observations, it is found that when an

applied resultant force �
→
Fext acts on an extended object (or a system of particles) of

total mass M, the translation motion of the object moves as if the resultant force were

applied on a single point at which the mass of the object were concentrated. This

behavior is independent of other motion, such as rotational or vibrational motion.

This special point is called the center of mass (abbreviated by CM) of the object.

As an example, consider the motion of the center of mass of the wrench over a

horizontal surface shown in Fig. 7.12a. The CM follows a straight line under a zero

net force. In Fig. 7.12b, the CM follows a straight line even when the wrench rotates

about the CM.

CM CMCMCM

(a) (b)

Translational motion of the CM Translational motion of the CM plus rotational motion about the CM
Top view Top view

Fig. 7.12 (a) A top view of the translational motion of the CM of a wrench over a horizontal surface (the

red dot represents the wrench’s CM at different moments). (b) A top view of the translational motion of

the CM plus the rotational motion about the CM
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Figure 7.13 depicts a system of two masses m1 and m2 located on the x-axis at

positions x1 and x2, respectively. The center of mass of this system of particles is at

the position xCM and defined as follows:

xCM = m1x1 + m2x2

m1 + m2
(7.29)

Fig. 7.13 The coordinate of

the center of mass (xCM) of a

system of two particles is a

point located between the

particles

1x
2x

CMx
1m 2m

x

y

0
CM

For a system consisting of n particles, where n could be very large, Eq. 7.29

becomes:

xCM = m1x1 + m2x2 + · · · + mnxn

m1 + m2 + · · · + mn
=

∑n
i=1 mixi∑n
i=1 mi

=
∑

i mixi

M
(7.30)

The symbol
∑n

i=1 indicates the sum over all particles, where i takes an integer values

from 1 to n. Often the symbol
∑n

i=1 is replaced by the symbol
∑

i (or even
∑

). The

total mass of the system is M = ∑
mi.

If the particles are spread out in three dimensions and xi, yi, and zi are the coordi-

nates of the ith particle of mass mi and position vector →r i = xi
→
i + yi

→
j + zi

→
k , then

we define the coordinates of the CM as:

xCM =
∑

mixi

M
, yCM =

∑
miyi

M
, zCM =

∑
mizi

M
, (7.31)

where M = ∑
mi is the total mass of the system. The position vector of the CM is

thus:

→r CM = xCM
→
i + yCM

→
j + zCM

→
k =

∑
mixi

→
i + ∑

miyi
→
j + ∑

mizi
→
k

M
(7.32)

The position vector of the CM can be simplified as:

→r CM =
∑

mi
→r i

M
(7.33)

For an extended object, we divide the object into tiny elements, each of mass �mi

around a point with coordinates xi, yi, and zi. When we take the limit as n → ∞, then
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�mi becomes an infinitesimal mass dm with coordinates x, y, and z. The summations

in Eq. 7.31 become integrals and we get:

xCM = 1

M

�
x dm , yCM = 1

M

�
y dm , zCM = 1

M

�
z dm (7.34)

where M =
�

dm is the total mass of the system, and in vector notation, Eq. 7.33

becomes:

→r CM = 1

M

� →r dm (7.35)

Example 7.7

A system of three particles of masses m1 = 0.5 kg, m2 = 1 kg, and m3 = 1.5 kg

are spread out in two dimensions and located as shown in Fig. 7.14. Find the center

of mass of the system.

Fig. 7.14

CMr1m

2m
x

y

0

CM

3m

2 m

2 m

1 m

Solution: According to Fig. 7.14, m1, m1, and m1 have coordinates (0, 1 m),

(2 m, 0), and (2 m, 2 m), respectively. Thus, we use the x and y components of

Eq. 7.31 with only three terms as follows:

xCM =
∑3

i=1 mixi∑3
i=1 mi

= (0.5 kg)(0) + (1 kg)(2 m) + (1.5 kg)(2 m)

0.5 kg + 1.0 kg + 1.5 kg

= 5 kg.m

3 kg
= 1.67 m

yCM =
∑3

i=1 mixi∑3
i=1 mi

= (0.5 kg)(1 m) + (1 kg)(0) + (1.5 kg)(2 m)

0.5 kg + 1.0 kg + 1.5 kg

= 3.5 kg.m

3 kg
= 1.17 m

The center-of-mass position vector is thus →r CM = (1.67 m)
→
i + (1.17 m)

→
j .
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Example 7.8

A horizontal rod has a mass M and length L. Find the location of its center of mass

from its left end: (a) if the rod has a uniform mass per unit length λ, and (b) if the

rod has a mass per unit length λ that increases linearly from its left end according

to the relation λ = αx, where α is a constant.

Solution: (a) According to the geometry of Fig. 7.15, yCM = zCM = 0. For a

uniform rod λ = M/L. If we divide the rod into infinitesimal elements of length

dx, then the mass of each element is dm = λ dx.

Fig. 7.15

x

y

O x
dx

dm dxλ=

L

Accordingly, Eq. 7.34 gives:

xCM = 1

M

�
x dm = 1

M

L�
0

x λ dx = λ

M

L�
0

x dx = 1

L

x2

2

∣∣∣∣
L

0
= 1

L

L2

2
= L

2

where we used λ = M/L. Thus, as expected, the center of mass of a uniform rod

is at its center.

(b) In this case, λ is not a constant. Therefore, Eq. 7.34 gives:

xCM = 1

M

�
x dm = 1

M

L�
0

x λ dx = α

M

L�
0

x2 dx = α

M

x3

3

∣∣∣∣
L

0
= αL3

3M

We can eliminate α by writing M in terms of α and L as follows:

M =
�

dm =
L�

0

λ dx =
L�

0

α x dx = α
x2

2

∣∣∣∣
L

0
= α

L2

2

Substituting this result into the expression of xCM, we get:

xCM = αL3

3M
= αL3

3αL2/2
= 2

3
L
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7.5 Dynamics of the Center of Mass

In some cases, it is desirable to ignore rotational and vibrational motion in a system. In

these cases, the center-of-mass concept greatly simplifies the analysis of the motion

because the system of many-particles or an extended object can be treated as a single

particle located at the CM of the system. To do this, we examine the motion of a

system of n particles when the total mass M of the system remains constant. We begin

by rewriting Eq. 7.33 as follows:

M →r CM =
∑

mi
→r i (7.36)

Differentiating this equation with respect to time gives:

M
d→r CM

dt
=

∑
mi

d→r i

dt

or

M →
vCM =

∑
mi

→
v i (7.37)

where →
vCM is the velocity of the center of mass and →

v i is the velocity of the ith particle

that has a mass mi. We differentiate again with respect to time to obtain:

M
d→
vCM

dt
=

∑
mi

d→
v i

dt

or

M →aCM =
∑

mi
→ai (7.38)

where now →aCM is the acceleration of the center of mass and →ai is the acceleration

of the ith particle. Although the center of mass is just a geometrical point in space, it

has a position vector →r CM, a velocity →
vCM, and an acceleration →aCM.

From Newton’s second law, mi
→ai must equal the net force

→
Fi that acts on the ith

particle of the system. Therefore, Eq. 7.38 takes the form:

M →aCM =
∑

mi
→ai =

∑ →
Fi (7.39)

The sum of the net forces,
∑ →

Fi, that are exerted on the particles of the system can

be divided into external forces (exerted on the particles from outside the system) and

internal forces (exerted on the particles from within the system). By Newton’s third
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law, as in Sect. 7.2, the internal forces cancel out in the sum
∑ →

Fi. Consequently,

Eq. 7.39 can be written as follows:
∑ →

Fext = M →aCM (7.40)

Thus, for a system composed of a group of particles or formed out of an extended

object, we conclude that:

Spotlight

The net external force on a system equals the total mass of the system times

the acceleration of its center of mass.

If we compare Eq. 7.40 with Newton’s second law for a single particle [see

Eq. 5.2], we see that the point-particle model that has been used for all problems can

be described in terms of the center of mass. Thus, we conclude that:

Spotlight

For a system of particles (or an extended object) of a total mass M, the center

of mass point exists as if all the mass M were concentrated at that point and all

the external forces acted on the same point.

Thus, the translational motion of any object or system of particles is known from

the motion of the center of mass, as in Figs. 7.12 and 7.16.

Parabolic path of 
the center of mass

CM of the bat

Translational motion of the CM

Fig. 7.16 When a bat is thrown into the air, the center of mass of the bat follows a parabolic path, but

all other points of the bat follow complicated paths

Since mi
→
v i is the linear momentum →pi of the ith particle and

∑ →pi = →
P is the total

linear momentum of the system, then we can rewrite Eq. 7.37 as follows:

M →
vCM = →

P (7.41)
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Therefore, we conclude that:

For a system of particles:

The total linear momentum of a system of particles equals the total mass

multiplied by the velocity of the center of mass.

For an extended object:

The linear momentum of an extended object equals its total mass multiplied

by the velocity of its center of mass.

Now we differentiate Eq. 7.41 with respect to time to get:

M
d→
vCM

dt
= d

→
P

dt
(System of particles or objects) (7.42)

We can use Eq. 7.40,
∑ →

Fext = M →aCM = M d→
vCM/dt, to get:

∑ →
Fext = d

→
P

dt
(System of particles or objects) (7.43)

Equations 7.43 and 7.42 lead to the following conclusion:

If
∑ →

Fext = 0, then

⎧⎪⎪⎨
⎪⎪⎩

→
P = constant

and
→
vCM = constant

(7.44)

That is, if the net force acting on a system is zero (which is true for any isolated

system), then the total linear momentum as well as the velocity of the center of mass

are both conserved. This is a generalization to the law of conservation of momentum

discussed in Sect. 7.2. In fact, this result greatly simplifies the analysis of the motion

of complex systems and extended objects.

Example 7.9

Two particles of masses m1 = 30 g and m2 = 70 g undergo an elastic head-on

collision. Particle m1 has an initial velocity of 2 m/s along the positive x-direction,

while m2 is initially at rest. (a) What are the velocities of the particles after the

collision? (b) What is the velocity of the center of mass? Sketch the velocities of

m1, m2, and CM at different times before and after the collision.
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Solution: (a) From Eq. 7.23 we have:

v′
1 = m1 − m2

m1 + m2
v1 = 30 g − 70 g

30 g + 70 g
(2 m/s) = −0.8 m/s

The negative sign indicates that m1 rebounds after the collision and moves along

the negative x-direction. From Eq. 7.24, we have:

v′
2 = 2m1

m1 + m2
v1 = (2)(30 g)

30 g + 70 g
(2 m/s) = +1.2 m/s

Thus, the relatively heavy target m2 moves along the positive x-direction, but with

a slower speed than the incoming particle m1.

(b) Since
∑ →

Fext = 0, then Pbefore = Pafter and Eq. 7.41 gives:

vCM = P

M
= m1v1 + 0

m1 + m2
= m1

m1 + m2
v1 = 30 g

30 g + 70 g
(2 m/s) = +0.6 m/s

Figure 7.17 displays v1, v2, v
′
1, v

′
2, and vCM at different times. Notice that the

velocity of the center of mass is unaffected by the collision.

2 0=1m 2m

1 2 0=

1′

2m
1′

2′

2′

× CM

× CM

CM

× CM

× CM

1

×

1m

Fig. 7.17

Example 7.10

After the rocket of Fig. 7.18a is fired, the CM of the system continues to follow

a parabolic trajectory from a constant downward gravitational force. When the

system has a total mass M and speed v1 = 216 m/s, a prearranged explosion

separates the system into two parts, a space capsule of mass m1 = M/4 and a
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rocket of mass m2 = 3M/4. The velocities of the two parts are perpendicular and

the capsule has an upward initial speed v′
1 = 571 m/s, see Fig. 7.18b. Describe

the motion of the CM and find the initial speed v′
2 of the rocket just after the

separation of the space capsule and the rocket.

Just before
separation

Just after
separation

1iP M= fP

2p ′
1p′

CM

Parabolic path of
the center of mass

Parabolic path of
the center of mass
of the two parts

CM

(a) (b)

Space capsule

Rocket

Fig. 7.18

Solution: Since the forces of the explosion are internal to the system composed

of the rocket and the capsule, the initial momentum
→
Pi just before the separation

must equal the final total momentum
→
Pf right after the separation. In addition, the

center of mass of the two parts continues to follow the original parabolic path,

until the rocket hits the ground. Conservation of total momentum gives:

→
Pi = →

Pf ⇒ →
Pi = →p ′

1 + →p ′
2 ⇒ (Mv1)

2 =
(

M

4
v′

1

)2

+
(

3M

4
v′

2

)2

Eliminating M from the last result and solving for v′
2, we find:

v′
2 =

√
16v2

1 − v′2
1

9
=

√
16(216 m/s)2 − (571 m/s)2

9
= 216 m/s

7.6 Systems of Variable Mass

For systems with a variable mass M, we can use Eq. 7.43,
∑ →

Fext = d
→
P /dt, whether

the mass M increases (as in dropping material onto a conveyer belt, where dM/dt >

0) or the mass M decreases (as in rockets, where dM/dt < 0).
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7.6.1 Systems of Increasing Mass

For the general treatment of systems of increasing mass, we use Fig. 7.19 that depicts

the following:

Fig. 7.19 (a) At time t, the

differential mass dM is about

to combine with the mass M.

(b) The velocity of dM as seen

by an observer on M at the

same time t. (c) At time t + dt,

the mass dM has combined

with M

(a)

M

d M

(b) rel

M

d M

rel = −

(c)

M d M+

d+

At time

At time

t

At time t +dt

t

u

u

• At time t

We have a system consisting of mass M moving with velocity →
v and momen-

tum M →
v . Also, we have an infinitesimal mass dM moving with velocity →u and

momentum dM →u , see Fig. 7.19a. The initial total momentum of the system can

be expressed as:

→
Pi = M →

v + dM →u

Relative to an observer sitting on the mass M, see Fig. 7.19b, the observer will

view the infinitesimal mass dM moving with a relative velocity →
v rel where:

→
v rel = →u − →

v
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• At time t + dt

The infinitesimal mass dM combines with the mass M forming a system of mass

M+dM moving with velocity →
v +d→

v , see Fig. 7.19c. Then, the final total momen-

tum of the system is:

→
Pf = (M + dM)(

→
v + d→

v )

Note that dM can be positive (when momentum is being transferred into the mass

M) or negative (when momentum is being transferred out of the mass M). The change

in momentum of the system is thus:

d
→
P = →

Pf − →
Pi = [(M + dM)(

→
v + d→

v )] − [M →
v + dM →u ]

= M d→
v − dM(

→u − →
v ) (7.45)

where the term dM d→
v is dropped because it is the product of two differential quan-

tities.

When we substitute Eq. 7.45 into
∑ →

Fext = d
→
P /dt, we get:

∑ →
Fext + (

→u − →
v )

dM

dt
= M

d→
v

dt
(7.46)

This can be simplified by using the relative velocity →
v rel = →u − →

v , such as:

∑ →
Fext + →

v rel
dM

dt
= M

d→
v

dt
⇒ →

Fnet = M
d→
v

dt
(7.47)

The right-hand side of this equation, M d→
v /dt, refers to the mass times the accel-

eration. The first term on the left-hand side of the equation,
∑ →

Fext, refers to the

external force on the mass M. The second term on the left-hand side, →
v rel dM/dt,

refers to the force exerted on M, in terms of the rate at which the momentum is being

transferred into M (due to the addition of mass).

7.6.2 Systems of Decreasing Mass; Rocket Propulsion

Now we treat systems with decreasing mass by considering the case of rocket propul-

sion. Figure 7.20a represents the following:

• At time t

We have a system boundary consisting of a rocket of mass M moving with velocity
→
v and momentum M →

v , see Fig. 7.20a. The initial total momentum of the system

can be expressed as:
→
Pi = M→

v
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• At time t + dt

We have a system boundary consisting of a rocket of mass M − dM moving with

velocity →
v + d→

v and an ejected exhaust of mass dM moving with velocity →u , see

Fig. 7.20b. The final total momentum of the system boundary is:

→
Pf = (M − dM)(

→
v + d→

v ) + dM →u (7.48)

Relative to an observer sitting on the rocket, see Fig. 7.20c, that observer will

view the exhaust of mass dM moving with a relative velocity →
v rel where: →

v rel =
(
→
v + d→

v ) − →u .

M

d+

d M

M d M−

rel ( )d u= + −

(a) (b) (c)

u

thr

d M

M d M−
thrF

System boundary

Time t Time t +d t Time t +d t

y

F

gF M= g
gF M= g

Fig. 7.20 (a) At time t, the rocket has a mass M. (b) At time t + dt, the mass of the exhaust dM has been

ejected from M. (c) The velocity of the exhaust dM as seen by an observer on the rocket at time t + dt

The change in momentum between the system boundaries is thus:

d
→
P = →

Pf − →
Pi = [(M − dM)(

→
v + d→

v ) + dM(
→
v + d→

v ) − →
v rel] − M→

v

= M d→
v − dM →

v rel (7.49)

When we substitute with Eq. 7.49 into
∑ →

F ext = d
→
P /dt, we get:

∑ →
F ext + →

v rel
dM

dt
= M

d→
v

dt
(7.50)
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This is identical to Eq. 7.47 except that →
v rel is against →

v and dM/dt is negative. The

term →
v rel dM/dt refers to the force exerted on M in terms of the rate at which the

momentum is being transferred out of M (due to the ejection of mass). For rockets,

this term is positive since dM/dt is negative and →
v rel is negative (opposite to →

v ).

This term is called the thrust,
→
F thr, and represents the force exerted on the rocket by

the ejected gasses. Thrust is defined as follows:

→
F thr = →

v rel
dM

dt
(7.51)

In one-dimensional vertical motion under a constant gravitational force, where∑
Fext =−Mg, we can find the speed of the rocket at any time t, by rewriting Eq. 7.50

as:

dv = −gdt + vrel
dM

M
(7.52)

Since vrel is constant, we can integrate this equation from an initial speed v◦ (when

the mass was M◦) to a any speed v (when the mass becomes M). This gives:

v�
v◦

dv = −g
t�

0

dt + vrel

M�
M◦

dM

M

or

v − v◦ = −gt + vrel ln
M

M◦
(7.53)

Note that vrel is negative because it is opposite to the rocket’s motion and ln M/M◦
is also negative because M◦ > M.

Example 7.11

Figure 7.21 shows a stationary hopper that drops sand at a rate dM/dt = 80 kg/s

onto a conveyer belt. The belt is supported by frictionless rollers and moves at a

constant speed v = 1.5 m/s under the action of a constant external force
→
Fext. (a)

Find the value of the external force
→
Fext that is needed to keep the belt moving

with a constant speed. (b) Find the power delivered by the external force
→
Fext. (c)

Find the rate of the kinetic energy acquired by the falling sand due to the change

in its horizontal motion.
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Fig. 7.21

extF

HopperSand

Solution: (a) We use the one-dimensional form of Eq. 7.46 by considering u = 0

to represent the stationary hopper. We also take dv/dt = 0 because the belt is

moving with constant speed. Thus:

Fext + (u − v)
dM

dt
= M

dv

dt
⇒ Fext + (0 − v)

dM

dt
= 0 ⇒ Fext = v

dM

dt

∴ Fext = (1.2 m/s)(5 kg/s) = 6 N

The only horizontal force on the sand is the friction of the belt fs. Thus,

fs = Fext.

(b) The power delivered by
→
Fext is work done by this force in 1s. Thus:

P = dW

dt
= →

F ext • →
v = Fext v = v2 dM

dt
= (1.2 m/s)2(5 kg/s) = 7.2 W

This work per unit time is the power output required by the motor.

(c) The rate of the kinetic energy acquired by the falling sand is:

dK

dt
= d

dt

(
1

2
Mv2

)
= 1

2

dM

dt
v2 = 1

2
(5 kg/s)(1.2 m/s)2 = 3.6 W

This is only half the power delivered by
→
Fext. The other half goes into thermal

energy produced by friction between the sand and the belt.

Example 7.12

A rocket has a mass 2×104 kg of which 104 kg is fuel. When the rocket is lunched

vertically from the ground, it consumes fuel from its rear at a rate of 1.5×103 kg/s

with an exhaust speed of 2.5×103 m/s relative to the rocket. Neglect air resistance

and take the acceleration due to gravity to be g = 9.8 m/s2. (a) Find the thrust on

the rocket. (b) Find the net force on the rocket, once when it is full of fuel and

once when it is empty. (c) Find the final speed of the rocket when the fuel burns

completely.
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Solution: (a) Since the motion is in one dimension and we can take upward

as positive, then vrel is negative because it is downward and dM/dt is negative

because the rocket’s mass is decreasing. Therefore, the thrust is:

Fthr = vrel
dM

dt
= (−2.5 × 103 m/s)(−1.5 × 103 kg/s) = 3.75 × 106 N

(b) Initially the net force on the rocket is:

Fnet = Fthr−M◦ g = 3.75×106 N−(2×104 kg)(9.8 m/s2) = 3.554×106 N

The net force just before the rocket is out of fuel is:

Fnet = Fthr−M◦ g = 3.75×107 N−(1×104 kg)(9.8 m/s2) = 3.652×106 N

(c) The time required to reach fuel burnout is the time needed to use all the

fuel (104 kg) at rate of 1.5 × 103 kg/s. Thus:

t = 104 kg

1.5 × 103 kg/s
= 6.67 s

By taking v◦ = 0 and using Eq. 7.53, we find that:

v − v◦ = −gt + vrel ln
M

M◦
v = −(9.8 m/s2)(6.67 s) + (−2.5 × 103 m/s)

×
(

ln
1 × 104 kg

2 × 104 kg

)
= 1667.5 m/s

7.7 Exercises

Section 7.1 Linear Momentum and Impulse

(1) What is the momentum of an electron of speed v = 0.99 c, if the rest mass of

the electron is m = 9.11 × 10−31 kg and the speed of light is c = 3 × 108 m/s?

(2) (a) What is the momentum of an 8,000-kg truck when its speed is 20 m/s? What

speed must a 2,000-kg car attain in order to have: (b) the same momentum as

the truck, (c) the same kinetic energy as the truck?

(3) A ball of mass m = 0.4 kg is moving horizontally with a speed 6 m/s when it

strikes a vertical obstacle. The ball rebounds with a speed 2 m/s. What is the

change in momentum of the ball?
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(4) A baseball has a mass of 0.2-kg and a speed of 30 m/s. After the baseball is

struck by the batter, its velocity changed to 50 m/s in the opposite direction.

(a) Find the change in momentum of the ball and the impulse of the strike.

(b) Find the average force exerted by the bat on the ball if remains in contact

for 0.002 s.

(5) A 70-kg ice skater experiences a constant air frictional force of magnitude

Fa = 30 N for 7 s, see Fig. 7.22a. (a) What is the change in the velocity of

the skier? (b) What constant forward frictional force f must the skater apply in

order to reduce the velocity of part (a) by half, see Fig. 7.22b?

Fig. 7.22 See Exercise (5)

Fa

Fa

f

(a) (b)

(6) A 4-kg particle has a velocity →
v = (4

→
i − 3

→
j ) m/s. (a) What are the x and

y components of its momentum? (b) Find the magnitude and direction of the

momentum.

(7) Rain is falling on an object at time t with a force of
→
F = (8 t

→
i − 3 t2→

j )N.

Find the change in the object’s momentum between ti = 0 and tf = 2 s.

(8) In a training session, water with a horizontal speed of 25 m/s leaves a fireman’s

hose at a rate of 12 kg/s and comes to rest after striking a firewall, see Fig. 7.23.

Ignoring the water splashes, what is the average force exerted by the water on

the wall?

(9) The force-time graph for a ball struck by a bat is approximated as shown in

Fig. 7.24. From this graph, find (a) the impulse delivered by the ball, (b) the

average force exerted on the ball, and (c) the maximum force exerted on the

ball.

(10) A mass m undergoes a free fall with a constant acceleration g. What is its

momentum after it has been dropped (i.e., released from rest) and falls a

distance h?
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Fig. 7.23 See Exercise (8)

Fig. 7.24 See Exercise (9)

t (s)

F (N)

1 2 30 4

10

0

20

30

(11) A ball of mass 0.4 kg is dropped from a height y1 = 0.8 m. The ball rebounds

from the floor and reaches a maximum height y2 = 0.2 m, see Fig. 7.25. Ignore

air resistance and take g = 10 m/s2. (a) What is the impulse exerted by the floor

on the ball? (b) What fraction of the ball’s kinetic energy is lost in the Impact?

Fig. 7.25 See Exercise (11)
Initial 

Final

During

impact

y

y1

y2 J

(12) A bullet of mass m = 6 g moving with vi = 80 m/s strikes a wooden block

and stops after penetrating a distance d = 5 cm, see Fig. 7.26. Assume that the

bullet undergoes a constant deceleration due to an average resistive force F.
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Find: (a) the penetration time, (b) the impulse on the wooden block, and (c) the

average force F exerted on the bullet.

Fig. 7.26 See Exercise (12)

i

Before penetration

After penetration

m

d

During penetration

F
m

m

(13) Rain is falling vertically with a speed vi = 6 m/s and can fill a container to

a height of 18 cm in one hour. Water has a mass density ρ = 103 kg/m3.

(a) Find the height h that the rain will fill the container in one second (neglect

air volume between raindrops). (b) Estimate the mass of water that falls per unit

time on a flat surface of an area A = 2 m2, see Fig. 7.27. (b) If the raindrops

do not rebound, find the average force exerted by the rain on that surface.

Fig. 7.27 See Exercise (13) A

h

Volume of 
the falling 
raindrops 
per second

A
i

(14) A 5-kg steel ball strikes a wall with a speed of 10 m/s at an angle θ = 60◦ with

the wall’s surface, see Fig. 7.28. The ball bounces off with the same speed and

angle and is in contact with the wall for 0.01 s. Choose the x-axis to be toward

the wall. (a) What is the change in momentum of the ball? (b) What is the

average force exerted on the ball by the wall?
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Fig. 7.28 See Exercise (14)

x

y

(15) Redo Exercise (14) with a value of θ that produce: (a) the smallest change in

momentum and the average force, (b) the largest change in momentum and the

average force.

Section 7.2 Conservation of Linear Momentum

(16) A locomotive of mass m1 = 40,000 kg rolls at the speed v1 = 2 m/s along a

level track. It collides and couples with a stationary fully loaded freight car of

mass m2 = 60,000 kg, see Fig. 7.29. (a) What is the speed after the collision?

(b) Find the decrease in kinetic energy that results from the collision. (c) With

what velocity should the freight be moving toward the locomotive in order for

both objects to stay at rest after the collision?

Fig. 7.29 See Exercise (16)
1 2m/s 2 0

Before collision

After collision

(17) An object at rest explodes into two fragments. One fragment of mass m1

acquires twice the kinetic energy of the second fragment of mass m2, see

Fig. 7.30. What is the ratio of their masses?

(18) A parent atomic nucleus at rest decays radioactively into an alpha particle of

mass m1 and a residual nucleus of mass m2 = 232m1. What will be the speed

of this recoiling nucleus if the speed of the alpha particle is v′
1 = 1.5×105 m/s?
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Fig. 7.30 See Exercise (17)

1 2m m+

Before explosion

2m

2
′ 1m

1
′

After explosion

x-axis

(19) A 60-kg boy holding a 4-kg package is sitting on a stationary boat of 100-kg

mass, see Fig. 7.31. The boy throws the package horizontally with a velocity

v′
2 = −5 m/s. The boy and boat move together after the package is thrown and

the boat moves without friction on the water surface. What is the speed of the

boat?

Fig. 7.31 See Exercise (19)

2

1

Before

After
x-axis

(20) A railroad flatcar of mass M can roll without friction along a horizontal track.

Initially, a man of mass m is standing on the car when it is at rest. The man

starts to run on the car with a constant speed v, as measured with respect to

an observer on the ground, see Fig. 7.32. (a) Find the speed V of the car with

respect to the ground. (b) What is the relative speed vrel of the man with respect

to the car?

V

x-axis

M

m

Fig. 7.32 See Exercise (20)
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(21) A bullet of mass m = 10 g travels with velocity v1 = +250 m/s toward a

stationary wooden block of mass M = 2 kg that is resting on a horizontal fric-

tionless surface, see Fig. 7.33. The bullet penetrates the block and emerges from

the other side with velocity v′
1 = +150 m/s. Neglect the mass removed from the

block by the bullet. (a) How fast does the block move after the bullet emerges

from the other side of the block? (b) What fraction of the bullet’s kinetic energy

is lost in the penetration? (c) What fraction of the bullet’s energy goes to heat?

Fig. 7.33 See Exercise (21)

1

Before penetration

After penetration

m

m 1
′

M

M

2 0=

2
′

(22) A spaceship of mass M is traveling along the x-axis with a speed vi = 580 m/s

with respect to an observer on the Earth. The ship ejects a cargo module of

mass 0.1 M and then travels relative to the cargo with a speed vrel = 140 m/s,

see Fig. 7.34. What is the velocity vf of the ship with respect to the observer?

Fig. 7.34 See Exercise (22)

f

M 0.9M0.1M

u

Before After

i

Section 7.3 Conservation of Momentum and Energy in Collisions

Subsection 7.3.1 Elastic Collisions in One and Two Dimensions

(23) A tennis ball of mass m1 = 0.06 kg, moving with a speed of 4 m/s, has an elastic

head-on collision with a target ball of mass m2 = 0.09 kg initially moving in

the same direction at a speed of 3 m/s. What is the velocity of each ball after

the collision?
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(24) A ball of mass m1 = 0.5 kg, moving along the x-axis with a speed of 5 m/s, has

an elastic head-on collision with a target ball of mass m2 = 1 kg initially at rest.

What is the velocity of each ball after the collision?

(25) A ball of mass m1 and velocity v1 undergoes an elastic head-on collision with

a second ball of mass m2 initially at rest. Then m1 rebounds with a speed

v′
1 = −0.5v1. Find the value of m2 in terms of m1.

(26) A croquet ball of mass m1 = 1 kg and velocity v1 undergoes an elastic head-on

collision with a second ball of mass m2 that is initially at rest. Then m1 moves

with a velocity v′
1 and m2 moves with a velocity v′

2 = (4/5)v1. (a) Find the

value of m2. (b) Find the relation between v′
1 and v1. (c) What fraction of the

original kinetic energy goes to the second ball?

(27) Find the fraction of kinetic energy lost by a neutron of mass m1 = 1.01u when

it undergoes an elastic head-on collision with a stationary nucleus of: (a) a

hydrogen atom (1
1H) of mass m2 = 1.01 u, (b) a heavy hydrogen atom (2

1H) of

mass m2 = 2.01 u, (c) a carbon (12
6 C) atom of mass m2 = 12.00 u, and (d) a

lead atom (208
82 Pb) of mass m2 = 208 u.

(28) A block of mass m1 = 1 kg slides along a frictionless horizontal surface with

a speed v1 = 4 m/s toward a stationary second block of mass m2 = 0.5 kg. The

second block is connected to an elastic spring that is not stretched and has a

spring constant kH = 100 N/m. The other end of that spring is fixed to a wall,

see Fig. 7.35. (a) Is the collision elastic? Explain your answer. (b) What will be

the maximum compression of the spring?

Fig. 7.35 See Exercise (28)

(29) A block of mass m1 = 2.5 kg slides along a frictionless horizontal surface

with a speed v1 = 8 m/s toward a stationary second block of mass m2 = 7.5 kg.

A massless spring with spring constant kH = 1,920 N/m is attached to the near
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side of m2, as shown in Fig. 7.36. (a) Is the collision elastic? Explain. (b) What

is the speed of the mass-spring system at the maximum compression? (c) What

will be the maximum compression of the spring? (d) What will be the final

velocities of the two blocks?

Before collision
1

After collision

2m

2m1m

1m
At maximum 
compression

1
′

2
′

2 0=

mass-spring system

1m 2m

Fig. 7.36 See Exercise (29)

(30) Repeat Exercise (29), this time with m1 = 7.5 kg and m2 = 2.5 kg.

(31) Show that the fraction of kinetic energy transferred to the target in Example

7.5 is independent of the value of the speed of the projectile, v1. Then, redo

this example when m2 = 3m1.

(32) A hockey puck traveling at 30 m/s on a smooth ice surface is deflected by

θ1 = 30◦ from its original direction when it collides elastically with a second

stationary identical puck. The second puck acquires a velocity at θ2 = 60◦ from

the original velocity of the first puck, see Fig. 7.37. Find the speed of the pucks

after the collision.

Before
collision After

collision

x

y

At rest

1

Hockey
pucks

x

y

1θ

2θ

2 0=

′1

′2

Fig. 7.37 See Exercise (32)
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(33) If each angle in Exercise (32) is equal to 45◦, then show that only the application

of conservation of momentum is enough to find the speed of the pucks after the

collision. Also, show that any other two equal angles (say 30◦) are physically

unacceptable.

(34) A ball of momentum →p1 collides with an identical stationary ball. The first ball

deflects by an angle θ1 from its original direction with a momentum →p ′
1 while

the second ball deflects by an angle θ2 from the original direction of the first

ball with a momentum →p ′
2. If the two balls have an elastic collision, then use

the conservation of momentum vector diagram of Fig. 7.38 and conservation

of kinetic energy to show that the two balls will always move off perpendicular

to each other, i.e. θ1 + θ2 = 90◦.

Before

After

x

y

At rest

x

y

1θ

1θ2θ

1θ

2θ

0=

m m

m

m

1p

′1p

′1p

′2p

′2p

1p

2p

Fig. 7.38 See Exercise (34)

Subsection 7.3.2 Inelastic Collisions

(35) In a ballistic experiment like the one shown in Example 7.6, a bullet causes

the pendulum to rise to a maximum height h1 = 1.3 cm. A second bullet of

the same mass causes the pendulum to rise to a maximum height h2 = 5.2 cm.

Express the speed of the second bullet as a multiple of the first bullet.

(36) Find a formula that gives the fractional change of kinetic energy, (Kf −Ki)/Ki,

in terms of m and M in the first stage of the ballistic pendulum of Example 7.6.

Calculate this fraction for m = 10 g and M = 0.5 kg.

(37) A 15-kg mass is moving along the positive x-axis at 30 m/s, and a 5-kg mass is

moving along the negative x-axis at 50 m/s. The two masses collide head-on and

stick together. (a) Find their velocity after the collision. (b) Find the fractional

change of kinetic energy.

(38) A car of mass m1 = 1,000 kg moving with a speed v1 collides with another

stationary car of mass m2 = 2,200 kg. The two cars stick together after the
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collision. Both drivers had their brakes locked throughout the incident, see

Fig. 7.39. The police officer measures the skidding distance d to be 2.25 m and

estimated the coefficient of kinetic friction between the tires and the road to

be 0.8. (a) What was the speed of the oncoming car? (b) Find the fractional

change of kinetic energy lost during the impact period.

Before collision

Just after collisionv

v

At rest

At rest

1m 21 m

d

Fig. 7.39 See Exercise (38)

(39) A nucleus at rest spontaneously disintegrates into two nuclei, one of which has

double the mass of the other. Assume that the total mass is conserved before

and after disintegration. (a) Find the relation between the speeds of the two

fragments. (b) If 6 × 10−17 J of energy is released in this disintegration, how

much kinetic energy does each nucleus acquire?

(40) Two objects having the same mass m = 5 kg collide. Their velocities before

collision are →
v1 = (3

→
i +6

→
j )(m/s) and →

v2 = (−2
→
i +1

→
j )(m/s). After collision,

the first object acquires a velocity →
v ′

1 = (−1
→
i + 4

→
j )(m/s). (a) What is the

final velocity of the second object? (b) How much kinetic energy is lost or

gained in this collision?

(41) A stationary radioactive nucleus decays into three fragments. Two of these

fragments are emitted perpendicularly to each other and have momenta

|→p ′
1| = 5 × 10−23 kg.m/s and |→p ′

2| = 1.2 × 10−22 kg.m/s. Find the mag-

nitude and direction of the third fragment.

(42) A ball of mass m1 = 2.4 kg moving horizontally with a speed of v1 = 3 m/s

collides (not head-on) with a second ball of m2 = 1.5 kg moving in the opposite

direction with a speed v2 = 5 m/s, see Fig. 7.40. The first ball bounces off the

second ball with an angle θ1 = 60◦ and speed v′
1 = 1.5 m/s. (a) What is the
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final velocity of the second ball? (b) How much kinetic energy is lost in this

collision?

1

2

1'

2'

θ

60°

Before collision After collision

1m
2m

2m

1m

Fig. 7.40 See Exercise (42)

(43) Two identical putty balls move along a frictionless floor, as shown in Fig. 7.41.

Their velocity vectors →
v1 and →

v2 make an angle θ and move with the same

speed, i.e. v1 = v2. The two balls stick together after collision. (a) Use the

momentum vector diagram shown in the figure to prove that the magnitude v

and the direction φ of their common velocity →
v are given by:

v = 1
2v1

√
2 + 2 cos θ, φ = sin−1

[
sin θ/

√
2 + 2 cos θ

]

(b) Taking v1 = v2 = 20 m/s and θ = 45◦ to calculate v, φ, and the fractional

change in the kinetic energy.

1

Before

x

y

θ

2
m

m

After

x

y

m
φ

m

θ
x

y

φ
θ

θ

1p
p

2p

Fig. 7.41 See Exercise (43)

Section 7.4 Center of Mass (CM)

(44) An oxygen atom (16
8 O) has a mass mO = 16 u, and a carbon atom (12

6 C) has a

mass mC = 12 u. The average distance between their nuclei in the CO molecule
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is d = 0.113 nm, see Fig. 7.42. How far from the oxygen nucleus is the center

of mass of the molecule?

Fig. 7.42 See Exercise (44)

x

y

C O
d

CM

(45) For the system of particles shown in Fig. 7.43 and when d = 1 m, find the

location of the x and y components of the center of mass. Does your answer

depend on the value of m? Explain.

Fig. 7.43 See Exercise (45)

x

y

m 2m 3m

4m

x d= − 0x = x d= +

y d=

(46) Three particles, each of mass m, are located at the corners of an equilateral

triangle of side a, as shown in the Fig. 7.44. Show that the center of mass of

the system lies on a common point on the three lines that connect each vertex

with the midpoint of the opposite side (the medians).

Fig. 7.44 See Exercise (46)

x

y

CM

0x = x a=

aa

a

( / 2, / 2 )x a y a= =

m

m

m
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(47) In an ammonia molecule (NH3), the three hydrogen (1
1H) atoms are at the

corners of an equilateral triangle of side a = 0.16 nm that forms the base of a

pyramid, with nitrogen atom (14
6 N) at the apex above the center of this triangle

by h = 0.037 nm, see Fig. 7.45. Find the distance of the center of mass of the

ammonia molecule above the plane of the hydrogen atoms.

Fig. 7.45 See Exercise (47) N

H H

H

a

a

a

h

(48) A mass m1 = 2 kg is connected to a mass m2 = 3 kg by a massless rod. The

location of m1 and m2 are given by the position vectors →r1 = (4
→
i + 5

→
j )(m)

and →r2 = (2
→
i + 3

→
j )(m), respectively. Find the coordinates of the center of

mass.

(49) Three uniform thin rods, each of length L, are arranged to form the shape shown

in Fig. 7.46. The vertical arms have mass M and the horizontal arm has a mass

2M. Find the center of mass of the assembly.

Fig. 7.46 See Exercise (49)

2M

M M

L

L

(50) Find the center of mass of a uniform cone of radius R and height h, see Fig. 7.47.

(Hint: Divide the cone into an infinite number of disks, each of thickness dx.)

(51) A pyramid has a height H and square base area of side L, see Fig. 7.48. Find

the center of mass of the pyramid above its base. Calculate zCM for the Great
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Pyramid of Khufu at Giza, Egypt, which has height H = 138.8 m and base

square area of side L = 230.4 m. (Hint: Divide the pyramid into an infinite

number of squares, each of height dz.)

Fig. 7.47 See Exercise (50)

h

x

y

z

R

Fig. 7.48 See Exercise (51)

L

L

y

z

H

x

Section 7.5 Dynamics of the Center of Mass

(52) The velocities of two particles of masses m1 = 2 kg and m2 = 3 kg are given

by the position vectors →
v1 = (4

→
i + 5

→
j )(m/s) and →

v2 = (2
→
i − 3

→
j )(m/s),

respectively. Find the velocity of the center of mass of that system.

(53) A ball of mass m1 = 2 kg traveling with velocity →
v1 = 15

→
i m/s collides head-

on and elastically with a second ball of mass m1 = 3 kg traveling with velocity
→
v2 = −4

→
i m/s, see Fig. 7.49. (a) Find the velocities of the two balls after

the collision. (b) Find the velocity of the center of mass before and after the

collision.

Fig. 7.49 See Exercise (53)
2

1m × CM1
2m



224 7 Linear Momentum, Collisions, and Center of Mass

(54) Two particles of masses m1 = 0.2 kg and m1 = 0.3 kg are initially at rest 2 m

apart. The two particles form an isolated system. Each particle starts to attract

the other with an equal internal constant force of magnitude 0.12 N. (a) What

is the speed of their center of mass before and after the start of the attractive

force? (b) What distance does m1 move before colliding with m2? (c) What

will be the speed of m1 and m2 just before the collision?

(55) A man of mass m = 70 kg stands on one end of a flat boat, which is always

moving horizontally without friction at a speed of v◦ = 5 m/s over water. The

boat has a mass M = 210 kg and length L = 20 m, see Fig. 7.50. The man starts

to walk to the other end in the direction of the boat’s motion with a relative

speed vrel = 2 m/s. (a) What is the location and velocity of the center of mass

before and after the motion of the man? (b) What is the velocity vB of the boat

once the man starts to move? (c) What time does the man take to reach the

other end, and how far has the boat moved?

×
CM

M

×
CM

×
CM

M

0t =

Time t

CMx

B

CMx

L

CM t

B

CM=
°

Fig. 7.50 See Exercise (55)

(56) A projectile is fired from the ground with an initial speed v◦ of 40 m/s at an

angle θ◦ of 15◦ m/s above the horizontal direction. At the maximum height,

the projectile explodes into two fragments of equal mass, see Fig. 7.51. One

fragment stops momentarily and falls vertically, while the second one flies
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initially in a horizontal direction. How far from the ground do the center of

mass and the second fragment land? Take g = 10 m/s2.

Fig. 7.51 See Exercise (56) y

x
R

°

θ °

Path of CM

Section 7.6 Systems of Variable Mass

(57) A stationary grain funnel drops grain at a rate dM/dt = 840 kg/min onto a

railroad car moving with a constant speed v = 3.5 m/s, see Fig. 7.52. (a) What

external force must be applied to the car to keep it moving at constant speed

(in the absence of friction)? (b) Find the power delivered by this force. (c) Find

the rate of the kinetic energy acquired by the falling grains.

Fig. 7.52 See Exercise (57)
Grains

extF

(58) During the first second of its flight in free space, a rocket ejects exhaust that

is 1/50 of its mass with a relative speed vrel = 2.5 × 103 m/s. What is the

acceleration of the rocket?

(59) A rocket of mass M = 3,000 kg ejects fuel and oxidizer at a rate of 150 kg/s in

order to acquire an acceleration a = 4g. What is the relative speed of the exhaust

and the thrust on the rocket?

(60) A rocket of mass M = 3,000 kg is moving in free space with a speed

v = 3 × 102 m/s relative to the Earth. The rocket ejects fuel at a rate of 15 kg/s

with a relative speed of 2.5×103 m/s. (a) Find the thrust on the rocket. (b) Find

the final speed of the rocket when its fuel burns completely after 20 s.
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In this chapter, we first treat the rotation of an extended object about a fixed axis.

This is commonly known as pure rotational motion. The analysis is greatly simplified

when the object is rigid. To perform this analysis, we first ignore the cause of rotation

and describe the rotational motion in terms of angular variables and time. This is

known as rotational kinematics. We then discuss the causes of rotation. This is

known as rotational dynamics, and through the study of this topic we introduce the

concept of torque. After that we treat some general cases where the axis of rotation

is not fixed in space. In these cases, rigid bodies can undergo both rotational and

translational motion, as in the rolling of objects.

8.1 Radian Measures

One radian (1 rad) is the angle subtended at the center of a circle of radius r by an

arc of length s equal to the radius of the circle, i.e. s = r, see Fig. 8.1a. Since the

circumference of a circle of radius r is s = 2πr, where π �3.14, then 360◦ (or one

revolution) corresponds to an angle of (2πr)/r = 2π rad, see also Appendix B.

Thus:

1 rev = 360◦ = 2π rad ⇒ 180◦ = π rad (8.1)

Therefore:

1◦ = (π/180) rad � 0.02 rad

1 rad = 180◦/π � 57.3◦.

H. A. Radi and J. O. Rasmussen, Principles of Physics, 227
Undergraduate Lecture Notes in Physics, DOI: 10.1007/978-3-642-23026-4_8,
© Springer-Verlag Berlin Heidelberg 2013
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Fig. 8.1 (a) The definition of

one radian (1 rad). (b) The

definition of angle θ as the

ratio of the arc length s to the

radius r

r
r

s r= 1rad

r

r θ
s

(a) (b)

Generally, if θ (in radians) represents any arbitrary angle subtended by an arc of

length s on the circumference of a circle of radius r, see Fig. 8.1b, then the following

relation must be satisfied:

θ = s

r
(Radian measure) (8.2)

8.2 Rotational Kinematics; Angular Quantities

Angular Position

The rotational motion of a rigid body (or a particle) about an axis is completely

specified by an angle θ that a fixed line in the rigid body (or the particle) makes with

some reference fixed line in the space, usually chosen as the x-axis. Additionally,

the rotational motion is greatly simplified if θ is expressed in radians. This angle θ

is defined as the angular position of the rigid body (or the particle).

Figure 8.2 represents a rigid body that is rotating about a fixed axis passing through

point O, where that axis is perpendicular to the plane of the figure. Line OP is fixed

in the body and completely specified at time t by the angular position θ which the

line OP makes with respect to the x-axis. Therefore, the angular position of the rigid

body, or the particle at point P which has polar coordinates (r, θ), is:

Angular position = θ (8.3)

Angular Displacement

When the rigid body rotates as shown in Fig. 8.3, the angular position of the line OP

changes from θ1 at time t1 to θ2 at a later time t2. The quantity �θ = θ2 − θ1 is

defined as the angular displacement of the a rigid body:
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Angular displacement ≡ �θ = θ2 − θ1 (8.4)

Fig. 8.2 The definition of the

angular position θ of a rigid

body, or a particle at point P

with polar coordinates (r, θ),

with respect to the x-axis

θ

P

x
O

r

Time t

Fig. 8.3 The angular

displacement �θ = θ2 − θ1 of

a rigid body that occurs during

the time interval �t = t2 − t1 P

x
O

1

P

2
1t

2t

r

r

Angular velocity

In analogy to the average linear (translational) speed, we define the average angular

speed ω as the rate of change of angular displacement (ω is the lowercase Greek

letter omega). That is:

ω = �θ

�t
= θ2 − θ1

t2 − t1
(8.5)

The instantaneous angular velocity ω is defined as the limiting value of the ratio

�θ/�t when �t approaches zero. Thus:

ω = lim
�t→0

�θ

�t
= dθ

dt
≡ θf − θi =

tf�
ti

ω dt (8.6)
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In SI units the angular velocity has the unit of radians per second (rad/s) and can be

written as second−1 (s−1) because radians are not dimensional quantities.

The last two equations hold for every point on the rigid body. That is, all points

of the rigid body rotate through the same angular displacement in the same time.

As in linear motion in one-dimension (where the linear velocity can be positive or

negative), we take ω to be positive if θ increases (in a counterclockwise sense) and

ω to be negative if θ decreases (in a clockwise sense).

Angular Acceleration

When the angular velocity of the rotating body is not constant, the body has an angular

acceleration. Assume that ω1 and ω2 are the angular velocities at times t1 and t2,

respectively, as shown in Fig. 8.4. Then we define the average angular acceleration

α (Greek alpha “α”) as the rate of change of angular velocity as follows:

α = �ω

�t
= ω2 − ω1

t2 − t1
(8.7)

Fig. 8.4 The change in the

angular velocity

�ω = ω2 − ω1 of a rigid body

which occurs during the time

interval �t = t2 − t1
P

x
O

1

P

2
1t

2t

r

r

1

2

Therefore, the instantaneous angular acceleration α is defined as the limiting value

of the ratio �ω/�t when �t approaches zero. Thus:

α = lim
�t→0

�ω

�t
= dω

dt
≡ ωf − ωi =

tf�
ti

α dt (8.8)
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Angular acceleration has the unit of radians per second square (rad/s2) and can be

written as second−2 (s−2).

Example 8.1

A reference line in a spinning disk has an angular position given by θ = 3 t2 −
12 t + 9, where θ is in radians and t is in seconds. (a) Find ω and α as a function

of time. (b) Find the times when the angular position θ and the angular velocity

ω become zero. (c) Describe the rotational motion of the disk for t ≥ 0.

Solution: (a) To find ω, we differentiate θ with respect to time:

ω = dθ

dt
= d

dt
(3 t2 − 12 t + 9) = (6 t − 12) rad/s

Thus, ω could be negative or positive depending on t. To find the angular accel-

eration α, we differentiate ω with respect to time:

α = dω

dt
= d

dt
(6 t − 12) = 6 rad/s2

(b) Setting θ = 0, we get:

3 t2 − 12 t + 9 = 0 ⇒ t = 12 ± √
122 − 4 × 3 × 9

2 × 3
⇒ t = 1 s and t = 3 s

Thus, θ reaches zero at both t = 1 s and t = 3 s. Setting ω = 0 gives:

6 t − 12 = 0 ⇒ t = 2 s (when ω = 0)

(c) We can describe the rotation as follows:

• At t = 0 the reference line is at θ = 9 rad and the disk’s initial angular velocity

is ω = −12 rad/s.

• As time increases during the interval 0 < t < 2 s, we have ω < 0. That is, the

disk is rotating in the clockwise sense, but with a decreasing angular speed,

since α > 0. In addition, θ reaches the value θ = 0 at t = 1 s, and then attains

negative values.

• At t = 2 s, the disk stops momentarily when θ = −3 rad.

• As time increases during the interval t > 2 s, we have ω > 0. In addition, θ

goes back to zero again when t = 3 s. Afterward, both ω and θ will increase

indefinitely.
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8.3 Constant Angular Acceleration

The definitions of angular quantities are similar to those of linear quantities, except

that θ, ω, and α replace the linear variables x, v, and a, respectively. Therefore,

the angular equations for constant angular acceleration will be analogous to those

presented in Chap. 3 and can be derived in exactly the same way, see Table 3.1.

Table 8.1 summarizes the angular kinematic equations and their linear equivalents.

Table 8.1 Equations for

motion with constant linear and

angular accelerations

Linear equations Angular equations

v = v◦ + a t x ⇔ θ ω = ω◦ + α t

x − x◦ = 1
2 (v◦ + v) t v ⇔ ω θ − θ◦ = 1

2 (ω◦ + ω) t

x − x◦ = v◦ t + 1
2 a t2 a ⇔ α θ − θ◦ = ω◦ t + 1

2 α t2

v2 = v2◦ + 2 a (x − x◦) ω2 = ω2◦ + 2 α (θ − θ◦)

Example 8.2

A wheel accelerates uniformly from rest to an angular speed of 25 rad/s in 10 s.

(a) Find the angular acceleration of the wheel. (b) Find the tangential and radial

acceleration of a point 10 cm from the wheel’s center. (c) How many revolutions

has the wheel turned during this time interval? (d) Then, find the wheel’s angular

deceleration if it comes to a full stop after 5 rev.

Solution: (a) We are given ω◦ = 0, ω = 25 rad/s, and t = 10 s. To find the angular

acceleration a, we can use ω = ω◦ + α t as follows:

α = ω − ω◦
t

= 25 rad/s − 0

10 s
= 2.5 rad/s2

(b) Using Eqs. 8.13 and 8.14 (See Sect. 8.5), we get:

at = r α = (10 × 10−2 m)(2.5 rad/s2) = 0.25 m/s2

ar = r ω2 = (10 × 10−2 m)(25 rad/s)2 = 62.5 m/s2

(c) If we assume that the wheel starts from θ◦ = 0, then we are given

ω◦ = 0, ω = 25 rad/s, θ◦ = 0, and t = 10 s. To find θ, which in this case equals

the angle traveled by a certain reference line in the wheel, we use θ − θ◦ =
1
2 (ω◦ + ω) t as follows:
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θ = θ◦ + 1
2 (ω◦ + ω) t = 0 + 1

2 (0 + 25 rad/s) × 10 s = 125 rad

Thus: θ = 125 rad ×
(

1 rev

2π rad

)
� 20 rev

(d) We are given ω◦ = 25 rad/s, ω = 0, and, θ − θ◦ = 5 rev = 10π rad. To find

the angular deceleration α, we use ω2 = ω2◦ + 2 α (θ − θ◦) to get:

α = ω2 − ω2◦
2 (θ − θ◦)

= 0 − (25 rad/s)2

2 × 10π rad
= −9.95 rad/s2

8.4 Angular Vectors

We can treat angular velocity as a vector by choosing the axis of rotation to be the

direction of the angular-velocity vector. By convention, the right-hand rule is used

to determine →
ω . To apply this rule, we curl the four fingers of the right hand around

the rotation axis and point in the direction of rotation; then the thumb would point

in the direction of →
ω . The angular acceleration vector →

α = d→
ω /dt will be along →

ω

if |ω| increases with time, and will be opposite to →
ω if |ω| decreases with time, see

Fig. 8.5.

ω
α

ω

ω
α

ω

α
Speeding

up
Slowing

down
Speeding

up
Slowing

down

α

Fig. 8.5 Using the right-hand rule to obtain the direction of the vectors ω and α in cases of increasing

and decreasing ω

8.5 Relating Angular and Linear Quantities

When a rigid body rotates with angular velocity ω, every point on the body moves in

a circle with its center on the rotational axis, see Fig. 8.6. Because point P in the figure

moves in a circle of radius r, this point defines a linear vector →
v whose direction is
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always tangent to its circular path. This tangential velocity has a magnitude defined

by the tangential speed v = ds/dt, where s is the arc length traveled by point P along

the circular path. Recalling from Eq. 8.2 that s = r θ and noting that r is constant,

we find:

v = ds

dt
= r

dθ

dt
(8.9)

Fig. 8.6 The Point P on a

rotating rigid body has a

tangential velocity →v which is

always tangent to the circular

path of this point
r

P

x
O

y

s

Rotational axis

Circular
path of P

Using ω = dθ/dt, see Eq. 8.6, we get:

v = r ω (Radian measure) (8.10)

This relation indicates that, although ω is the same for every point on the rigid body,

points on the object with different radii have different tangential speeds v. In fact,

the tangential speed v increases as one moves outward from the center of rotation.

When the angular speed ω is constant, then the linear speed v of any point on the

rigid body is constant and hence undergoes uniform circular motion. The period of

one revolution T = 2πr/v and the frequency f (rev/s or Hz) can be written in terms

of ω as follows:

T = 2π

ω
, f = 1

T
= ω

2π
(Radian measure) (8.11)

We can find the magnitude of the tangential acceleration at of point P by differ-

entiating Eq. 8.10 with respect to time as follows:

at = dv

dt
= r

dω

dt
(8.12)

Using α = dω/dt, see Eq. 8.8, we get:

at = r α (Radian measure) (8.13)



8.5 Relating Angular and Linear Quantities 235

In addition, we know that a point (or a particle) moving in a circular path of radius

r with speed v undergoes a radial acceleration →ar of magnitude ar = v2/r directed

toward the axis of rotation. Thus, by using v = r ω, the magnitude of the radial

acceleration becomes:

ar = r ω2 (Radian measure) (8.14)

As shown in Fig. 8.7, the total linear acceleration →a at point P is:

→a = →a t + →ar (8.15)

Fig. 8.7 The total linear

acceleration →a of point P on a

rotating rigid body has two

perpendicular components, the

tangential component at and

the radial component ar

P

x
O

y

ta

Rotation
axis

ra

a

The magnitude of this acceleration is thus:

a =
√

a2
t + a2

r =
√

r2α2 + r2ω4 = r
√

α2 + ω4 (8.16)

Example 8.3

A typical compact disk (CD) rotates at 300 rev/min. (a) What is the angular veloc-

ity of the disk? (b) What is the linear speed of a point P that lies 4 cm from its

axis, see Fig. 8.8? (c) If one bit of data is represented at point P and has a length of

L = 0.5 µm, find the number of bits N that the reading head can read per second.

Solution: (a) First, we write the frequency f in SI unit as follows:

f = 300

(
rev

min

)(
min

60 s

)
= 5 rev/s = 5 Hz
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Fig. 8.8

Then, using Eq. 8.11, the angular speed ω is:

ω = 2π f = 31.4 rad/s

(b) The linear speed of a point 4 cm from the axis of the disk is:

v = r ω = (4 × 10−2 m)(31.4 rad/s) = 1.26 m/s

(c) Using NL = v, we get the number per second N to be:

N = v

L
= 1.26 m/s

0.5 × 10−6 m
= 2.5 × 106 bits/s = 2.5 Mbps.

Example 8.4

A grindstone of radius r = 2 m rotates with an angular position θ = t3 +2 t2 −2,

where θ is in radians and t is in seconds. (a) Find ω and α as a function of time

and find their values at t = 2 s. (b) Find the speed v and the components of the

acceleration a at t = 2 s for a point on the rim of the grindstone.

Solution: (a) To find ω, we differentiate θ with respect to time:

ω = dθ

dt
= d

dt
(t3 + 2 t2 − 2) = (3 t2 + 4 t) rad/s ⇒ ω|t=2 s = 20 rad/s

To find α, we differentiate ω with respect to time:

α = dω

dt
= d

dt
(3 t2 + 4 t) = (6 t + 4) rad/s2 ⇒ α|t=2 s = 16 rad/s2

(b) Using Eqs. 8.10, 8.13, and 8.14, we get:

v = r ω = r(3 t2 + 4 t) rad/s ⇒ v|t=2 s = 40 m/s

at = r α = r(6 t + 4) m/s2 ⇒ at|t=2s = 32 m/s2

ar = r ω2 = r(3 t2 + 4 t)2 m/s2 ⇒ ar|t=2 s = 800 m/s2
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Example 8.5

A ball of mass m = 0.1 kg rotates in a circular path of radius r = 0.2 m with an

angular speed ω = 8 rad/s while being attached to two strings of equal length,

each making an angle θ = 30◦ with a vertical rod as shown in Fig. 8.9. Find the

magnitude of the tension in the two strings.

Fig. 8.9

mr
1T

2T
mg

1 cosT

2 cosT

1 sinT

2 sinT

Solution: From the free-body diagram shown above, the vertical forces must

balance. That is:

T1 cos θ − T2 cos θ = mg

According to Eq. 8.14, the magnitude of the radial acceleration is given in terms

of the angular speed ω as ar = r ω2. Therefore:

m r ω2 = T1 sin θ + T2 sin θ

Multiplying both sides of the first equation by sin θ and both sides of the sec-

ond equation by cos θ, then adding (or subtracting) the results, we can get the

magnitude of the tension in the two strings as follows:

T1 = m

2 sin θ
(r ω2 + g tan θ)

= 0.1 kg

2 sin 30◦ [(0.2 m)(8 rad/s)2 + (10 m/s2)(tan 30◦)] = 1.86 N

T2 = m

2 sin θ
(r ω2 − g tan θ)

= 0.1 kg

2 sin 30◦ [(0.2 m)(8 rad/s)2 − (10 m/s2)(tan 30◦)] = 0.70 N
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8.6 Rotational Dynamics; Torque

Rotational dynamics is the study of rotational motion and the causes of changes in

motion. Just as linear motion is analogous to rotational motion from a kinematics

perspective, we will see that this analogy applies also from a dynamics perspective.

We know from our everyday experience that, when an object rotates about an

axis, the rate of this rotation depends on the magnitude and direction of the exerted

force and how far this force is applied away from the rotation axis. This dependence

is measured by a vector quantity called torque (or moment) →
τ (Greek tau “τ”).

Figure 8.10a depicts a cross section of a rigid body that is free to rotate about

a fixed axis at O. A force
→
F perpendicular to the axis of rotation acts on the body

at point P whose position vector from O is →r . The smaller angle between the two

vectors
→
F and →r is θ. The ability of

→
F to rotate the body about O from point P

depends on the torque →
τ as follows:

→
τ = →r × →

F (8.17)

r⊥

P
r

F

F

Fθ

Rotational axis

P

(a) (b) (c)

τ
OO

r

F

τ

θ

P

O

r

F

τ

θ

Fig. 8.10 (a) The torque →τ produced by a force
→
F that acts at point P on a rigid body which can rotate

freely about an axis passing through point O. (b) The torque can be written as r⊥F, where r⊥ is the

moment arm of the force
→
F. (c) The torque can also be written as r F⊥, where F⊥ is the perpendicular

component of the force to →r

Accordingly, its magnitude (see Chap. 2) is:

τ = r F sin θ (8.18)

The SI unit of the torque is m.N [not to be confused with the unit of energy (1 J =
1 N.m)]. By convention, torque is positive if the force has the tendency to rotate the
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object in a counterclockwise sense; and is negative if it has the tendency to rotate the

object in a clockwise sense. Also, the reverse of this convention can be used.

Based on Fig. 8.10b and c, the magnitude τ can be written as:

τ = r⊥F (with r⊥ = r sin θ) (8.19)

τ = r F⊥ (with F⊥ = F sin θ) (8.20)

where the distance r⊥ is the perpendicular distance from the axis of rotation O to

the line along which the force acts (also called the lever arm, or the moment arm).

In addition, F⊥ is the component of the force perpendicular to →r . This component is

what causes that rotation. The other component, F‖, is parallel to the position vector
→r, passes through O and causes no rotation.

If two or more forces act on a rigid body, where each force tends to produce

rotation about an axis passing through some point, the net torque on the body will

be the sum of all torques:

�
→
τ = →

τ 1 + →
τ 2 + . . . (8.21)

Using the sign convention introduced previously for torques, we can omit the vector

notation and write the net torque as follows:

�τ = τ1 + τ2 + . . . (8.22)

Example 8.6

Two wheels of radii r1 = 20 cm and r2 = 30 cm are fastened together as shown

in Fig. 8.11. Together, they can rotate freely about an axle O perpendicular to the

page. Two forces of magnitudes F1 = 20 N and F2 = 40 N are applied as shown

in the figure. Find the net torque on the wheel.

Fig. 8.11
1F

O

2F

1r

2r

Rotation 
axis
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Solution: Designate counterclockwise torque as positive. The force
→
F1 produces

a torque →
τ 1 that tends to rotate the wheel in a clockwise sense. Thus, the sign of

τ1 is negative and equal to −F1r1. The force
→
F2 produces a torque →

τ 2 that tends

to rotate the wheel in a counterclockwise sense. Thus, the sign of τ2 is positive

and equal to +F2r2. By using Eq. 8.22, the net torque is:

�τ = τ1 + τ2 = −F1r1 + F2r2

= −(20 N)(20 × 10−2 m) + (40 N)(30 × 10−2 m)

= 8 m.N

The net torque acts to rotate the wheel in the counterclockwise sense.

8.7 Newton’s Second Law for Rotation

We will show that Newton’s second law �F ∝ a for translational motion corresponds

to �τ ∝ α for rotational motion about a fixed axis.

First, we consider a particle of mass m attached to one end of a rod of negligible

mass while the other end can rotate freely at point O. The mass rotates in a circle of

radius r under the influence of a tangential force
→
Ft, as shown in Fig. 8.12. In this

figure we do not display the radial force
→
Fr.

Fig. 8.12 A particle of mass

m is rotating in a circle of

radius r under the influence of

a tangential force
→
Ft

tF

m

r

O

According to Newton’s second law, the tangential force
→
Ft produces a tangential

acceleration →a t. Then:

Ft = m at

The tangential acceleration is related to the angular acceleration through the rela-

tionship at = r α, see Eq. 8.13. Thus,
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Ft = m r α (8.23)

Since
→
Ft produces a torque →

τ about the origin, this torque tends to rotate the particle

in a counterclockwise sense. The magnitude of →
τ is:

τ = r Ft (8.24)

Substituting with Eq. 8.23 into Eq. 8.24, we get:

τ = m r2 α (8.25)

which can be written as:

τ = I α,

I = m r2

}
(Single particle) (8.26)

That is, the applied torque is proportional to the angular acceleration, and represents

the rotational equivalent of Newton’s second law. The quantity I = m r2 represents

the rotational inertia of the particle about O and is called the moment of inertia.

The SI units of I is kg.m2.

We can apply this result to a system of particles located at various distances from

a certain axis of rotation. For the ith particle, we apply Eq. 8.25 to get τi = (mi r2
i )α.

Then, the total torque about that axis will be
∑

τ = (
∑

mi r2
i ) α = Iα. Thus:

�τ = Iα,

I = ∑
mi r2

i

}
(System of particles) (8.27)

Notice the analogy between the translational relation �F = m a and the rotational

relation �τ = I α, where F ⇔ τ and m ⇔ I.

Now we consider a rigid body rotating about a fixed axis at O. We can think

of this body as an infinite number of mass elements dm of infinitesimal size,

see Fig. 8.13. Each mass element rotates in a circular path about the origin with

an angular acceleration →a t produced by an external tangential force
→
Ft.

By applying Newton’s second law to a given mass element, we get:

dFt = (dm)at

All elements of the rigid body have the same angular acceleration α. Since at = r α

is the angular acceleration of each element, then:
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x
O

y

tdF

dm

r

Rotation axis

Fig. 8.13 Each element of mass dm is rotating about O in a circle of radius r under the influence of a

tangential force d
→
Ft

dFt = α(dm)r (8.28)

The magnitude of the differential torque dτ produced by dFt is:

dτ = r dFt (8.29)

Using Eq. 8.28, the expression for dτ becomes:

dτ = αr2dm (8.30)

Now we can integrate both sides of this differential relation to find the net torque �τ

about O due to external forces as follows:

�τ = α
�

r2dm (8.31)

which can be written as:

�τ = I α,

I =
�

r2dm

⎫⎬
⎭ (Rigid body) (8.32)

In this case, I = �
r2dm is the moment of inertia of the rigid body about the rotation

axis through O. All equations of the form �τ = I α hold even if the external forces

have radial components, since the action of these components passes through the

axis of rotation.
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Parallel-Axis Theorem

If we calculate the moment of inertia of a body about any axis that passes through its

center of mass, then we can prove that the moment of inertia about any axis parallel

to that axis is given by:

I = ICM + M h2 (8.33)

where M is the total mass of the body and h is the perpendicular distance between

the two parallel axes. Figure 8.15 shows this for the case of a rod.

Example 8.7

A horizontal rod of uniform mass per unit length λ has a mass M and length L.

Use the relation I = �
r2dm to calculate the moment of inertia of the rod about:

(a) an axis passing through its center, and (b) an axis passing through its end. (c)

Check your result by using the parallel-axis theorem.

Solution: (a) For a uniform rod, λ = M/L. If we divide the rod into infinitesimal

elements of length dx, then the mass of each element is dm = λ dx. Figure 8.14

shows an axis through CM and the left end.

x
dx

y

x
O

CM

x dx

dm=λdxdm=λdx
y

x
O

CM/ 2h L

L L

Fig. 8.14

For an axis passing through the CM, I in Eq. 8.32 leads to:

ICM =
�

r2dm =
+L/2�
−L/2

x2λ dx = M

L

+L/2�
−L/2

x2dx = M

L

+L/2�
−L/2

x2dx

= M

L

[
x3

3

]+L/2

−L/2
= 1

12
M L2
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Fig. 8.15 Moments of inertia for some objects about specific axes
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(b) For an axis passing through one end, I in Eq. 8.32 leads to:

I =
�

r2dm =
L�
0

x2λ dx = M

L

L�
0

x2 dx = M

L

L�
0

x2 dx = M

L

[
x3

3

]L

0

= 1

3
M L2

(c) Applying the theorem I = ICM + M h2, one can obtain the same result.

Example 8.8

A pulley of mass M = 6 kg and radius R = 20 cm is mounted on a frictionless

axis, as shown in Fig. 8.16. A massless cord is wrapped around the pulley while

its other end supports a block of mass m = 3 kg. If the cord does not slip, find

the linear acceleration of the block, the angular acceleration of the pulley, and the

tension in the cord. Take g = 10 m/s2.

Fig. 8.16

M

R

m

T

T

mg

m

R M
O

aa

Rotation axis

Solution: For a downward motion of the block with acceleration a, the weight

m g must be greater than the tension T, see the free-body diagram of Fig. 8.16.

Therefore, from Newton’s second law of linear motion, we get:

(1) m g − T = m a

From the free-body diagram of Fig. 8.16, we see that the torque τ that acts on

the pulley is R T. Applying Newton’s second law in angular form, Eq. 8.32, we

obtain:

�τ = I α ⇒ R T =
(

1
2 M R2

)
α ⇒ T = 1

2 M R α
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where the moment of inertia of the pulley I = 1
2 M R2 is taken from Fig. 8.15.

The linear acceleration of the block is equal to the tangential acceleration of the

pulley, i.e., at = a. Since at = R α, then the last equation reduces to:

(2) T = 1
2 M a

Eliminating the tension from Eqs. (1) and (2), we get:

a = 2m

2m + M
g = 2 × (3 kg)

2 × (3 kg) + 6 kg
× (10 m/s2) = 5 m/s2

The angular acceleration of the pulley is thus:

α = at

R
= a

R
= 5m/s2

0.2 m
= 25 rad/s2

We use Eq. (2) to find the tension in the cord as follows:

T = 1
2 M a = 1

2 × (6 kg)(5 m/s2) = 15 N

Example 8.9

A uniform thin rod of mass M = 2 kg and length L = 20 cm is attached from one

end to a frictionless pivot. The rod is free to rotate in a vertical plane. The rod is

released when it is in the vertical position. Figure 8.17 shows the situation when

the angle between the rod and the horizontal is θ. (a) Determine the angular accel-

eration of the rod as a function of θ for −90◦ ≤ θ ≤+90◦ and find its maximum

value. (b) Find the angle where the tangential acceleration of the free end of the

rod equals g. Take g = 10 m/s2.

Fig. 8.17

M g

θ

L

Pivot
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Solution: (a) The moment arm of the force exerted by the pivot on the rod is

zero. Therefore, the only force that contributes to the torque is the gravitational

force M→g with moment arm 1
2 L cos θ. Consequently, the angular acceleration is

not constant because the torque exerted on the rod varies with θ. Call clockwise

torques positive. Then the magnitude of this clockwise torque is:

τ = ( 1
2 L cos θ

)
M g

By applying Newton’s second law in its angular form,
∑

τ = I α, and taking

I = 1
3 M L2 from Fig. 8.15 for the axis of rotation at one end, we obtain:

( 1
2 L cos θ

)
M g =

(
1
3 M L2

)
α

Thus: α = 3g

2L
cos θ

At any angle θ, all points on the rod have this angular acceleration and the maxi-

mum value of α occurs at θ = 0. Thus:

αmax = 3g

2L
cos 0◦ = 3(10 m/s2)

2(20 × 10−2 m)
= 75 rad/s2

The dependence of α on the angle θ indicates that the angular acceleration starts

from zero when θ = 90◦, then increases with decreasing θ, becomes maximum of

75 rad/s at θ = 0, then decreases for negative values of θ, and reaches zero again

at θ = −90◦.
(b) To find the tangential acceleration of the free end of the rod at any angle θ,

we use the relation at = L α and substitute with α to get:

at = L α = 3
2 g cos θ

Note that at does not depend on the length of the rod L. Now, setting at = g in

the previous relation, we find the value of θ to be:

cos θ = 2
3 ⇒ θ = cos−1 2

3 = 48.2◦
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8.8 Kinetic Energy, Work, and Power in Rotation

Rotational Kinetic Energy

Analogous to translational kinetic energy
( 1

2 mv2
)
, an object that rotates about an axis

is said to have rotational kinetic energy. Using this analogy between translational

and rotational motions, where m ⇔ I and v ⇔ ω, one would expect that the rotational

kinetic energy will be given by the expression 1
2 Iω2. We can show that this expression

is indeed true.

Consider the rigid body of Fig. 8.13 to be a collection of tiny particles rotating

about a fixed axis with angular speed ω. If the ith particle has a mass mi, distance ri

from the axis of rotation, and tangential speed vi = riω, then its kinetic energy is:

Ki = 1
2 miv

2
i = 1

2 mi r2
i ω2 (8.34)

The total kinetic energy of the rotating body will be:

K =
∑

Ki = 1
2

(∑
mi r2

i

)
ω2 (8.35)

Since
∑

mi r2
i is the moment of inertial of the rigid body and tends to

�
r2dm for a

continuous mass distribution, then as expected we get:

KR = 1
2 I ω2 (Rotational kinetic energy) (8.36)

We refer to KR as rotational kinetic energy, which has the units of energy.

Example 8.10

Figure 8.18 shows three tiny spheres, each of mass M, are fastened by three iden-

tical rods each of mass m and of length L. The system is allowed to rotate with an

angular speed ω about an axis that is perpendicular to the page and passes through

O. Find the moment of inertia and the rotational kinetic energy about this axis.

Fig. 8.18

L m

L L
mm O

MM

M

Solution: Using I from Eq. 8.27 and taking 1
3 m L2 as the moment of inertia of

each rod about O, the system’s moment of inertia will be:
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I = 3(M L2) + 3( 1
3 m L2) = (3M + m)L2

Therefore, the rotational kinetic energy of the system about O will be:

KR = 1
2 I ω2 = 1

2 (3M + m)L2ω2

Example 8.11

A block of mass m = 2 kg rests on an inclined plane of angle θ = 30◦. The block

is connected by a cord of negligible mass that is wrapped around a pulley of mass

M = 2.5 kg and radius R = 0.8 m, see Fig. 8.19. The block slides on the incline

against a frictional force f of 0.5 N, and the pulley rotates without friction about its

axis. How fast will the block be moving after sliding a distance d = 1.5 m along

the incline?

d
M

R
m

fm

Fig. 8.19

Solution: The work done by the frictional force W should be equal to the change

in the total energy �E of the block-pulley system. Thus:

W = �E = Ef − Ei

where Ei = Ki + (KR)i + Ui and Ef = Kf + (KR)f + Uf are the initial and

final total energies of the system, respectively. If we assign a zero value for the

gravitational potential of the block at the final position, then Ui = m g(d sin θ)

and Uf = 0. Also, (KR)i = 0 and (KR)f = 1
2 Iω2, where I = 1

2 M R2 for a disk

rotating about its central axis. In addition, Ki = 0 and Kf = 1
2 mv2. Using these

relations and substituting with W = − f d and ω = v/R into the last equation, we

get:
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−f d = [ 1
2 m v2 + 1

2 ( 1
2 M R2)(v/R)2 + 0] − [0 + 0 + m g d sin θ ]

By rearranging the terms, we have:

v = 2

√
(m g sin θ − f )d

2m + M
= 2

√
[(2 kg)(9.8 m/s2) sin 30◦ − 0.5 N](1.5 m)

2 × (2 kg) + (2.5 kg)

= 2.93 m/s

Work done in Rotational Motion

We assume that the rotation of the rigid body in Fig. 8.20 is produced by an external

force
→
F that acts at a point P, which is at a distance r from the rotational axis

through O. The radial component of
→
F does not cause rotation, because it has a zero

moment arm, while the tangential component Ft = F sin φ does cause rotation. The

differential work done by
→
F on the rigid body as it rotates through an infinitesimal

distance ds = r dθ about O is:

dW = →
F • d →s = Ft d s = F sin φ d s = F sin φ r dθ (8.37)

Fig. 8.20 A rigid body rotates

about an axis through O under

the action of a single external

force
→
F acting at point P

axisRotation

O

r

r

d s
dθ

F

P

φ

Since the magnitude of the torque due to
→
F about O is τ = Ft r, then:

dW = τdθ (8.38)

This is the rotational version of the one-dimensional relation dW = F ds, namely

F ⇔ τ and s ⇔ θ. For a single force, we use τ = I α = I dω/dt and the chain rule

of differentiation to get:

dW = τdθ = I
dω

dt
dθ = I

dω

dθ

dθ

dt
dθ = I

dω

dθ
ω dθ = Iω dω (8.39)
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By integrating Eq. 8.39, we obtain the total work as follows:

W =
θf�
θi

τ dθ or W =
ωf�
ωi

Iω dω = 1
2 Iω2

f − 1
2 Iω2

i = �KR (8.40)

The relation W = �KR is the work-energy principle for rotational motion of a rigid

body about a fixed axis.

Power in Rotational Motion

The rate of work done at time t, dW/dt, or the instantaneous power P, is obtained

from Eq. 8.38 as follows:

P = dW

dt
= τω (8.41)

The right-hand side of this expression is the rotational version of the linear-motion

equation P = Fv, where F ⇔ τ and v ⇔ ω.

Example 8.12

A disk of mass M = 0.2 kg and radius R = 5 cm is attached coaxially to the mass-

less shaft of an electric motor, see Fig. 8.21. The motor runs steadily at 900 rpm

and delivers 2 hp. (a) What is the angular speed of the disk in SI units? (b) What

is the rotational kinetic energy of the disk? (c) How much torque does the motor

deliver?

Fig. 8.21

Motor

R M

Solution: (a) The angular speed of the motor of the disk is:
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ω =
(

900
rev

min

) (
min

60 s

)(
2π rad

rev

)
= 94.2 rad/s

(b) The rotational kinetic energy of the disk is:

KR = 1
2 Iω2 = 1

2

(
1
2 M R2

)
ω2

= 1
4 (0.2 kg) × (0.05 m)2(94.2 rad/s)2 = 1.11 J

This is the amount of energy needed to bring the disk from rest to the angular

speed ω = 94.2 rad/s.

(c) The power delivered by the motor to maintain a constant angular speed

ω = 94.2 rad/s for the disk and to oppose all kinds of friction is:

P = 2 × (746 W) = 1,492 W

Using Eq. 8.41, P = τω, we can find the torque as follows:

τ = P

ω
= 1,492 W

94.2 rad/s
= 15.8 m.N

8.9 Rolling Motion

Rolling as Rotation and Translation Combined

Assume that the wheel of Fig. 8.22 is rolling on a flat surface without slipping, and

that its axes of rotation always remain parallel. In this figure, point Q on the rim of

the wheel moves in a complex path called a cycloid while its center of mass moves

in a straight line.

Fig. 8.22 When a wheel rolls

without slipping on a flat

surface, each point on the

circumference (such as point

Q) traces out a cycloid, while

the center of mass (CM) traces

out a straight line

Q

CM CM CM

Path of
the CM

Path of Q

QQ
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Now, consider a wheel of a bicycle of radius R rolling without slipping on a

horizontal surface at as shown in Fig. 8.23. Initially, the two points P and P′ coincide,

where P is the point of contact and P′is a point on the rim of the wheel.

Fig. 8.23 When a wheel rolls

through an angle θ due to a

rotation about the center of

mass CM, its CM moves a

linear distance s = Rθ

P′

P

CM

s

P

s

θ

P ′

CM
R

t =0 Time t

ω
ω

During a time interval t, both the point of contact P and the center of mass CM

move a linear distance s; while the point on the rim P′ moves an arc length s that

subtends an angle θ at CM. Thus:

s = r θ

Consequently, the linear speed of the center of mass will be given by:

vCM = ds

dt
= R

dθ

dt
= R ω (8.42)

where ω is the angular speed of the wheel about its center of mass.

Rolling as Pure Rotation

To compare rolling-without-slipping motion with pure rotational motion, we consider

Fig. 8.24. In this figure, the point of contact P is instantaneously at rest and the wheel

rotates about an axis passing through this point. Since the point CM is at a distant R

from P, and we proved that the CM has linear velocity vCM = R ω, then, in order

to preserve Eq. 8.42, the instantaneous angular velocity about P must be the same as

the instantaneous angular velocity ω about CM. In addition, the linear speed of point

Q must be 2vCM.

As a result, rolling on a flat surface without slipping is equivalent to experiencing

pure rotation about an axis through the point of contact P. Therefore, we can express

the rolling kinetic energy of the wheel as:

KRoll = 1
2 IP ω2 (8.43)



254 8 Rotational Motion

Fig. 8.24 Rotation about an

axis through P with an angular

velocity ω is equivalent to

rotation about the CM with the

same angular velocity

P

CM

Q
CM2

Rotation about P

R

CM R

where IP is the moment of inertia of the wheel about an instantaneous axis of rotation

through P. By applying the parallel-axis theorem, we substitute IP = ICM + M R2

into Eq. 8.43 to obtain:

KRoll = 1
2 ICM ω2 + 1

2 M R2ω2

By using vCM = R ω, the relation leads to:

KRoll = 1
2 ICM ω2 + 1

2 Mv2
CM (8.44)

Based on this relation, it seems natural to consider this type of rolling as a combination

of rotational and translational motions. This consideration is explained graphically

in Fig. 8.25.

P

CM

Q

C M

CM

P

CM

Q

CM

CM

CM

P

CM

Q

0

CM2

CM
M

Pure rotation Pure translation Rolling

Fig. 8.25 Rolling without slipping can be considered as a combination of pure rotation and pure trans-

lation
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Rolling with Friction

When the linear speed vCM or the angular speed ω of a wheel changes, then a frictional

force tends to slide the wheel at the point of contact P. Before sliding occurs, this

frictional force is a static force fs. Right on the verge of sliding, this frictional force is

a maximum static force fs,max. When sliding occurs, this frictional force is a kinetic

force fk .

Figure 8.26a shows a wheel being rotated faster and faster (ω increases). The

increase in ω tends to slide the point of contact P to the left. In Fig. 8.26b, the wheel

tends to rotate more slowly, and the decrease in ω tends to slide the point of contact

P to the right.

Figure 8.26c shows a wheel rolling down an incline without sliding. The weight

M→g at its center cannot cause rotation about the CM. Since M→g tends to slide the

wheel down the incline, a frictional force
→
f s must act at the point of contact P to

oppose the sliding tendency; and this force has a moment arm about the center of

mass.

P

CM
CM

increases
Sf P

CM
CM

decreases
Sf

CM

Sf CM

Mg
P

(a) (b) (c)

Fig. 8.26 (a) A wheel rolls horizontally without sliding while increasing its angular speed. The frictional

force
→
f s acts at P to the right in order to oppose the sliding tendency. (b) Just like in (a) but with a decreasing

angular speed. (c) A wheel rolls without sliding on an incline. The frictional force
→
f s acts at P to oppose

the sliding tendency due to the wheel’s weight M→g

Example 8.13

A disk of mass M = 1.5 kg and radius R = 8 cm rolls horizontally without sliding

with a center-of-mass speed vCM = 4 m/s. (a) What is the angular speed of the

disk? (b) What is the kinetic energy of the rolling disk?
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Solution: (a) Using Eq. 8.42, we have:

ω = vCM

R
= 4 m/s

8 × 10−2 m
= 50 rad/s � 8 rev/s

(b) The rolling kinetic energy of the disk is:

KRoll = KR + K = 1
2 ICM ω2 + 1

2 Mv2
CM

= 1
2

(
1
2 M R2

)
ω2 + 1

2 Mv2
CM

= 1
4 (1.5 kg) × (0.08 m)2(50 rad/s)2 + 1

2 (1.5 kg)(4 m/s)2 = 18 J

Example 8.14

A solid sphere of mass M and radius R rolls without sliding when released from

rest at the top of a frictional plane having a height h and inclination angle θ, see

Fig. 8.27. The sphere starts at the top of the inclined plane and rolls to the bottom

of the incline. Find the speed and acceleration of the sphere’s center of mass when

it reaches the bottom of the incline.

Fig. 8.27

CM

R

h x

y

d

M

Solution: Generally, the rolling kinetic energy of the sphere is:

KRoll = KR + K = 1
2 ICM ω2 + 1

2 Mv2
CM

Using vCM = Rω and ICM = 2
5 M R2 for a solid sphere, we can express KRoll as

a function of vCM throughout the relation:

KRoll = 7
10 Mv2

CM

We define the bottom of the incline to have zero gravitational potential energy.

When rolling without sliding, the center of the sphere falls a vertical distance h,

and the conservation of mechanical energy gives:
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Kf + Uf = Ki + Ui

where Kf = KRoll, Uf = 0, Ki = 0, and Ui = M g h. Thus:

7
10 Mv2

CM + 0 = 0 + M g h

Hence, we can express the dependence of vCM on h as follows:

vCM =
√

10
7 gh

Notice that this is less than the speed
√

2gh when an object slides on a frictionless

incline without rolling (see Examples 5.5 and 6.8).

Using the kinematic equation v2 = v 2◦ + 2a(x−x◦) for the translational motion

of the sphere along the incline, with v ≡ vCM, v◦ = 0, a = aCM, and (x − x◦) =
d = h/ sin θ, we have:

10gh

7
= 0 + 2 aCM

h

sin θ

aCM = 5
7 g sin θ

Notice also that this is less than the acceleration g sin θ when an object slides

down a frictionless incline without rolling (see Example 5.5).

The independence of vCM and aCM on R and M indicates that all homogeneous

solid spheres experience the same speed and acceleration on a given incline.

Example 8.15

Three objects (a solid sphere, a disk, and a thin hoop) each having a mass M are

at rest at the same height h. At the exact same instant, these objects start to roll

without sliding down the incline of Fig. 8.28. In what order do they arrive at the

bottom?

Fig. 8.28

M
h

θ

M
M

Sphere

Disk
Hoop
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Solution: For the given list of objects, we set ICM = βM R2, where β = 0.4 for

the sphere, β = 0.5 for the disk, and β = 1 for the thin hoop. Therefore, using

KRoll = 1
2 ICM ω2 = M g h and vCM = Rω, the speed of the center of mass of any

one of these objects at the bottom of the incline will be:

vCM =
√

2gh

β + 1
, β =

⎧⎪⎪⎨
⎪⎪⎩

0.4 (for a sphere)

0.5 (for a disk)

1 (for a hoop)

Note thatvCM does not depend on the object’s mass M or radius R, but only depends

on the shape (through the parameter β) and the height h. Moreover, according to

the value of β, the sphere will attain the largest value of vCM, followed by the

disk, and finally the hoop will attain lowest value of vCM, see Fig. 8.28.

In all cases, the acceleration of the center of mass is given by:

aCM = g sin θ

(1 + β)

This is less than g sin θ for the case of a box that slides down a frictionless incline

of the same angle.

Table 8.2 summarizes the angular quantities and their linear analogs.

Table 8.2 Analogy between some linear and angular quantities and their connecting relations

Linear Angular Connecting relation

x θ x = rθ

v ω v = r ω

a α at = r α

m I I = ∑
m r2

F τ τ = r F sin θ

K = 1
2 mv2 KR = 1

2 Iω2

W = Fd W = τθ

P = Fv P = τω∑
F = m a

∑
τ = Iα
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8.10 Exercises

Section 8.1 Radian Measures

(1) As fractions of π and as numerical values, express the following angles in

radians: 30◦, 45◦, 60◦, 90◦, 180◦, 270◦, 360◦.
(2) The Moon, which is 3.8 × 105 km away from the Earth, subtends an angle of

about 0.4◦ to us. Estimate the radius of the Moon.

(3) A circle has a radius of 2 m. (a) What angle in radians and degrees is subtended

by an arc that is 1.5 m in length? (b) What arc length is subtended by an angle

of 1.2 rad between two radii in this circle?

(4) Through how many revolutions must a car wheel turn if the wheel has a radius

of 0.5 m and the car travels 2 km?

Section 8.2 Rotational Kinematics; Angular Quantities

(5) A drill starts from rest and after 4.5 s reaches a rate of 4 × 104 rev/min. What

is the drill’s average angular acceleration?

(6) A motor rotates at a rate of 9 × 103 rpm. When the motor is turned off, it takes

5 s to stop rotating. What is the average angular acceleration during this period?

(7) A player throws a baseball in a straight line towards a target at a speed of

90 km/h. While traveling, the ball spins at a rate of 1,800 rev/min. If the target

is 10 m away, how many revolutions does the ball make on its way to the target?

(8) A reference line in a rotating fan has an angular position given by θ = 4t2 −
14t +6, where θ is in radians and t is in seconds. (a) Find ω and α as a function

of time. (b) Find the times when the angular position θ and the angular velocity

ω become zero.

(9) A wheel rotates with an angular acceleration α = 6at −2b. At t = 0, the wheel

has an angular speed ω◦ and angular position θ◦. Write down the equations for

the angular speed and angular position as a function of time t.

(10) A wheel with six spokes is rotating at an angular speed ω = 240 rev/min about

an axle passing through its central axis at O, see Fig. 8.29. A dart of length

L = 10 cm is shot parallel to the wheel’s axle towards the wheel. Assume the

dart and the spokes are very thin. (a) What is the minimum speed that the dart

must have in order to miss any one of the spokes? (b) Does it matter where

between the axle and the rim of the wheel you must aim the dart?
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Fig. 8.29 See Exercise (10)

ωO
Axle

L

Section 8.3 Constant Angular Acceleration

(11) If the angular accelerations in Exercises 5 and 6 are constant, then find the

change in angle through the corresponding rotational period. Provide your

answer in radians, fractions of π, revolutions, and degrees.

(12) A wheel turning at an angular speed of 20 rev/s is brought to rest after 40 rev

under a constant angular deceleration. (a) What is its angular deceleration?

(b) How long does it take to stop?

(13) A car motor slows down from 5 × 103 rpm to 2 × 103 rpm in 2 s under a

constant angular deceleration. (a) What is its angular deceleration? (b) Find the

total number of revolutions of the motor in this period.

(14) A fan originally turning at 15 rev/s decelerates with α = −4 rad/s2. (a) How

long does the fan take to stop? (b) How many revolutions does it turn during

this time period?

(15) A centrifuge rotates at an angular speed of 3.6 × 103 rev/min. When the cen-

trifuge is turned off, it rotates 60 rev before coming to test. What is its angular

deceleration? Assume it to be constant.

Section 8.4 Angular Vectors

(16) A wheel is mounted on fixed supports that are on a turntable that rotates about its

axle with an angular speed ω1 = 3 rad/s, see Fig. 8.30. The turntable is rotating

horizontally at an angular speed ω2 = 4 rad/s. Take the unit vectors along x, y,

and z as
→
i ,

→
j , and

→
k , respectively. (a) What are the directions of →

ω1 and →
ω2

at the instant shown in the figure? (b) Find the magnitude and direction of the

resultant angular velocity →
ω at the instant shown in the figure. (c) Find the

magnitude and direction of the angular acceleration of the wheel →
α1 at any time

and then at the instant shown in the figure.
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Fig. 8.30 See Exercise (16)

x

y

z

ω2

ω1

Section 8.5 Relating Angular and Linear Quantities

(17) A wheel 0.4 m in diameter rotates uniformly at an angular speed of 3.6 ×
102 rev/min. (a) What is its angular speed in rad/s? (b) Find the linear speed

and acceleration of a point on its rim.

(18) Figure 8.31 shows a synchronized analog 12-hour clock. Find the angular veloc-

ity of: (a) the second hand, (b) the minute hand, and (c) the hour hand. (d) Find

the angular acceleration of each hand.

Fig. 8.31 See Exercise (18)

Seconds

M
in

u
tes

H
ou

rs

(19) In exercise 18, assume that the radii of the second hand, minute hand, and hour

hand are 20, 15, and 10 cm, respectively. Find the linear speed of the tip of each

hand.

(20) A merry-go-round completes one revolution in 1.5 s. (a) What is the linear

speed of a child seated 3 m from the center? (b) Find the magnitude of the

child’s tangential and radial accelerations.
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(21) Assume a point P is located at a latitude of exactly 30◦ N and is at a distance

r = 6.4 × 106 m away from Earth’s center, see Fig. 8.32. As the Earth revolves

about its axis, calculate: (a) the angular speed of the Earth, (b) the linear speed

and magnitude of the acceleration of the point P, (c) the linear speed of a point

on the equator.

Fig. 8.32 See Exercise (21)

Earth
North Pole

30º

30º

30º

0º

0º

P
r

r

Latitude

Equator

(22) If the lower string in Example 8.5 is removed, then find the proper angular

speed ω that allows the ball to rotate with the same radius r = 0.2 m and angle

θ = 30◦.
(23) A car accelerates uniformly from rest to a speed of 20 m/s during a 20 s time

interval. The radius of the wheels of the car is 0.4 m. What is: (a) the angular

acceleration of each wheel, and (b) the number of revolutions turned by each

wheel during this time?

Section 8.6 Rotational Dynamics; Torque

(24) The pedals of a bike have a circular radius r = 15 cm. Find the maximum torque

that can be exerted by the weight of a 70-kg person riding this bike?

(25) The wheels in Fig. 8.33 have radii a = 10 cm and b = 15 cm. A frictional torque

of 1.5 m.N opposes the motion when it rotates about an axle O perpendicular

to the page. Find the net torque on the wheel when three forces of magnitudes

F1 = 19 N, F2 = 38 N, and F3 = 45 N are applied.
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Fig. 8.33 See Exercise (25)

1F

O

2F

b

a

3F

(26) A child wants to horizontally balance two toys of masses m1 = 0.1 kg and

m2 = 0.2 kg by placing them at distances L1 and L2, respectively, from the

central pivot of a seesaw of a massless board, see Fig. 8.34. (a) What is the ratio

L1/L2 required to accomplish this balance? (b) If the child sets the toys 8 cm

from the pivot, what is the magnitude and direction of the net torque?

Fig. 8.34 See Exercise (26)

1m2m

1L2L

O

Section 8.7 Newton’s Second Law for Rotation

(27) A rod of length 2 L is composed of an aluminum part with uniform length L and

mass mA and a brass part with uniform length L and mass mB. Find the moment

of inertia of the rod about an axis perpendicular to it yet passing through its

center.

(28) A sphere of mass M and radius R is attached to one end of a massless rod of

length L. The system rotates about the z-axis as shown in Fig. 8.35. (a) Use

the parallel-axis-theorem to find the moment of inertia of the system about the

z-axis. (b) Consider the sphere as a point particle and calculate its moment of

inertia about the z-axis. (c) Find the percentage error introduced by the point

approximation if L = 0.5 m and R = 0.1 m.

(29) A 1-kg wheel has a moment of inertia I = 0.02 kg.m2. The angular speed of

the wheel reduces uniformly from 30 rev/s to zero after 150 rev. Find the torque

used to slow down the wheel’s rotation.
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Fig. 8.35 See Exercise (28) z

R

M

L

(30) Redo Example 8.8, this time assuming that a frictional torque →
τf of magnitude

1.2 m.N exists at the axle.

(31) Redo Example 8.9, this time assuming that a frictional torque τf of magnitude

0.4 m.N exists at the pivot.

(32) A cord is wrapped around a pulley of mass M = 2.5 kg and radius R = 0.2 m. A

constant force
→
F of magnitude 30 N is applied to the cord as shown in Fig. 8.36.

With the presence of a frictional torque →
τ f at the axle of magnitude 1.5 m.N, the

pulley accelerates uniformly from rest to 21 rev/s in 2.8 s. (a) Find the moment

of inertia of the pulley. (b) Does this moment of inertia equal the one obtained

from the formula presented in Fig. 8.15? Explain.

Fig. 8.36 See Exercise (32)

O

F

fF

R
M

(33) A pendulum of mass m with a string of length L is pulled aside to make an

angle θ with the vertical. At the instant when the pendulum is released, find the

torque on the mass m about the suspension point and its angular acceleration.

(34) A disk of mass M and radius R is attached to one end of a uniform rod of mass

m and length L, as shown in Fig. 8.37. The other end of the rod is pivoted at P

and the system is allowed to rotate freely. The system is released when the rod

makes an angle θ with the vertical. Find the angular acceleration just after the

system is released.

(35) An Atwood’s machine consists of two boxes of masses m2 = 6 kg and m1 =
4 kg, which are connected by a massless cord that passes over a pulley, see
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Fig. 8.38. The pulley has a moment of inertia I = 5 × 10−3 kg.m2 and radius

R = 5 cm. The cord does not slip over the pulley. Find the acceleration of the

system and the tension in each cord. Take g = 10 m/s2.

Fig. 8.37 See Exercise (34)
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Fig. 8.38 See Exercise (35)

R

2T

2m

1m
1T

R

Section 8.8 Kinetic Energy, Work, and Power in Rotation

(36) What is the energy of an engine that has a moment of inertia I = 5×10−2 kg.m2

and is rotating at 1,500 rpm?

(37) Two small balls of masses M = 4 kg and m = 2 kg are connected by a horizontal

massless rod of length L = 3 m. The system is rotating with an angular speed

ω = 8 rad/s about an axle at a distance x from the mass M, see Fig. 8.39. Find

the kinetic energy of the system and the net force on each mass: (a) when

x = L/2, (b) when xCM = mL/(M + m); which is the position of the center of

mass of the system.

(38) A horizontal massless rod is pivoted at one end. Three equal point masses

are attached to this rod and are equidistant from each other and the pivot, see
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Fig. 8.40. The system is released from its horizontal position. How fast will the

bottom mass be moving when the rod becomes vertical?

Fig. 8.39 See Exercise (37) z

ω mM

L
x L x−

Fig. 8.40 See Exercise (38) m m m

m

m

m
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Initial position
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a a a

ω

(39) The angular speed of a wheel increases from 60 to 180 rev/min when 125 J of

work is added. What is its moment of inertia?

(40) Assume that the disk of Fig. 8.21 has a mass M = 12 kg and radius R = 30 cm.

As in the figure, the disk is attached coaxially to the massless shaft of an electric

motor. When the driving motor is disconnected, the motor slows down from

580 rpm to rest in 5 s. (a) What is the required power output of the motor to

maintain a steady angular speed of 580 rpm? (b) How much torque does the

motor deliver to maintain this steady angular speed?

Section 8.9 Rolling Motion

(41) A cylinder of mass M = 2 kg and radius R = 5 cm rolls horizontally over the

floor without sliding with a center of mass speed vCM = 0.8 m/s. (a) What is

the angular speed of the cylinder about its axis? (b) What are the magnitude
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and direction of the speed and acceleration of a point on the top of the cylinder?

(c) What is the kinetic energy of the rolling cylinder?

(42) A thread of negligible mass is wound around a cylinder of mass M = 4 kg and

radius R = 2 cm. If the thread is unwound under a constant force of magnitude

F = 30 N and the cylinder rolls without sliding, as shown in Fig. 8.41. (a) What

is the direction of the frictional force? (b) What is acceleration of the center of

mass? (c) What is the value of the frictional force?

Fig. 8.41 See Exercise (42)

CM

F
R

CMa


M

(43) A hoop slides when projected horizontally at time t = 0 with an initial speed

v◦. The frictional force causes the hoop to slow down and acquire an angular

speed. Show that the hoop stops sliding and starts rolling when it has a speed

v◦/2 at time t = Mv◦/2f , see Fig. 8.42.

Fig. 8.42 See Exercise (43)
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(44) A ball of radius r and mass m starts from rest and rolls without slipping on a

track in the shape of a quarter circle of radius R, as shown in Fig. 8.43. Use

conservation of mechanical energy to show that the ball’s speed at the lowest

point b is vb = √
10g (R − r) /7.

(45) A yo-yo of mass M and moment of inertia I has an axle of radius R. One end

of a light string, assumed with negligible thickness, is tied to the axle and then

wound several times around it. For idealized yo-yo, the thickness of wounded

string can be neglected. While holding the other end of the string, the yo-yo



268 8 Rotational Motion

is released from rest, dropping as the string unwinds. Show that the linear accel-

eration, angular acceleration, and tension in the string of the yo-yo are given

by:

a = g

1 + I/MR2 , α = g

R + I/MR
, T = Mg

1 + MR2/I

Fig. 8.43 See Exercise (44)

R

R

0a =
r

a

b



Angular Momentum 9

In the previous chapter, we dealt with the kinematics and dynamics of the rotation of

an extended object about a fixed axis. The rotational motion was analyzed in terms

of Newton’s second law for rotation as well as rotational kinetic energy.

In this chapter, we introduce the concept of angular momentum, a quantity

that plays a key role in rotational dynamics. Using classical physics, we saw

how linear momentum was conserved. Similarly, we will see how the conservation of

angular momentum is a fundamental law in rotational dynamics, and in further stud-

ies (not introduced in this book) can be proved to be equally valid for relativistic and

quantum physics.

9.1 Angular Momentum of Rotating Systems

9.1.1 Angular Momentum of a Particle

Figure 9.1 depicts a particle of mass m that has a momentum →p = m→
v and a position

vector →r that is measured with respect to an origin O of an inertial frame. The angular

momentum
→
L of this particle about the origin O is defined by the vector product:

→
L = →r × →p (9.1)

Following the right-hand rule introduced in Chap. 2, the direction of
→
L is perpendic-

ular to the plane containing the two vectors →r and →p as shown in Fig. 9.1 and its

magnitude is given by:

L = r p sin θ = r p⊥ = r⊥ p (9.2)

H. A. Radi and J. O. Rasmussen, Principles of Physics, 269
Undergraduate Lecture Notes in Physics, DOI: 10.1007/978-3-642-23026-4_9,
© Springer-Verlag Berlin Heidelberg 2013
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Fig. 9.1 The angular

momentum
→
L of a particle of

mass m and momentum →p
located at position →r is

defined by
→
L = →r × →p

m
r

p

x

y

z

L r p

o

where θ is the angle between →r and →p . In addition, p⊥ = p sin θ and r⊥ = r sin θare

the components of →p and →r perpendicular to →r and →p, respectively. It follows that

L = 0 when →r is parallel or antiparallel to →p (θ = 0 or θ = 180◦). The SI unit of L is

kg.m2/s (or J.s).

To find the relation between angular momentum and torque, we differentiate

Eq. 9.1 with respect to time as follows:

d
→
L

dt
= d (

→r × →p )

dt
= →r × d→p

dt
+ d→r

dt
× →p

Using Newton’s second law �
→
F = d→p /dt and the definition of net torque �

→
τ =

→r × �
→
F , we see that the first term is just �

→
τ . The second term is zero since

d→r /dt × →p = →
v × (m→

v ) = m→
v × →

v = 0. Therefore:

�
→
τ = d

→
L

dt
(Single particle) (9.3)

That is, the net torque acting on a particle is equal to the time rate of change of

the particle’s angular momentum. The expression 9.3 is the rotational analogous to

�
→
F = d→p /dt in the case of linear motion, where �

→
F ⇔ �

→
τ and →p ⇔ →

L .

For a particle of mass m moving with a constant speed v in a circular path of

radius r, i.e. v = rω, the magnitude of the orbital angular momentum
→
L is constant

and given by:

L = rmv sin 90◦ = mvr ⇒ L = Iω (9.4)

where I = mr2 is the moment of inertia of the particle. Application of the right-hand

rule shows that the direction of
→
L is also constant and perpendicular to the plane of

the circle, although the direction of →p = m→
v keeps changing.
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9.1.2 Angular Momentum of a System of Particles

Consider a system made of n particles having angular momenta
→
L1,

→
L2, . . . ,

→
Ln.

Regardless of whether these particles are loosely bound, or tightly bound together

(as in a rigid body), or free, the total angular momentum
→
L is always:

→
L = �

→
Li, (i = 1, 2, . . . , n) (9.5)

If we differentiate this equation with respect to time, we get:

d
→
L

dt
=

∑ d
→
Li

dt
=

∑ →
τ i, (i = 1, 2, . . . , n) (9.6)

Based on Newton’s third law, the sum of all internal torques must add to zero due to

the cancelation effect of all internal forces on the system. Therefore, the net torque

on the system is only due to all external torques, and Eq. 9.6 reduces to:

�
→
τext = d

→
L

dt
(System of particles) (9.7)

where →
τext and

→
L are calculated with respect to a fixed point in an inertial frame.

This is the rotational analogue to �
→
Fext = d

→
P/ dt in the case of linear motion, where

→
Fext ⇔ →

τext and →p ⇔ →
L .

We can prove that Eq. 9.7 is valid for a fixed point on the center of mass of the

system, even if the CM is accelerating. Thus:

�
→
τ CM = d

→
LCM

dt
(Even if CM is accelerating) (9.8)

9.1.3 Angular Momentum of a Rotating Rigid Body

Consider a rigid body rotating with an angular speed ω about a fixed axis; say the

z-axis is as shown in Fig. 9.2. A typical mass element �mi of the rigid body moves

with a speed vi around the z-axis in a circular path of radius ri, i.e. vi = ri ω. If

the position of this element is measured with respect to an origin O, then with the

use of ri we will be able to find the component of the angular momentum about the

rotational axis, which is the z-axis in this case.
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Fig. 9.2 A rigid body rotates

about the z-axis with an

angular speed ω. The

component of the angular

momentum will be along the

z-axis

im

ir
ip

x
y

z

o

L

The z-component of the angular momentum of this element is:

Li = ri�mivi = �mir
2
i ω

where the vector
→
Li is directed along the z-axis just like the vector →

ω . The total

component of the angular momentum about the rotational axis is the sum of all
→
Li

and denoted by Lz . Thus:

Lz = �Li = ��mir
2
i ω =

(
��mir

2
i

)
ω

Since
∑

�mir2
i → ∫ r2dm, which is the moment of inertia of the body about the

z-axis (see Chap. 8), then the above relation reduces to:

Lz = Iω (Rigid body) (9.9)

Note that choosing any point on the z-axis and using that point as the origin O would

yield the same Eq. 9.9. Accordingly, Eq. 9.7 will take on the following form for any

rigid body:

�τext = dLz

dt
(Rigid body) (9.10)

If we differentiate Eq. 9.9 with respect to time, we get:

dLz

dt
= I

dω

dt
= I α
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Substituting this result into Eq. 9.10, we get:

�τext = Iα (Rigid body) (9.11)

This result is the same as in Eq. 8.32, which was derived using an approach that was

based on the study of forces.

If the rigid body in Fig. 9.2 rotates about an axis of symmetry that passes through

its center of mass, then Lz becomes the total angular momentum
→
L of the body and

Eqs. 9.9, 9.10, and 9.11 can be written in vector form as follows:

→
L = I →

ω

∑ →
τext = d

→
L

dt∑ →
τext = I →

α

(
Rotation of rigid body

about its symmetry axis

)
(9.12)

If the rigid object is not symmetric, then
→
L and →

ω may point in different directions

and in this case
→
L represents the component of the angular momentum along the

axis of rotation.

Example 9.1

A disk of mass M = 8 kg and radius R = 0.5 m accelerates about its massless axle

from rest to an angular speed ω = 8.5 rad/s in a time �t = 2 s, see Fig. 9.3. Find

the angular momentum of the disk and the required constant torque used for this

acceleration.

Fig. 9.3

RM

Solution: According to Eq. 9.12, the angular momentum of the disk about its

symmetry axis will be:

L = Iω = 1
2 MR2 ω = 1

2 (8 kg)(0.5 m)2(8.5 rad/s) = 8.5 J.s
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According to Eq. 9.12, the required constant torque that accelerates the disk from

rest to 8.5 rad/s in 2 s is:

τext = �L

�t
= Lf − Li

�t
= 8.5 J.s − 0

2 s
= 4.25 m·N

Example 9.2

An Atwood machine consists of two masses m1 and m2 (m2 > m1), which are

connected by a light cord that passes over a freely rotating pulley, see Fig. 9.4.

The pulley has a radius R and moment of inertia I about its axle. Find the acceler-

ation of the two masses (consider m1 = 4 kg, m2 = 6 kg, I = 2 × 10−4 kg.m2, and

R = 2 cm).

Fig. 9.4

R

1m

2m

2m  g
1m  g

R

O

ω

Solution: We can solve this problem by finding �
→
τext and

→
Lnet, and then by using

Eq. 9.7, �→
τext = d

→
Lnet/dt, to find the acceleration a = dv/dt. Since the tensions in

the two parts of the cord are internal forces, the net external torque of all external

forces about the pulley’s axel O (taking clockwise as positive since m2 > m1) is:

�τext = m2gR − m1gR

= (m2 − m1)gR

At a given instant, when the speed of the two masses is v, the angular momenta of

m2 and m1 are Rm2v and Rm1v, respectively. In addition, the angular momentum
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of the pulley is Iω, where v = Rω. Thus, the total clockwise angular momentum

about O is:

L = Rm1v + Rm2v + I
v

R
=

(
m1 + m2 + I

R2

)
Rv

By applying �τext = dL/dt, we get:

(m2 − m1)gR =
(

m1 + m2 + I

R2

)
R

dv

dt

Solving for a = dv/dt, we get:

a = m2 − m1

m1 + m2 + I

R 2

g = 6 kg − 4 kg

6 kg + 4 kg + 2 × 10−4 kg.m2

(2 × 10−2 m)2

(9.8 m/s2) = 1.87 m/s2

If I is ignored, we get a = (m2 − m1)g/(m1 +m2)= 1.96 m/s2 as proved in Exam-

ple 5.3 of Chap. 5. Since this value is larger than 1.87 m/s2, then the moment of

inertia actually slows down the system.

Example 9.3

A rod having a mass M = 3 kg and length d = 2 m is pivoted (without friction)

at its center O. Then, two masses m1 = 4 kg and m2 = 7 kg are treated as points

and placed on the ends of that rod such that they are equidistant from O. At a

particular moment in time the rod makes angle θ with the horizontal and the

system is rotating in a vertical plane with an angular speed ω, see Fig. 9.5. (a)

Find the system’s angular momentum L and angular acceleration α. (b) How far

away from the pivot O should m2 be placed in order to acquire a balanced system

having zero angular acceleration? Take g = 10 m/s2.

Solution: (a) The moment of inertia of the system about O is:

I = m1(
1
2 d)2 + m2(

1
2 d)2 + 1

12 Md2 = 1
4 (m1 + m2 + 1

3 M)d2

= 1
4 (4 kg + 7 kg + 1

3 × 3 kg)(2 m)2 = 12 kg.m2

Then, the magnitude of the total angular momentum of the system is:

L = Iω = 12 ω (Out of the page with units of J.s)
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Fig. 9.5

2

1m

d

O

g

m g

To find the angular acceleration at any angle θ , we use �τext = Iα. To achieve

this, we first find the magnitude of the two torques about O due to the forces m1g

and m2g as follows:

τ1 = (d/2)m1g cos(90◦ + θ) = 1
2 m1gd cos θ (Into page)

τ2 = (d/2)m2g cos(90◦ − θ) = 1
2 m2gd cos θ (Out of the page)

Since m2 > m1, then the net external torque on the system about O is:

∑
τext = τ2 − τ1 = 1

2 (m2 − m1)gd cos θ

= 1
2 (7 kg − 4 kg)(10 m/s2)(2 m) cos θ

= 30 cos θ (m.N) (Out of the page)

The angular acceleration at the instant shown in Fig. 9.5 is thus:

α = �τext

I
=

1
2 (m2 − m1)gd cos θ

1
4 (m1 + m2 + 1

3 M)d2
= 30 cos θ (m.N)

12 kg.m2 = 2.5 cos θ rad/s2

(b) Notice that as m2 slides towards the pivot, the value of �τext decreases and

the system tends to be more balanced. In the case where the system is balanced

we have �τext = 0 and α = 0. If we assume the balance occurs when the distance

between m2 and the pivot is x, then:

�τext = τ2 − τ1 = m2gx cos θ − 1
2 m1gd cos θ = 0

Thus: x = 1
2

m1

m2
d = 1

2
4 kg

7 kg
× (2 m) = 4

7 m
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9.2 Conservation of Angular Momentum

In Chap. 7, we found that the general form of Newton’s second law for the transla-

tional motion, Eq. 7.43, is given by:

∑ →
Fext = d

→
P

d t

where
∑ →

Fext is the net external force acting on a system of particles (including rigid

objects) and
→
P is the total linear momentum of the system. If the system has a total

mass M and its CM is moving with velocity →
vCM, then

→
P = M →

vCM. In addition, if

the net external force is zero, then the total momentum
→
P is conserved (which is the

law of conservation of momentum) and →
vCM = constant.

In this chapter, we found an analogous relationship, Eq. 9.7, which describes the

general rotational motion of a system of particles (including rigid objects). This was

given by:

�
→
τext = d

→
L

dt

where �
→
τext is the net external torque acting on a system of particles (including rigid

objects) and
→
L is the total angular momentum of the system. This relation is valid

when �
→
τext and

→
L are evaluated either about a point fixed in an inertial reference

frame, or about the CM of the system (even if the CM is accelerating). In addition,

for isolated systems, the last relation leads to the following conclusion:

If �
→
τext = 0, then

d
→
L

dt
= 0 and

→
L = constant

Therefore:

→
Li = →

Lf (For an isolated system) (9.13)

This is the law of conservation of angular momentum, where i refers to some initial

time, and f refers to a later time. In other words:

Conservation of angular momentum:

If the net external torque acting on a system is zero (i.e. an isolated system),

the total angular momentum of the system remains constant in both magnitude

and direction.
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We can now state that the total energy, total linear momentum, and total angular

momentum of an isolated system all remain constant:

Ef = Ei
→
Pf = →

Pi
→
Lf = →

Li

(For an isolated system) (9.14)

Example 9.4

A soldier stands with his arms stretched out at the center of a platform that rotates

without friction with an angular speed ωi = 1.8 rev/s, see Fig. 9.6a. The rotational

inertia of the soldier and platform is Ii = 6 kg.m2. When the soldier pulls his arms

close to his body, as shown in Fig. 9.6b, he decreases the rotational inertia of the

system to If = 4 kg.m2. (a) What is the resulting final angular speed of the system?

(b) Is there a gain or a loss in the rotational kinetic energy of the system; and which

of the objects, soldier or platform, gained or lost this energy? (c) If the platform

is a disk of mass M = 10 kg and radius R = 40 cm, what is the moment of inertia

of the soldier when his arms are close to his body?

Fig. 9.6

fI
iI

i f

iL fL

(a) (b)

Solution: (a) Because there is no net external torque acting on the system about

the axis of rotation, we can apply the law of conservation of angular momentum

as follows:

Lf = Li ⇒ If ωf = Iiωi ⇒ ωf = Ii

If
ωi = 6 kg.m2

4 kg.m2 1.8 rev/s = 2.7 rev/s

(b) The ratio of the final to the initial rotational kinetic energy is:

Kf

Ki
=

1
2 If ω

2
f

1
2 Iiω

2
i

= (4 kg.m2)(2.7 rev/s)2

(6 kg.m2)(1.8 rev/s)2 = 1.5
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This gain in rotational kinetic energy to both the solider and platform is due to

the work done by the soldier by moving his arms inwards.

(c) Since If = Is + Idisk, then the moment of inertia of the soldier Is is:

Is = If − 1
2 MR2 = 4 kg.m − 1

2 (10 kg)(0.4 m)2 = 3.2 kg.m2

Example 9.5

A small mass m attached to one end of a light cord is constrained to rotate in a

circular path over a frictionless table. The other end of the cord passes through

a small hole O in the table, see Fig. 9.7. For an initial tension Ti and radius Ri,

the initial angular speed of the mass is ωi = 0.5 rad/s, see Fig. 9.7a. The tension is

then increased gradually to Tf when the cord is pulled until the radius is reduced

to Rf = Ri/3, see Fig. 9.7b. (a) Find the final angular speed of the mass. (b) Find

the ratio of the tensions Tf /Ti.

m
m

iω
iT

O iR

iT

fT
O fR

fT

fω

(a) (b)

Fig. 9.7

Solution: (a) There is no torque about O since the force is central. Therefore,

angular momentum is conserved. Thus:

Lf = Li ⇒ If ωf = Iiωi

If we treat the small mass as a particle with a moment of inertia I = mr2, then we

have:

mR2
f ωf = mR2

i ωi
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Thus: ωf =
(

Ri

Rf

)2

ωi =
(

Ri

Ri/3

)2

ωi = 9ωi = 9 × 0.5 rad/s = 4.5 rad/s

(b) The tension supplies the centripetal force which is needed to constrain the

mass to move in a circle. So, T = mar = mrω2 and we have:

Tf

Ti
= mRf ω

2
f

mRiω
2
i

=
(

Rf

Ri

) (
ωf

ωi

)2

= ( 1
3 )(9)2 = 27

Example 9.6

A man of mass m = 60 kg stands at the edge of a stationary circular platform of

mass M = 400 kg and radius R = 3 m. The platform is mounted on a frictionless

bearing. When the man begins running at a speed v = 4 m/s around the platform’s

edge, the platform begins to rotate in the opposite direction as shown in Fig. 9.8.

What is the angular speed and the period of the platform?

Fig. 9.8

O
R

v
pω

mω

Axis

mL

pL

m

M

Solution: Initially, the total angular momentum is zero, i.e.
→
L = 0. Since there

is no net external torque on the system while the man is running on the platform,
→
Lf of the system will remain zero. Thus:

→
Lf = →

Li ⇒ →
Lm + →

Lp = 0 ⇒ Lm − Lp = 0 ⇒ Lp = Lm

where Lm and Lp are the magnitudes of the man’s and platform’s angular momen-

tum, respectively. Modeling the man as a particle, we can write his moment of

inertia as Im = mR2 and his angular speed about the axis of rotation as ωm = v/R.

Then, treating the platform as a disk with a moment of inertia Ip = 1
2 MR2, we

can use the previous result of conservation of angular momentum Ipωp = Imωm

to find:
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ωp = Im

Ip
ωm = mR2

1
2 MR2

v

R
= 2mv

MR
= 2(60 kg)(4 m/s)

(400 kg)(3 m)
= 0.4 rad/s

The rotational period of the platform is thus:

Tp = 2π

ωp
= 2π

0.4 rad/s
= 15.7 s per revolution

Example 9.7

A man of mass m = 60 kg stands at the edge of a rotating circular platform of

mass M = 220 kg and radius R. The platform is mounted on a frictionless bearing.

Initially, the angular speed of the system is ωi = 0.5 rad/s. The man starts to walk

slowly and radially towards the center from the edge at ri = R, see Fig. 9.9. What

is the angular speed of the system when the man reaches a radius of rf = R/2?

Fig. 9.9

iω

Axis

m

M

R

ir = R

Solution: The angular speed changes due to the change in the moment of inertia

of the system during the walk. We model the man as a particle in this example.

Since there is no net external torque on the system while the man is walking on

the platform, the angular momentum of the system will remain constant. Thus:

Lf = Li ⇒ If ωf = Ii ωi ⇒ (Ip + Imf ) ωf = (Ip + Imi) ωi

where the moment of inertia of the platform about the rotational axis is con-

stant during the man’s walk and given by Ip = 1
2 MR2. In addition, the initial

and final moment of inertia of the man about this axis are Imi = mr2
i = mR2 and

Imf = mr2
f = mR2/4, respectively. Therefore:

( 1
2 MR2 + 1

4 mR2)ωf = ( 1
2 MR2 + mR2)ωi
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( 1
2 M + 1

4 m)ωf = ( 1
2 M + m)ωi

ωf =
1
2 M + m

1
2 M + 1

4 m
ωi =

1
2 × 220 kg + 60 kg

1
2 × 220 kg + 1

4 × 60 kg
0.5 rad/s = 0.68 rad/s

Note that ωf is independent of R and that ωf > ωi as expected.

Example 9.8

A student is sitting on a stationary stool that can rotate freely. This student is

holding the axle of a rotating wheel whose moment of inertia about its axle is Iw =
1.5 kg.m2, see Fig. 9.10a. The rotating wheel has an angular speed ωi = 4 rev/s

and its angular momentum
→
Lw points upward. When the student inverts the wheel,

its angular momentum becomes −→
Lw, and the system (student+stool+wheel) starts

rotating about the stool’s axle, see Fig. 9.10b. The moment of inertia of the system

about the stool’s axle is Isys = 7.5 kg.m2. What is the angular speed of the system

after the inversion?

Fig. 9.10

sysL

(a) (b)

wω

Lw Lw−

wω
sysω

Solution: The torque applied by the student to invert the wheel is internal to the

system. Since there is no net external torque on the system, the angular momentum

about any vertical axis is conserved. Initially, the total angular momentum of the

system
→
Li comes entirely from the wheel. Thus:
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→
Li = →

Lw

After inverting the wheel, its angular momentum becomes −→
Lw. For the total

angular momentum to be conserved, the system must start rotating in the opposite

direction with an angular momentum
→
Lsys, so:

→
Lf = →

Lsys + (−→
Lw)

Conservation of the angular momentum before and after the inversions of the

wheel gives:

→
Lf = →

Li
→
Lsys − →

Lw = →
Lw

→
Lsys = 2

→
Lw ⇒ Lsys = 2Lw ⇒ Isys ωsys = 2Iwωw

This yields: ωsys = 2Iw

Isys
ωw = 2 × 1.5 kg.m2

7.5 kg.m2 4 rev/s = 1.6 rev/s

Example 9.9

Figure 9.11 shows a simple clutch which consists of two cylindrical disks that

can be pressed together to connect two sections of an axle in a machine. The

two disks have masses M1 = 5 kg and M2 = 7 kg, and have equal radii R = 0.5 m.

Disk M1 is accelerated from rest to an angular speed ω1 = 6 rad/s in a time interval

�t = 2.5 s. (a) Find the angular momentum of disk M1. (b) Find the average torque

required to accelerate M1 to ω1 = 6 rad/s. (c) When disk M2 (initially at rest) is

coupled to disk M1 such that they rotate as one unit, what is their angular speed

after coupling?

Solution: (a) The angular momentum of disk M1 is:

L1 = I1ω1 = 1
2 M1R2ω1 = 1

2 (5 kg)(0.5 m)2(6 rad/s) = 3.75 J.s

(b) The average torque required to accelerate M1 is:

τ ext = �L

�t
= Lf − Li

�t
= 3.75 J.s − 0

2.5 s
= 1.5 m.N
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Fig. 9.11

1
1M

R 2M

R

(c) When the stationary disk M2 is coupled with M1, each exerts a torque on

the other, and there are no external torques in effect. Thus, conservation of angular

momentum leads to:

→
Lf = →

Li ⇒ (I1 + I2)ω2 = I1ω1

Thus:

ω2 = I1

I1 + I2
ω1 = M1

M1 + M2
ω1 = 5 kg

5 kg + 7 kg
6 rad/s = 2.5 rad/s

Example 9.10

Figure 9.12 shows a top view of three identical rods that are rigidly con-

nected at one end at O and make an angle of 120◦ with each other. Each

rod has a mass M and a length d, and the entire assembly is rotating hori-

zontally with an initial angular speed ωi about a vertical axle passing through

O. A ball of clay of mass m moving horizontally with a speed v collides

perpendicularly with the tip of one of the rods and sticks to it (i.e. the collision is

completely inelastic). What is the final angular speed of the system?

Fig. 9.12

d

iω

m

O

M

fω

m

O
MM

M

MM

Just before collision Just after collision

Top view
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Solution: Just before the collision, the initial angular momentum of the clay

about O is clockwise with magnitude Lc,i = mvd and the initial angular momen-

tum of the rod assembly is also clockwise with magnitude Lr,i = Irωi. We have

Ir = 3(Md2/3)= Md2 as obtained from Fig 9.12. Thus, Lr,i = Md2ωi and the total

initial angular momentum of the system about the axle is:

Li = Lc,i + Lr,i = mvd + Md2ωi

Just after collision, the system is composed of the clay with moment of inertia md2

attached to the assembly having moment of inertia Ir = Md2. Thus, the system

has moment of inertia Isys = md2 + Md2 and the total angular momentum of the

system about the axle is:

Lf = Isysωf = (m + M)d2ωf

During the impact (internal forces cancel), no external forces acting on the system

have a torque about the rotational axis. Thus, conservation of angular momentum

before and after the collision gives:

Lf = Li ⇒ ωf = mvd + Md2ωi

(m + M)d2

9.3 The Spinning Top and Gyroscope

In all our previous studies, the axis of rotation either stayed fixed or was moving and

kept moving in the same direction. However, a variety of new physical phenomena

can occur when the axis of rotation changes its direction.

It is quite natural to wonder why a top spinning rapidly about its axis of symmetry

does not fall over, even when its center of mass is not directly above its tip, see

Fig. 9.13. In this figure, the top rotates rapidly about its axis of symmetry with angular

speed ω. At the same time, this axis rotates slowly about the vertical direction (the

z-axis) with angular speed 	 (capital Greek omega), where usually 	� ω. The

rotation of the top’s axis about the vertical is called precession.

The essential features of the two rotations can be understood by examining the

effect of the net torque →
τext on the top’s angular momentum

→
L . During the rotational
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processes, the only two effective forces on the top are the weight M→g acting at the

CM and the normal force
→
N acting upward on the tip O. The normal force produces

zero torque about the tip, while the weight produced a torque →
τext = →r × M→g about

O. The direction of →
τext is perpendicular to the plane containing →r and M→g . Also,

→
τext is perpendicular to

→
L , since →r and

→
L are pointing in the same direction. In

addition, →
τext always lies in the x y-plane.

Fig. 9.13 A top rotating with

angular velocity →ω about its

symmetry axis and

experiencing precession about

the vertical axis with angular

velocity
→
	

x

y

z

dL

L
L

CM

MgN
r

O

ext

d

Based on Eq. 9.7, the applied torque and angular momentum on the top are related

through →
τext = d

→
L /dt. Accordingly, during time interval dt, the change in angular

momentum d
→
L will be as follows:

d
→
L = →

L′ − →
L = →

τext dt (9.15)

This relation indicates that the change in momentum d
→
L has the same direction

as →
τext. But since →

τext is perpendicular to
→
L , then d

→
L is also perpendicular to

→
L .

Therefore, the magnitude of
→
L does not change (| →

L′ | = |→L |) but only its direction

changes perpendicular to d
→
L , as shown in Fig. 9.13. That is, the upper end of the

top’s axis moves in a horizontal circle. In other words, →
τext and d

→
L rotate so as to be

horizontal and perpendicular to
→
L .

To determine the angular velocity of precession, 	, we notice that dL in Fig. 9.13

is related to the angle dφ by the relation:

dL = L sin θ dφ (9.16)
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Substituting with dφ from this relation into the angular velocity of precession 	 =
dφ/dt and using τext = dL/dt, we get:

	 = dφ

dt
= 1

L sin θ

dL

dt
= τext

L sin θ
(9.17)

But |→τext| = |→r × M→g | = rMg sin(180◦ − θ) = rMg sin θ, then 	 becomes:

	 = Mgr

L
(9.18)

Using Eq. 9.12, we can write L = Iω, where I and ω are the moment of inertia

and angular speed of the spinning top about its axis of symmetry. Then the top’s

precessional angular speed becomes:

	 = Mgr

Iω
(9.19)

This relation is valid only when 	 � ω, and this condition is satisfied if ω is large. If

this condition is not fulfilled, the motion of the top becomes much more complicated.

Using 	 = 2π/Tp and ω = 2π/Ts, where Tp is the precession period and Ts is

the spinning period, we find that the period of precession Tp is given by:

Tp = 4π2I

MgrTs
(9.20)

In fact, Eqs. 9.19 and 9.20 also apply to gyroscopes. A gyroscope is a device

for measuring or maintaining orientation, based on the concept of conservation of

angular momentum.

The toy gyroscope shown in Fig. 9.14 has one end of its axle resting on a sup-

port (assumed to be a frictionless pivot), while the other end is free and precessing

horizontally with angular speed 	. A symmetric wheel attached to this axle spins

rapidly about its axis with a large angular speed ω (like the top of Fig. 9.13).

Based on our findings for the spinning top, let us analyze the behavior of the toy

gyroscope of Fig. 9.14. The wheel is rotating about its axis of symmetry with an

angular speed ω and has an initial angular momentum
→
L along the x-axis. Since

→
τext and d

→
L are along the y-axis and perpendicular to

→
L , this causes the direction

of
→
L to change, but not its magnitude. Therefore, the changes d

→
L are always in

the horizontal xy-plane. Consequently, the angular momentum
→
L and the wheel axis
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with which the wheel moves are always horizontal. This means that the axis of the

wheel does not fall, but will precess with the angular speed 	 given by Eq. 9.19.

Fig. 9.14 A toy gyroscope is

a wheel rotating with an

angular speed ω about an axis

supported at one end while the

other is free. During time dt,

the torque →τ ext and the change

in angular momentum d
→
L are

perpendicular to
→
L , which

rotates in the xy-plane with a

precessional angular speed 	

y

x

Mg

N

r L

ext

dL

Pivot

Wheel

O

z

Example 9.11

Assume that the cylindrical wheel of the gyroscope of Fig. 9.14 has a radius

R = 4 cm and a center of mass located 3 cm from the pivot O. If the gyroscope

takes 5 s for completing one revolution of precession, what is the spinning angular

speed of the wheel and its period?

Solution: The precessional angular speed about the z-axis is:

	 = 1 rev

5 s
= 2π rad

5 s
= 0.4 π rad/s = 1.257 rad/s

The moment of inertia of a cylindrical wheel about its axis of symmetry is

I = 1
2 MR2 and its weight is Mg. From Eq. 9.19:

ω = Mgr

I	
= Mgr

( 1
2 MR2)	

= 2gr

R2	

= 2(9.8 m/s2)(0.03 m)

(0.04 m)2(1.257 rad/s)
= 292.4 rad/s = 46.5 rev/s

Thus, the spinning period is: Ts = 2π

ω
= 2π rad

292.4 rad/s
= 2.15 × 10−2 s
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9.4 Exercises

Section 9.1 Angular Momentum of Rotating Systems

(1) Calculate the angular momentum of a particle of mass m = 2 kg that has a

velocity →
v = (2

→
i + 3

→
j ) m/s when its position vector is →r = (3

→
i − 4

→
j ) m.

(2) Two cars, each having a mass m = 1,500 kg, are moving in a horizontal circle

of radius r = 10 m with the same speed v = 10 m/s. The circle is centered at the

origin O in the xy-plane, and the positive z-axis is directed upwards. If one of

them is moving clockwise and the other counterclockwise, see Fig. 9.15, find

the angular momentum of each car about O.

Fig. 9.15 See Exercise (2)

O

r

x

y

m

m

(3) A particle of mass m = 2 kg has a position vector that depends on time t and

is given by →r = (3t
→
i − 4t2→

j ) m. Find the angular momentum of the particle

as a function of time.

(4) A particle of mass m is moving horizontally with constant velocity →
v as shown

in Fig. 9.16. Find the magnitude and direction of the angular momentum of

the particle,
→
Li , (i = 1, 2, . . . , 8), respectively about the eight points Oi, (i =

1, 2, . . . , 8).

Fig. 9.16 See Exercise (4)

m

dd

d

d

1O
2O 3O

4O

5O6O7O

8O
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(5) A ball of mass m = 0.5 kg is moving horizontally with a speed v = 10 m/s at

the instant when its position is identified in Fig. 9.17. (a) What is the angular

momentum of the ball about O at this instant? (b) Neglecting air resistance,

find the rate of change of its angular momentum about O at this instant.

Fig. 9.17 See Exercise (5)

30

O

m

r

6 mmg

(6) By definition, kinetic energy K = 1
2 mv2, where m and v are the mass and speed

of a particle, respectively. Show that the kinetic energy of a particle moving

in a circular path is K = L2/2I, where L and I are, respectively, the angular

momentum and moment of inertia of the particle about the center of the circle.

(7) A canonical pendulum consists of a bob of mass m attached to the end of a

cord of length �. The bob whirls around in a horizontal circle of radius r at a

constant speed v while the cord always makes an angle θ with the vertical, see

Fig. 9.18. Show that the magnitude of the angular momentum of the bob about

its point of support O is given by:

L =
√

m2g�3 sin θ tan θ

Fig. 9.18 See Exercise (7)

m

O
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(8) Two identical particles 1 and 2 have respective position vectors →r1 and →r2 with

respect to an arbitrary origin O. The two particles have equal and opposite

linear momenta →p and −→p as shown in Fig. 9.19. Show that the total angu-

lar momentum of this system is independent of the choice of the origin and

independent of where the traveling particles are located.

Fig. 9.19 See Exercise (8)

O

p

p

2r

1r

1

2

(9) Two particles of masses m1 = 2 kg and m2 = 3 kg are joined by a rod of mass

M = 0.5 kg and length d = 0.75 m. The assembly rotates freely in the xy-plane

about a pivot through the center of the rod, as shown in Fig. 9.20. Find the

angular momentum of the system when the speed of each particle is v = 6 m/s.

Fig. 9.20 See Exercise (9)

O
x

y

d

1m

2m

M

(10) Consider the seconds hand of a particular analog clock to be a thin rod of

length � = 14 cm and mass m = 5 g, see Fig. 9.21. (a) If the seconds hand rotates

constantly, what is its angular speed? (b) Find the magnitude of the angular

momentum of the seconds hand about an axis perpendicular to the center of

the clock’s face.
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Fig. 9.21 See Exercise (10)
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(11) Three identical particles, each of mass m = 0.5 kg, are attached at equal dis-

tances from one end of a rod of length � = 2 m and mass M = 3 kg, see Fig. 9.22.

The system is rotating with angular speed ω = 2 rad/s about an axis perpendic-

ular to the rod through the free end at O. (a) What is the moment of inertia of

the system about O? (b) What is the angular momentum of the system about

O?

Fig. 9.22 See Exercise (11)

a

Pivot

a

a

O

m

M m

m

(12) Each of two identical particles of mass m = 0.5 kg attached at one end of two

identical rods each of length a = 0.2 m and mass M = 0.3 kg. The other ends

of the two rods are mounted perpendicular to a lightweight axle such that

the distance between the rods is d = 0.6 m, see Fig. 9.23. The axle rotates at

ω = 4 rad/s. (a) What is the total angular momentum of the two particles about

the CM of the system? (b) What is the total angular momentum of the two rods

about the axle? (c) What angle does the total angular momentum of the whole

system make with the axle?

(13) Three identical thin rods, each of mass m and length R, are fastened together

to form the letter H. A circular hoop, of mass m and radius R, is fastened to the

rods to form the rigid structure shown in Fig. 9.24. The rigid structure rotates
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with a constant angular speed about a vertical axis with a period of rotation T .

(a) Find an expression for the structure’s moment of inertia and angular momen-

tum about the axis of rotation. (b) Evaluate the two expressions of part (a) when

m = 0.5 kg, R = 0.1 m, and T = 2 s.

Fig. 9.23 See Exercise (12)

M

a

a

CM d

m

M

Axle

m

x
y

Fig. 9.24 See Exercise (13) z

R

Axle

m
m m

R
R

m

(14) A block of mass m1 located on a smooth horizontal surface is connected by a

light non-stretchable cord that passes over a pulley to a second block of mass

m2, which hangs vertically, see Fig. 9.25. The pulley is a uniform cylinder of

mass M and radius R, and it rotates freely about its axle. (a) Find an expression

for the net external torque about the pulley’s axle. (b) Find an expression for

the net angular momentum about the pulley’s axle. (c) Find an expression for

the magnitude of the acceleration of the two blocks and its value if m1 = 6 kg,

m2 = 3 kg, M = 2 kg, R = 0.1 m, and g = 10 m/s2.

(15) A disk has a moment of inertia I = 2 kg.m2 about its axis of symmetry. The

angular speed of the disk depends on the time t by ω = (12 rad/s3) t2. (a) Find
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the angular acceleration α and the angular momentum L of the disk as a function

of time, and find their values at t = 2 s. (b) Show that using the expressions for

α and L leads to the same expression for the net torque on the disk as a function

of time, and find its value at t = 2 s.

Fig. 9.25 See Exercise (14)

m1

m

M

2

R

(16) A uniform solid sphere of mass M = 10 kg and radius R = 10 cm turns counter-

clockwise with an angular speed ω = 5 rad/s about a vertical axis that touches

its surface, see Fig. 9.26. What is the magnitude and direction of its angular

momentum about this axis?

Fig. 9.26 See Exercise (16)

M

z

RR

(17) A boy of mass m = 40 kg is standing on the rim of a merry-go-round that is

rotating with angular speed ω = 0.5 rev/s about an axis through its center. The

merry-go-round is a uniform disk of mass M = 120 kg and radius R = 3.5 m.

Find the total angular momentum of the boy-disk system by treating the boy

as a point.

(18) Two wheels of radii Ra and Rb are connected by a non-stretchable belt that

does not slip on their circumferences, see Fig. 9.27. The radius Ra is four times
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the radius Rb. Find the ratio of the moment of inertia Ia/Ib and mass Ma/Mb

if both wheels have: (a) the same angular momentum about their central axis,

and (b) the same rotational kinetic energy.

Fig. 9.27 See Exercise (18)

aR

bR
a

b

(19) If an impulsive force F(t) with moment arm R acts on a rigid body of moment

of inertia I for a short time �t, then show that the angular speed of the body

will change from an initial value ωi to a final value ωf according to the angular

impulse formula:

JR =
�

τdt =FR�t = I(ωf − ωi)

where F is the average value of the force during the time it acts on the body.

[Hint: It is the rotational analogy of Eq. 7.9].

(20) A wheel of radius Ra and moment of inertia Ia is rotating about its central axle

with angular speed ωa. Another small wheel is stationary and has a radius Rb

and moment of inertia Ib about its central axle. The smaller wheel is moved

until it touches the larger wheel and rotates due to the friction between them,

as in the upper part of Fig. 9.28. After the initial slipping period is over, the

two wheels rotate at constant angular speeds ω′
a and ω′

b, see the lower part of

Fig. 9.28. By applying the angular impulse relationship of Exercise 19, find the

final angular speed ω′
b of the small wheel.

(21) A block of mass m1 located on a rough horizontal surface is connected by a

light non-stretchable cord that passes over a pulley to a second block of mass

m2, which is allowed to move on a rough inclined plane of angle θ, as shown

in Fig. 9.29. The pulley is a uniform cylinder of mass M and radius R, and

rotates freely about its axle. The coefficients of kinetic friction for the two

blocks on the horizontal and inclined planes are μk1 = 0.35 and μk2 = 0.5,

respectively. (a) Draw free-body diagrams of the two blocks and the pulley.

(b) Find the acceleration of the two blocks and the tensions in the two sections
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of the cord when m1 = 2 kg, m2 = 5 kg, M = 10 kg, R = 0.1 m, sin θ = 4/5,

cos θ = 3/5, and g = 10 m/s2. (c) If the system starts from rest, find the angular

momentum of the pulley about its axis as a function of time.

Fig. 9.28 See Exercise (20)
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Fig. 9.29 See Exercise (21)
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M,R

m2

a,

a,

(22) Determine the angular momentum of the Earth: (a) about its rotational axis

(assume that Earth is a uniform sphere of mass M = 6.0 × 1024 kg and radius

R = 6.4 × 106 m), and (b) about the Sun (assume Earth to be a particle at

1.5 × 1011 m from the Sun).

(23) Two blocks having masses m1 and m2 (m2 > m1) are connected to each other by

a light non-stretchable cord that passes over two identical pulleys; each pulley

is a uniform cylinder with a mass M and radius R, which rotates freely about its

axle, as shown in Fig. 9.30. Assume no slipping happens between the cord and
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the pulleys. (a) Find an expression for the net external torque of each pulley

about its axle; then find the total net external torque of the system. (b) Find an

expression for the net angular momentum of each pulley about its axle; and then

find the total net angular momentum of the system. (c) Apply �τext = d L/d t

onto the whole system to find the acceleration of each block and the tensions

T1, T2, and T3 in the cord.

Fig. 9.30 See Exercise (23)
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M M
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1T

Section 9.2 Conservation of Angular Momentum

(24) A person is rotating on a frictionless surface at a rate of 1.5 rev/s with his arms

at his sides. When he raises his arms to the horizontal position, the speed of

rotation decreases to a rate of 0.75 rev/s. What is the percentage increase in

moment of inertia of the person?

(25) A skater has a moment of inertia 4.5 kg.m2 when rotating on a frictionless

surface at a rate of 1 rev/s. What is her final moment of inertia if she increases

her spin to the maximum value of 2.5 rev/s? How can she accomplish this

change?

(26) A diver pushes a swimming pool board to jump into the air and acquires an

initial angular momentum about her center of mass. Then she curls her body

about her center of mass (by tucking in her arms and legs) to reduce her moment

of inertia by a factor of 3.25. If she is able to make 3 revolutions in 2.25 s while

she is in that tucked position, what was her initial angular speed?

(27) A uniform horizontal rod of mass M and length d rotates initially with angular

speed ωi about a vertical frictionless axle running through its center. Then two

stationary small balls of clay, each of mass m, are made to stick to each end of

the rod. What is the final angular speed of the system?
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(28) A merry-go-round of radius R = 2.5 m and moment of inertia I = 300 kg.m2

is rotating at 10 rev/min. A boy of mass m = 40 kg jumps onto the merry-go-

round and manages to sit down quickly on its rim. What is the final angular

speed of the system?

(29) A merry-go-round of a mass M = 210 kg and radius R = 5.5 m is mounted on

a frictionless bearing. While a man of mass m = 90 kg is standing on its outer

edge, the system is rotating with an angular speed ωi = 0.2 rev/s. Then, slowly,

the man walks 3 m towards the center of the merry-go-round and stops. How

fast will the merry-go-round be rotating after he stops?

(30) Rather than walking inwards, suppose the man in Exercise 29 decided to jump

radially outwards relative to the merry-go-round. What will be the angular

speed of the merry-go-round?

(31) A boy of mass m = 30 kg stands on the edge of a stationary small merry-go-

round of moment of inertia Im = 150 kg.m2 and radius R = 2 m. The merry-go-

round can rotate freely without friction about its axis. The boy jumps off the

merry-go-round in a tangential direction with a linear speed v = 2 m/s. What

is the angular speed of the merry-go-round after the boy leaves it?

(32) A person of mass m = 80 kg (treated as a point) stands at the center of a freely

rotating cylindrical platform of a mass M = 120 kg and radius R = 4 m. The

platform is mounted on a frictionless bearing and rotates with an angular speed

ωi = 1.5 rad/s. The person walks radially and slowly to the edge of the platform

and stops. (a) What is the final angular speed of the system? (b) Find the initial

and final total rotational energy of the system.

(33) A uniform disk of radius R and a uniform rod of length 2R have the same mass

M. The disk is rotating freely without friction about its axle with angular speed

ωi = 3 rev/s while the rod is at rest and has its center coinciding with the disk’s

axle, see Fig. 9.31. The rod is dropped onto the disk and sticks to it such that

their centers coincide (i.e. the collision is completely inelastic). What is the

final angular speed of the system?

(34) Two disks have a common frictionless axle and moments of inertia I1 = 5 kg.m2

and I2 = 10 kg.m2. Initially, disk I1 is rotating with an angular speed ωi = 6 rev/s

about the axle, while disk I2 is not rotating. Disk I2 then drops onto disk I1, see

Fig. 9.32. Due to the friction between their surfaces, the two disks eventually

reach the same angular speed ωf . (a) Find the final angular frequency ωf . (b)

Find the percentage decrease in the rotational kinetic energy.
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Fig. 9.31 See Exercise (33)
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Fig. 9.32 See Exercise (34)
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(35) An asteroid of mass m = 106 kg is traveling at a speed of v = 4 × 104 m/s rel-

ative to the Earth. The asteroid hits the Earth tangentially at the equator in the

direction opposite to its rotation and gets embedded at its surface, see Fig. 9.33.

Assume that Earth is a uniform sphere of mass M = 6.0 × 1024 kg and radius

R = 6.4 × 106 m. Since no net external forces acting on this system can produce

a torque about the axis of the Earth (all forces and torques are internal), then

the angular momentum of the system is conserved about the axis of the Earth.

As a result of this collision, find the percentage change in the Earth’s angular

speed.

Fig. 9.33 See Exercise (35)
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(36) Suppose the asteroid in Exercise 35 hits the equator circle with an incident angle

θ = 45◦, see Fig. 9.34. By what factor does this completely inelastic collision

affect the angular speed of the Earth?

Fig. 9.34 See Exercise (36)
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m
R

Equator circle
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(37) A thin vertical rod of mass M and length d can rotate about a frictionless pivot at

its upper end, see Fig. 9.35. A small clay ball of mass m traveling horizontally

with a speed v hits the rod at its center and sticks to it. (a) Find the angular

speed of the system just after the collision. (b) How high does the lower end

rise?

f

m
dM

OPivot

Just before
collision

Just after
collision

h

CM

M m

CM

At maximum
height

2H h

M m

Fig. 9.35 See Exercise (37)

(38) A stationary thin horizontal rod of mass M and length d can rotate about a

frictionless vertical axle through its center at O, see Fig. 9.36. A small clay ball

of mass m traveling horizontally with a speed v hits the rod at one of its ends

and sticks to it. (a) Find the angular speed of the system just after the collision.

(b) What is the fractional loss in mechanical energy due to the collision?

(39) A stationary horizontal wooden stick of length d = 75 cm and mass M = 0.4 kg

can rotate about a frictionless vertical axle through its center at O, see Fig. 9.37.
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A bullet of mass m = 5 × 10−3 kg and horizontal speed vi = 200 m/s is shot into

the stick midway between the axle and one end. The bullet penetrates the stick

in a very short time and leaves with a speed vf = 100 m/s. (a) Find the angular

speed of the stick after the collision. (b) Find the percentage decrease in total

energy.

Fig. 9.36 See Exercise (38)
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Fig. 9.37 See Exercise (39)
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(40) A stationary thin rod of mass M and length d rests on a frictional table.

A small clay ball of mass m traveling horizontally with a speed v hits the

rod perpendicularly at a point d/4 from its center and sticks to it, see Fig. 9.38.

Determine the translational and rotational motion of the rod after the collision.

(41) A student stands at the center of a turntable with his arms outstretched. In

each hand, he holds a 10 kg-dumbbell at 1 m from the axis of the turntable.

The turntable is rotating about a vertical frictionless axle with angular speed

ωi = 0.5 rev/s. (a) Find his final angular speed if he pulls each dumbbell to
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his stomach at 0.2 m from the axis of the turntable. The moment of inertia of

the student with his arms outstretched is 4 kg.m2, but it is 3.2 kg.m2 with his

hands at his stomach. (b) Find the initial and final kinetic energy of the system.

Explain the meaning if they are different.

Fig. 9.38 See Exercise (40)
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Section 9.3 The Spinning Top and Gyroscope

(42) To form a top, a uniform disk of mass M = 50 g and radius R = 2 cm is rigidly

attached to an axial rod of negligible mass. The top spins on a frictionless

surface about its axis of symmetry with angular speed ω = 6,000 rev/min. How

much work was done to get the top to spin at that rate?

(43) The center of the disk in exercise 42 is at r = 3 cm from the tip of the top at the

surface of contact to the disk. What is the angular speed of precession of the

top about the vertical axis?

(44) To form a toy gyroscope, a disk of mass M = 150 g and radius R = 6 cm

is mounted at the center of a thin axle of 20 cm length. The disk spins at

ω = 50 rev/s when one end of the axle rests on a stand and the other end pre-

cesses horizontally. What is the angular speed of precession of the top about

the vertical axis?

(45) A top of mass M = 200 g spins about its axis of symmetry with angular speed

ω = 18 rev/s and makes an angle θ = 25◦ with the vertical. It experiences pre-

cession at a rate of 1 rev every 5 s. The center of mass of the top is 4 cm from

its tip. (a) What is the moment of inertia of the top? (b) Find the torque on the

top.
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The physical states of matter can generally be divided into three broad classes: solids,

liquids, and gases, see Fig. 10.1. A solid maintains its shape: it resists the action of

external forces that tend to change its shape or volume. Liquids and gases are fluids.

A fluid can easily change shape, and flows when subjected to a force. The three states

of matter are distinguishable at the microscopic level as follows:

Solid Liquid Gas
Maintans its Shape

Fixed Volume
Shape of the Container

Fixed Volume
Shape of the Container

Volume of the Container

Fig. 10.1 The three states of matter: solid, liquid, and gas

1. A solid is a highly ordered array of atoms or molecules that are bound securely

by mutual electrical forces.

2. A liquid is a crowded assembly of mobile atoms or molecules. Each atom or

molecule is in contact with several neighbors, but is not bound securely to any of

them. As an atom or molecule moves about in a liquid, it collides frequently with

its neighbors.

H. A. Radi and J. O. Rasmussen, Principles of Physics, 303
Undergraduate Lecture Notes in Physics, DOI: 10.1007/978-3-642-23026-4_10,
© Springer-Verlag Berlin Heidelberg 2013
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3. A gas consists of atoms or molecules that are far apart and consequently move

independently, with no forces keeping them together or pushing them apart. Col-

lisions of atoms or molecules in gases are infrequent in comparison to those in

liquids.

10.1 Density and Relative Density

The density (or mass density) of a material is defined as the mass per unit volume. If

a mass m is distributed uniformly over a volume V, the density will be given by the

following equation:

ρ = m

V
(10.1)

The SI unit of density is kg/m3. If the mass is not uniformly distributed, then

Eq. 10.1 defines the average density. The densities of several materials are listed in

Table 10.1.

Table 10.1 Density and relative density comparison (approximates)

Material type Material name Density (kg/m3) Relative density

Gas Helium 0.179 1.79 × 10−4

Air 1.29 1.29 × 10−3

Carbon dioxide 1.98 1.98 × 10−3

Liquid Alcohol 7.9 × 102 0.79

Gasoline 8.6 × 102 0.86

Water 1 × 103 1

Mercury 13.6 × 103 13.6

Solid Glass (common) 2.4 − 2.8 × 103 2.5

Aluminum 2.7 × 103 2.7

Iron 7.86 × 103 7.86

Copper 8.92 × 103 8.92

Silver 10.5 × 103 10.5

Lead 11.36 × 103 11.36

Uranium 19.07 × 103 19.07

Gold 19.3 × 103 19.3
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The relative density of a substance tells us how many times more dense the sub-

stance is than pure water, see Table 10.1. Sometimes we refer to it as the specific

gravity (SG). Thus:

SG = ρ

ρwater
(10.2)

Example 10.1

Calculate the average density of both the Earth and the Sun, given that the

mass and radius of the Earth are mE = 5.98 × 1024 kg and RE = 6.37 × 106 m,

respectively, and the mass and radius of the Sun are mS = 1.99 × 1030 kg and

RS = 6.95 × 108 m, respectively. Compare between the resulting average densi-

ties.

Solution: Matter in the Earth and the Sun is not uniform. In spite of this fact,

we can use Eq. 10.1 to calculate their average density. Using the given radius, we

calculate the volume of the Earth to be:

VE = 4
3πR3

E = 1.08 × 1021 m3

Thus, the average density of the Earth is:

ρE = mE

VE
= 5.98 × 1024 kg

1.08 × 1021 m3 = 5.54 × 103 kg/m3

In comparison to water, the average density of the Earth is 5.54 times more dense

than water.

Similarly, we use the given radius of the Sun to calculate its volume:

VS = 4
3πR3

S = 1.41 × 1027 m3

Thus, the average density of the Sun is:

ρS = mS

VS
= 1.99 × 1030 kg

1.41 × 1027 m3 = 1.41 × 103 kg/m3

In comparison to water, the average density of the Sun is 1.41 times more dense

than water. Although the mass and volume of the Earth are much smaller than the

mass and volume of the Sun, the average density of the Earth is nearly four times

the average density of the Sun. That is:

ρE � 4ρS
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10.2 Elastic Properties of Solids

All solids are to some extent elastic. This means that we can change their dimensions

slightly by pulling, pushing, twisting, and/or compressing them. We shall discuss the

elastic properties of solids by introducing the concepts of stress and strain.

Stress:

Stress is the magnitude of the applied external force that acts perpendicularly

on a unit area of the object.

Strain:

Strain is a measure of the degree of deformation of the object.

It is found that for small stresses, stress is proportional to strain. The propor-

tionality constant is called the elastic modulus and it depends on the material being

deformed, as well as on the nature of the deformation. Therefore:

Elastic modulus = Stress

Strain
(10.3)

This relation is equivalent to Hooke’s law that states: Stress ∝ Strain. In this chapter,

we introduce the three most famous types of deformations and their elastic moduli:

Young’s Modulus:

Measures the resistance of a solid to a change in its length.

Shear Modulus:

Measures the resistance to motion of the planes of solids when sliding over

each other.

Bulk Modulus:

Measures the resistance of a solid (or a liquid) to a change in its volume.
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10.2.1 Young’s Modulus: Elasticity in Length

Young’s Modulus measures the resistance of a solid to a change in its length, which

indicates its stiffness. Consider a metallic long rod of original length L and cross-

sectional area A. When an external force F⊥ is applied perpendicularly to the cross-

sectional area A of a rod, its internal forces resist its distortion. As a final result,

the rod attains equilibrium when its length increases to a new length L + �L and

the magnitude of the perpendicular external force F⊥ exactly balances the internal

forces, see Fig. 10.2a. In light of this, we define the tensile stress and the tensile

strain as follows:

Tensile stress = F⊥
A

(N/m2) (10.4)

Tensile strain = �L

L
(10.5)

The relation between the tensile stress and the tensile strain is linear when the rod is

in its elastic range. When the stress exceeds what is called the elastic limit, the rod

is permanently distorted and will not return to its original shape after the stress is

removed. As the stress is increased even further, the rod will ultimately break, see

Fig. 10.2b.

L

A

F

F

Stress

Strain

Elastic
behaviour

Elasti climit
Breaking

point

(a) (b)

Range of
permanent

deformationL L

Fig. 10.2 (a) A rod of height L and cross-sectional area A. The rod stretches by an amount �L after

application of a tensile stress. (b) The stress versus strain curve for an elastic solid
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We use Eqs. 10.4 and 10.5 to define Young’s modulus, Y, as:

Y = Tensile stress

Tensile strain
= F⊥/A

�L/L
(N/m2) (10.6)

This quantity is used to characterize a solid that is stressed under either tension or

compression. Table 10.2 depicts some values for Y.

Table 10.2 Young’s modulus for different materials (approximates)

Material name Young’s modulus Y × (109 N/m2)

Rubber 0.004

Lead 16

Glass 65 – 78

Aluminum 70

Brass 91

Copper 110

Steel 200

Tungsten 350

Example 10.2

A pendulum consists of a big sphere of mass m = 30 kg hung from the end of a

steel wire that has a length L = 15 m, a cross-sectional area A = 9 × 10−6 m2, and

Young’s modulus Y = 200 × 109 N/m2. Find the tensile stress on the wire and the

increase in its length.

Solution: The applied force on the wire must equal to the weight of the sphere,

i.e. F⊥ = m g. Thus, the tensile stress will be:

Tensile stress = F⊥
A

= m g

A
= (30 kg) × (9.8 m/s2)

9 × 10−6 m2 = 3.27 × 107 N/m2

Using the value of the Young’s modulus Y = 20 × 1010 N/m2 and the length of

the steel wire before stretching L = 15 m, we get:

Y = F⊥/A

�L/L
⇒ �L = F⊥/A

Y
L = 3.27 × 107 N/m2

200 × 109 N/m2 ×15 m = 2.45×10−3 m

Note that this large stress produces a relatively small change in L.
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When we carefully study the deformation of the rod, we find that the rod’s length

L increases by �L in the direction of the force while it radius r decreases by |�r|,
where �r is negative, in a direction perpendicular to the force, see Fig. 10.3. The

tensile strain �L/L of the rod is called the linear strain. The strain −�r/r is called

the lateral strain, and Poisson’s ratio μ is defined as:

μ = Lateral strain

Linear strain
= − �r/r

�L/L
= −L

r

�r

�L
⇒ μ = −L

r

dr

d L
(10.7)

The minus sign is inserted in this definition to make μ positive.

F⊥39.58L

L + Δ L

r - r || Δ
r

A

F⊥

Before

After

Fig. 10.3 The length of the rod will increase by �L and its radius will decrease by �r (exaggerated

scale) after applying a tensile stress F⊥/A

Example 10.3

A cylindrical steel rod has a length of 2 m and a radius of 0.5 cm. A force of

magnitude 2 × 104 N is acting normally on each of its ends. Find the change in its

length and radius, if the Young’s modulus Y is 200 × 109 N/m2 and the Poisson’s

ratio μ is 0.25.

Solution: Using F⊥ = 2 × 104 N, A = π r2 =π × (0.5 × 10−2 m)2 = 7.9 × 10−5

m2, L = 2 m, and Y = 200 × 109 N/m2 in Eq. 10.6, we have:

�L = F⊥L

Y A
= (2 × 104 N)(2 m)

(200 × 109 N/m2)(7.9 × 10−5)
= 2.5 × 10−3 m = 0.25 cm

From the definition of the Poisson’s ratio μ, we have:

� r = −μr�L

L
= −0.25 × (0.5 × 10−2 m)(2.5 × 10−3 m)

(2 m)
= −1.56 × 10−6 m

Note that �L ≈ 1,600 |�r|, i.e. |�r| is extremely small compared to �L.
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10.2.2 Shear Modulus: Elasticity of Shape

Another type of deformation occurs when a solid is subject to a force applied parallel

to one of its surfaces while the opposite surface is kept fixed. Figure 10.4 shows a

cylindrical rod subjected to a linear or torsional shear stress deforming it by an amount

�x due to a force F‖ parallel to the surface area A. As a final result, the shape of

the rod will attain equilibrium when the effect of the shear force F‖ balances exactly

the internal shear forces. For linear shearing, we define the shearing stress and the

shearing strain as follows:

Shearing stress = Tangential acting force

Area of surface being sheared
= F‖

A
(N/m2) (10.8)

Shearing strain = Distance sheared

Distance between surfaces
= �x

h
= tan θ � θ (10.9)

h

A

Fixed end

x

x

Linear shearing Torsional shearing

Top view

F

F F
F

Fig. 10.4 The left part shows a cylindrical rod of height h. The middle part shows a linear shear where

the rod is subject to a shearing force F‖ parallel to each of its surface areas. The rod is deformed through

an angle θ which is defined as the shearing strain. The right part shows a torsional shear when one end of

the rod is kept fixed

The approximation tan θ � θ is valid for small strains. We use Eqs. 10.8 and 10.9 to

define the shear modulus, S, as follows:

S = Shearing stress

Shearing strain
= F‖/A

�x/h
(N/m2) (10.10)

S is also called the modulus of rigidity or the torsion modulus and is significant only

for solids. Table 10.3 depicts some values for S.
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Table 10.3 Shear modulus for different materials (approximates)

Material name Shear modulus S × (109 N/m2)

Rubber 0.001

Lead 6

Glass 23

Aluminum 23

Brass 36

Copper 42

Steel 80

Tungsten 120

Example 10.4

Assume that the rod in Fig. 10.4 has a cross-sectional area A = 2 × 10−3 m2,

length h = 1 m, and is made of brass with a shear modulus S = 36 × 109 N/m2.

How large should the shear force F‖ exerted on each edge of the rod be if the

displacement �x is 0.02 cm?

Solution: The shearing stress on each edge is:

Shearing stress = F‖
A

= F‖
2 × 10−3 m2 = 500 F‖ m−2

The shearing strain is:

Shearing strain = �x

h
= 2 × 10−4 m

1 m
= 2 × 10−4

From the definition of the shearing modulus Eq. 10.10 and the last two results,

we have:

S = Shearing stress

Shearing strain
= 500F‖ m−2

2 × 10−4

Using the given shear modulus value for brass, we get:

36 × 109 N/m2 = 500F‖ m−2

2 × 10−4

Thus: F‖ = (36 × 109 N/m2)(2 × 10−4)/(500 m−2)= 14,400 N = 1.44 × 104 N
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10.2.3 Bulk Modulus: Volume Elasticity

Another type of deformation occurs when an object is subject to an equal increase in

normal forces acting on all its faces. For such a study, it is appropriate to define the

pressure P as the force acting perpendicularly on a unit area of the object. That is:

P = F⊥
A

(N/m2) (10.11)

Hence, we can study the deformation of an object subject to an equal increase in

pressure on all its faces. Figure 10.5 shows a cube of original volume V and face area

A under uniform pressure P. When the force F⊥ on each face increases to F⊥ +�F⊥,

the pressure will increase to P + �P and consequently the volume V will decrease

to V ′ = V − |�V |, where �V is negative, see Fig. 10.5.

V V - V

P

P

P

P

P

P

P + P

P + P

P + P

P + P

P + P

P + P

Fig. 10.5 When the uniform pressure P on each face of a cube of volume V increases to P + �P, its

volume will decrease to V − |�V |.

In light of this, we define the volume stress and the volume strain as:

Volume stress = �P = �F⊥
A

(N/m2) (10.12)

Volume strain = −�V

V
(10.13)

We use Eqs. 10.12 and 10.13 to define the bulk modulus, B, as:

B = Volume stress

Volume strain
= −�F⊥/A

�V/V
= − �P

�V/V
⇒ B = −V

d P

d V
(10.14)
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The minus sign is inserted in Eq. 10.13 to make B a positive number, because an

increase/decrease of pressure always causes a decrease/increase in volume.

Example 10.5

A sphere of lead has a volume V = 0.5 m3 when placed in atmospheric pressure

(Pa � 105 N/m2). The sphere is lowered to a particular depth in the ocean where

the water pressure is P = 108 N/m2 = 1,000 Pa. The bulk modulus B of lead is

8 × 109 N/m2. (a) What is the change in volume of the sphere? (b) What is the

relative density change in lead?

Solution: (a) From the definition of the bulk modulus, we have:

B = − �P

�V/V

The change in pressure is:

�P = P − Pa = 108 N/m2 − 105 N/m2 = 9.99 × 107 N/m2

Using V = 0.5 m3, we can find the change in volume as follows:

�V = − V �P

B
= − (0.5 m3)(9.99 × 107 N/m2)

8 × 109 N/m2 = −6.2 × 10−3 m3

The negative sign indicates a decrease in volume.

(b) We can find the new volume V ′ of lead as follows:

V ′ = V −|�V | = 0.5 m3−|−6.2×10−3 m3| = 0.4938 m3 ⇒ V ′ = 0.9876 V

If the original density of lead is denoted by ρ = m/V, then the new density ρ′

will be:

ρ′ = m

V ′ = m

0.9876 V
= 1.0126

m

V
= 1.0126 ρ

Thus, a thousand times increase in pressure on the surfaces of a sphere of lead

causes a decrease in its volume by about 1.3% and consequently an increase in

density by the same percentage.
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Table 10.4 depicts some values for the bulk modulus B.

Table 10.4 Bulk modulus for different materials (approximates)

Material name Bulk modulus B × (109 N/m2)

Rubber 3

Lead 8

Glass 37

Aluminum 70

Brass 61

Copper 140

Steel 160

Tungsten 200

10.3 Fluids

What is a Fluid?

Liquids and gases are fluids. The liquid state of any substance always exists at a higher

temperature than its solid state. The reason for lumping liquids and gases together

and calling them fluids is because neither liquids nor gases (such as liquid water and

steam, for example) have a fairly rigid three-dimensional array of atoms/molecules

as compared to solids (such as ice, for example).

In contrast to solids, fluids can flow and conform to the boundaries of any container

in which they are placed. This is because a fluid cannot sustain a force that is tangent

to its surface. In the language of the previous section, a fluid flows because it cannot

withstand a shearing stress. On the other hand, a fluid can exert a force in a direction

perpendicular to its surface.

Pressure in Fluids

Figure 10.6 shows a pressure device inside a fluid-filled vessel. The device consists

of a light piston of area � A fitting in a vacuumed cylinder and resting on a light

spring. As we insert the device into the fluid, the fluid will compress the piston due

to the effect of a normal force of magnitude �F⊥. Using Eq. 10.11, after replacing

F⊥ by F, we define the average pressure exerted by the fluid on the piston by the

following relation:
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P = �F

�A
(N/m2) (10.15)

Fig. 10.6 A pressure device

inside a fluid-filled vessel. The

pressure is measured by the

relative position of a movable

piston in the device

Vacuum

F
APressure

Device

The pressure at any point in the fluid is the limit of the above ratio as �A of the

piston, centered on that point, approaches zero. That is:

P = lim
� A→0

�F

�A
= dF

dA
(N/m2) (10.16)

It was found by experiment that at a given point in a static fluid, the pressure P

given by Eq. 10.16 has the same value no matter how the pressure device is oriented.

Moreover, all points at the same depth from a liquid surface have the same value of

pressure.

The SI unit of pressure is N/m2, which is given the special name pascal (Pa).

That is:

1 Pa = 1 N/m2 (10.17)

Atmospheric pressure at sea level Pa (abbreviated by atm) is:

1 atm = 1.01 × 105 Pa � 105 Pa (10.18)

The pascal is also related to the torr, the bar, and the pound per square inch, which

are other common (non-SI) pressure units. The torr unit (named after Evangelista

Torricelli who invented the mercury barometer) was formerly called millimeter of

mercury (mm Hg). The bar unit is usually used in meteorological sciences. Finally,

the pound per square inch (lb/in2) is often abbreviated by psi. Note that:

1 atm =

⎧⎪⎨
⎪⎩

760 torr
or = 14.7 psi

760 mm Hg

and 1 bar = 105 Pa (Exactly) (10.19)
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Table 10.5 depicts some approximate pressure values.

Table 10.5 Some approximate pressures

Locations Pressure (Pa) Pressure (atm)

Center of the Sun 2 × 1016 2 × 1011

Center of the Earth 4 × 1011 4 × 106

Highest laboratory pressure 2 × 1010 2 × 105

Deepest Ocean 1.1 × 108 1.1 × 103

Automobile tire (excess of 1 atm) 2 × 105 2

Atmosphere at sea level 1.0 × 105 1

Normal blood pressure (excess of 1 atm)a 0.16 × 105 0.16

Best laboratory vacuum 10−12 10−17

a The systolic pressure that corresponds to 120 mm Hg on the physician’s pressure gauge.

To study the mechanics of fluids, we need to deal with:

1. Fluids at rest, or fluid statics (hydrostatics)

2. Fluids in motion, or fluid dynamics (hydrodynamics)

10.4 Fluid Statics

Variation of Pressure with Depth

As indicated in the previous section, all points at the same depth from a liquid surface

have the same value of pressure. The variation of pressure P with depth h in a liquid

of density ρ open to the atmosphere can be found by considering a small horizontal

area dA at that depth, as shown in Fig. 10.7. The force dF that acts downwards on

dA must be equal to the weight of the liquid column of height h plus the weight of

the atmospheric air column. Accordingly, we have:

Volume of the liquid column = h dA

Mass of the liquid column = h dAρ

Weight of the liquid column = h dAρg

Weight of the atmospheric air column = Pa dA

Total force dF on the horizontal area d A = Pa dA + h dAρg

Thus, from Eq. 10.16, the pressure P = d F/d A at depth h gives:

P = Pa + ρgh ⇒ dP = P − Pa = ρgh (10.20)
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Fig. 10.7 The pressure P at a

depth h below the surface of a

liquid open to the atmosphere

is given by P = Pa + ρgh

h

dA

aP

P

This relation verifies that the pressure is the same at all points having the same

depth from a liquid surface. Moreover, the pressure is not affected by the shape of

the container, see Fig. 10.8.

Fig. 10.8 The pressure in the

liquid is the same at all points

having the same depth. The

shape of the vessel does not

affect the pressure

Example 10.6

Find the pressure at depths of 10 m and 10 km in ocean water. Assume Pa ≡
1 atm � 105 Pa, ρ � 103 kg/m3, and g � 10 m/s2.

Solution: The pressure at a depth h = 10 m will be:

P = Pa + ρgh = 105 Pa + (103 kg/m3)(10 m/s2)(10 m)

= 2 × 105 Pa = 2 atm

The pressure at a depth h = 10 km = 104 m will be:

P = Pa + ρgh = 105 Pa + (103 kg/m3)(10 m/s2)(104 m)

= 1,001 × 105 Pa � 1,000 atm
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The fact that the pressure in a fluid depends only on depth indicates that any

increase in pressure at the liquid surface must be transmitted to every point in the

liquid. This fact is known as Pascal’s law or Pascal’s principle.

An important application of Pascal’s law is the hydraulic lever illustrated in

Fig. 10.9. Let an external input force of magnitude F1 be exerted downwards on

a small piston of area A1. The pressure will be transmitted through an incompress-

ible fluid which then exerts an output force F2 on a larger piston of area A2, balancing

the load.

Fig. 10.9 A hydraulic device

used to magnify a force.

However, for small strokes

(small d1), the input and

output work done is the same A 1

A 2

F 1

F 2

.

d 2

5
.1

0

Load

Input
Output

d 1

The pressure on both leveled pistons is the same. That is:

P = F1

A1
= F2

A2
⇒ F2 = F1

A2

A1
(Leveled pistons) (10.21)

Thus, the force F2 is larger than F1 by the multiplying factor A2/A1. Hydraulic

brakes, car lifts, etc make use of this principle.

When we move the input piston downwards a distance d1, the output piston moves

upwards a distance d2, such that the same volume V of the incompressible liquid is

displaced at both pistons. Then, we get:

V = A1d1 = A2d2 ⇒ d2 = d1
A1

A2
(10.22)

Thus, for A2 > A1, the output piston moves a smaller distance than the input piston.

On the other hand, for small values of d1, we can use Eq. 6.1 to find the following

input/output relationship:

W2 = F2d2 =
(

F1
A2

A1

) (
d1

A1

A2

)
= F1d1 = W1 (for small d1 only) (10.23)
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which shows that the work W1 done on the input piston by the applied force equals

the work W2 done by the output piston in lifting the load.

Measuring Pressures

The Mercury Barometer

Figure 10.10 shows a very basic mercury barometer used to measure atmospheric

pressure. Here, a long glass tube is first filled with mercury and then inverted with

its open end in a container filled with mercury.

Fig. 10.10 A closed-end

mercury barometer

h PaPa

P=0

The closed end of the tube is nearly in a state of vacuum, i.e. with P � 0. Moreover,

the pressure is the same at all points having the same horizontal level in mercury.

Therefore, according to Figure 10.10, the atmospheric pressure Pa will be given by:

Pa = ρgh, where ρ is the density of mercury and h is the height of the mercury

column.

The height of the mercury column is measured only if the barometer is set at a

place where g = 9.80665 m/s2 and the temperature of the mercury is 0◦C. At this

temperature, the mercury has a density ρ = 13.595 × 103 kg/m3 and the height of

mercury is measured to be exactly 760 mm. Therefore:

Pa = ρgh

= (13.595 × 103 kg/m3)(9.80665 m/s2)(0.76 m)

= 1.013 × 105 Pa

(10.24)
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The Open-Tube Manometer

Figure 10.11 shows a very basic open-tube manometer used to measure the gauge

pressure of a gas. It consists of a U-tube containing a liquid, with one end of the tube

connected to a gas tank of pressure P, and the other end open to the atmosphere.

Fig. 10.11 An open-tube

manometer for measuring gas

pressure

P
h

Pa

A BGas tank

Liquid

From this figure, we see that the pressure at point A is the unknown pressure P

of the gas in the tank. On the other hand, the pressure PA at point A is equal to the

pressure PB at point B, which equals Pa + ρgh, where ρ is the density of the liquid

and h is the height of the liquid column. Since PA = PB, we have:

P = Pa + ρgh (10.25)

This relation gives us what we call the absolute pressure P. In general, the differ-

ence between an absolute pressure and an atmospheric pressure is called the gauge

pressure Pg. That is:

Pg = P − Pa = ρgh (10.26)

The gauge pressure can be positive or negative, depending on whether P > Pa or

P < Pa. In inflated tires or in the human circulatory system, the absolute pressure is

greater than the atmospheric pressure (i.e. P > Pa), so the gauge pressure is positive

(i.e. Pg > 0).
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Example 10.7

The U shaped tube shown in Fig. 10.12 contains oil in the right arm and water in

the left arm. In static equilibrium, the measurements give h = 18 cm and d = 2 cm.

What is the value of the density of the oil ρo?

Fig. 10.12

d

h Oil

Water

In
te

rf
ac

e

AB

Solution: The pressure PA at the oil–water interface of the right arm must be

equal to the pressure PB in the left arm at the same level. In the right arm, we use

Eq. 10.20 to get:

PA = Pa + ρo g(h + d)

In the left arm, we use the same Eq. 10.20 to get:

PB = Pa + ρwgh

Since PA = PB, we equate the last two equations to get:

ρo = h

h + d
ρw = 18 cm

18 cm + 2 cm
103 kg/m3 = 900 kg/m3

Note that the answer does not depend on the atmospheric pressure.

Example 10.8

For the car lift shown in the Fig. 10.13, the pistons on the left and right have areas

25 cm2 and 750 cm2 respectively. The car and the right piston have a total weight

of 15,000 N. What force must be applied on the left piston (if it has negligible

weight)? What pressure will produce this force?

Solution: From Eq. 10.21, we have:

F1 = F2
A1

A2
= (15,000 N)

25 cm2

750 cm2 = 500 N
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Fig. 10.13

A 1

A 2

F 1

F2

Load

The pressure that produce this force is given by:

P = F1

A1
= 500 N

25 × 10−4 m2 = 2 × 105 Pa � 2 atm

∗ Example 10.9

(a) A person dives to a depth h = 50 cm below the water surface without inhaling

first. Find the pressure on his body and on his lungs. (b) Repeat part (a) when he

dives to a depth h = 5 m. When the diver ignores diving rules and foolishly uses

a snorkel tube at that depth, find the pressure on his lungs? Why he is in danger?

Assume that Pa = 1.01 × 105 Pa, ρ = 103 kg/m3, and g = 9.8 m/s2.

Solution: (a) The external pressure on the diver’s body will be:

PBody = Pa + ρgh

= 1.01 × 105 Pa + (103 kg/m3)(9.8 m/s2)(0.5 m)

= 1.01 × 105 Pa + 4,900 Pa = 1.059 × 105 Pa � 1.05 atm

The diver’s body adjusts to that pressure by a very slight contraction until the inter-

nal pressure is in equilibrium with the external pressure. Consequently, his average

blood pressure increases, and the average air pressure in his lungs increases until

it balances the external pressure. Thus, his lung pressure will be at:

PLungs � 1.05 atm

(b) When h = 5 m, the external pressure on the diver’s body will be:

PBody = Pa + ρgh

= 1.01 × 105 Pa + (103 kg/m3)(9.8 m/s2)(5 m)

= 1.01 × 105 Pa + 49,000 Pa = 1.5 × 105 Pa � 1.5 atm
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Again, as in part (a), the pressure inside his lungs will be:

PLungs � 1.5 atm

If the diver foolishly uses a 5 m snorkel tube, the pressurized air in his lungs will

be expelled upwards through the tube to the atmosphere. Consequently, the air

pressure in his lungs will drop rapidly from 1.5 to 1 atm. This 0.5 atm pressure

difference is sufficient to collapse his lungs and force his still-pressurized blood

into them.

Buoyant Forces and Archimedes’ Principle

In a swimming pool, you may have noticed that it is relatively easy to carry an object

that is totally or partially immersed in the water. This is because you must support

only part of the object’s weight, while the buoyant force supports the remainder.

This important property of fluids in hydrostatic equilibrium is summarized by

Archimedes’ principle, which can be stated as follows:

Archimedes’ Principle:

A body fully or partially immersed in a fluid is buoyed up by a force equal to

the weight of the fluid displaced by the body.

Let us show that the buoyant force is equal in magnitude to the weight of the

displaced fluid. We can do this by considering a cube of fluid of height h (and hence

volume Vf = h3) as in Fig. 10.14a.

h

FB

Fluid

The same as 
the fluid, 

but colored 
differently

h

Wo

FB=Wf

Object

(a) (b)

Wf

Fig. 10.14 (a) External forces acting on a cube of fluid (colored blue). Under equilibrium, the fluid’s

weight Wf is equal to the buoyant force FB. (b) A cube of weight Wo is buoyed by a force FB = Wf
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The cube of this fluid is in equilibrium under the action of the forces on it. One

of the forces is its own weight
→
Wf . Apparently, the rest of the fluid in the container is

buoying up the cube and holding it in equilibrium. Therefore, the magnitude of this

buoyant force, FB, must be exactly equal in magnitude to the weight of the fluid.

That is:

FB = Wf (10.27)

Now, imagine we replace the cube of fluid by a cubical object of the same dimen-

sions. The fluid surrounding the cube will behave the same way, regardless whether

the cube is a fluid or a solid. Therefore, the buoyant force acting on an object of any

density will be equal to the weight of the fluid displaced by the object, i.e. FB = Wf .

To show this result explicitly, we notice in Fig. 10.14b that the pressure at the

bottom of the object is greater than the pressure at the top by �P = ρf gh, where ρf

is the density of the fluid. Since the pressure difference �P equals the buoyant force

per unit area, then �P = FB/A, where A = h2 is the area of one of the cube’s faces.

Therefore:

FB = �P A = ρf gh A = ρf Vf g = Wf (10.28)

Consider the object of Fig. 10.14b to be of weight Wo = ρoVog, where ρo and Vo

are its density and volume, respectively. If the object is totally immersed in a fluid

of density ρf , the buoyant force will be FB = Wf = ρf Vf g, where Vf = Vo. Thus, the

net force on the object will depend only on ρo and ρf , see parts of Fig. 10.15a–c.

W

FB

W

FB

W

FB W

FB

a

a

(a) (b) (c) (d)

f fff

M
otion

M
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At rest Floating

Fig. 10.15 An immersed object of density ρo when: (a) ρo > ρf , (b) ρo = ρf , (c) ρo <ρf , and (d) A

floating object where ρoVo = ρf Vf

Now, if that object floats; see Fig. 10.15d, the upward buoyant force will be

FB = Wf = ρf Vf g, where Vf is the volume of the displaced fluid and Vf = Vo.
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Equilibrium in this case gives:

ρoVo = ρf Vf (10.29)

Example 10.10

A piece of steel has a mass ms = 0.5 kg and a density ρs = 7.8 × 103 kg/m3. The

steel is suspended in air by a string attached to a scale, see Fig. 10.16. After that,

the steel is immersed in a container filled with water of density ρw = 103 kg/m3.

Find the tension in the string before and after the steel is immersed.

Fig. 10.16

Ws

T A

Water

F B

W s

TW

w

Solution: When the piece of steel is suspended in air, the tension in the string Ta

equals the weight ms g of that piece of steel. That is:

Ta = ms g = (0.5 kg)(9.8 m/s2) = 4.9 N

When the steel is immersed in water, it experiences an upward buoyant force FB.

Thus, the tension in the string will be reduced to a new value Tw, see the figure.

Equilibrium in this case gives:

Tw + FB = ms g ⇒ Tw = ms g − FB ⇒ Tw = 4.9 N − FB
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To find FB, we first calculate the volume of the steel as follows:

Vs = ms

ρs
= 0.5 kg

7.8 × 103 kg/m3 = 6.4 × 10−5 m3

This volume equals the volume of the displaced water. That is:

Vw = 6.4 × 10−5 m3

Since the buoyant force equals the weight of the displaced water, then:

FB = mw g = ρwVw g = (103 kg/m3)(6.4 × 10−5 m3)(9.8 m/s2) = 0.63 N

Therefore, the tension in the string Tw (the apparent weight) will be:

Tw = 4.9 N − FB = 4.9 N − 0.63 N = 4.3 N

Example 10.11

The approximate density of ice is ρi = 918 kg/m3 and the approximate density of

sea water in which an iceberg floats is ρw = 1,020 kg/m3, see Fig. 10.17. What

fraction of the iceberg is beneath the water surface?

Fig. 10.17

F

W i

B

Solution: The iceberg floats, as shown in the figure, due to the effect of an upward

buoyant force given by:

FB = Ww = ρw Vw g

where Vw is the volume of the displaced water or the volume of the iceberg beneath

the water surface. The weight of the iceberg is:



10.4 Fluid Statics 327

Wi = ρi Vi g

where Vi is the volume of the iceberg. Equilibrium in this case gives FB = Wi.

That is:

Vw

Vi
= ρi

ρw
= 918 kg/m3

1,020 kg/m3 = 0.90 or 90%

Thus, 90% of the iceberg lies below water level. This means that, only 10% of

an iceberg—its tip is above the surface of the water.

Example 10.12

An object of a known density ρo floats three-fourths immersed in a liquid of

unknown density ρf . Find the density of the liquid.

Solution: We use Eq. 10.29 when Vf = 3
4 Vo. Then:

ρf = ρo
Vo

Vf
= ρo

Vo
3
4 Vo

= 4
3ρo

Note that ρf is larger than ρo by the reciprocal of the immersed ratio.

Example 10.13

A helium-filled balloon has a volume Vb = 8 × 103 m3 and balloon mass mb =
200 kg, see Fig. 10.18. What is the maximum mass m of a load that keeps the bal-

loon in equilibrium? Neglect the air displaced by the load. Take ρHe = 0.18 kg/m3

to be the density of helium and ρair = 1.28 kg/m3 to be the density of air.

Fig. 10.18

(mHe+mb+m )g

FB

m

Solution: The volume of the displaced air equals the balloon’s volume, i.e.

Vair = Vb. According to Archimedes’ principle, the buoyant force is the weight of
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the displaced air, i.e.:

FB = Wair = ρairVairg = ρairVb g

Since the balloon’s volume is approximately equal to the volume of helium, i.e.

VHe � Vb, then the weight of the helium is:

WHe = ρHeVHe g = ρHeVb g

At equilibrium, see Fig. 10.18, we have:

FB = WHe + Wb + mg ⇒ ρairVb g = ρHeVb g + mbg + m g

Thus: m = (ρair − ρHe)Vb − mb

= (1.28 kg/m3 − 0.18 kg/m3)(8 × 103 m3) − 200 kg = 8,600 kg

10.5 Fluid Dynamics

Ideal Fluids

The motion of a real fluid is very complicated. Instead, we shall discuss the motion

of an ideal fluid that will obey the following four assumptions:
1. Steady flow: The velocity of the fluid at any specific point does not change with

time. However, in general the velocity might vary from one point to another.

2. Incompressible flow: The density of the fluid does not change with time. That is,

the density has a constant uniform value.

3. Non-viscous flow: A tiny object can move through the fluid without experiencing

a viscous drag force; that is, there is no resistive force due to viscosity.

4. Irrotational flow: A tiny object can move through the fluid without rotating about

an axis passing through its center of mass.

Streamlines

A streamline is the path traced out by a tiny fluid element, called a fluid “particle”.

As the fluid particle moves, its velocity may change in magnitude or in direction or

both. However, the velocity of the fluid particle at any point is always tangent to the

streamline at that point, see Fig. 10.19a. Streamlines never cross each other because
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if they do, a fluid particle could move either way at the cross over point, and the flow

would not be steady.

When air flows around objects, the air particles must avoid the object, see Fig.

10.19b. Conservation of mass sets up the streamlines that the air particles must follow

to avoid the object.

P

(a) (b)

Air flow

Fig. 10.19 (a) The diagram shows a set of streamlines. A fluid particle P traces out a streamline as

it moves. The velocity vector of the fluid particle is tangent to the streamline at every point. (b) The

streamlines of air flow near two different obstacles

Equation of Continuity

In flows like that of Fig. 10.19b, we consider a fluid flowing through a tube called

a stream tube, or tube of flow, whose boundary is made up of streamlines, see Fig.

10.20. Such a tube acts like a pipe because any fluid particle entering it cannot escape

through its walls.

Fig. 10.20 A stream tube

formed by the streamlines. The

flow rate of fluid at the cross

sections A1 and A2 is the same

A2

A1

Stream tube

Figure 10.21 shows two cross-sectional areas A1 and A2 in a thin stream tube of

fluid of varying cross-sectional areas. The fluid particles are moving steadily through

this stream tube.
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Fig. 10.21 A stream tube

(streamlines are not shown) of

fluid of varying cross sections

with fluid particles moving

steadily through it

x1

x2

A1

A2

Stream tube

In a small time interval �t, the fluid at the area A1 moves a small distance �x1 =
v1�t. Assuming uniform density over the area A1, then the mass in the colored

segment of Fig. 10.21 is:

�m1 = ρ1(A1�x1) = ρ1A1v1�t = Mass into segment

Similarly, the fluid that moves through the area A2 in the same time interval will be:

�m2 = ρ2(A2�x2) = ρ2A2v2�t = Mass out of segment

Since mass is conserved and because the flow is steady, the mass that crosses A1 in

time interval �t must be equal to the mass that crosses A2 in the same time interval.

Then, �m1 = �m2 and we get:

⎧⎪⎪⎨
⎪⎪⎩

ρ1A1v1 = ρ2A2v2

or

ρAv = constant

(Steady flow) (10.30)

This is the equation of continuity for a steady flow. Since ρAv has the dimension of

mass/time, it is called the mass flow rate Rm, i.e.:

Rm = ρAv = constant . (10.31)

If we assume the fluid is incompressible, then the density ρ is constant, and the

continuity equation reduces to:

⎧⎪⎪⎨
⎪⎪⎩

A1v1 = A2v2

or

Av = constant

(Steady and Incompressible flow) (10.32)
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This is another form of the equation of continuity for incompressible steady flow.

Since Av has the dimension of volume/time, it is called the volume flow rate RV , i.e.:

RV = Av = constant (10.33)

A constant-volume flow rate tells us that the flow is faster in narrower sections of a

tube of flow, where the streamlines are close together.

Incompressible steady flow:

The product of the area and the fluid speed at all points along the pipe is

constant.

Example 10.14

Water flows in a pipe from a large cross-sectional area A1 = 0.5 m2 with a speed

v1 = 15 m/s to a smaller cross-sectional area A2 = 0.05 m2. (a) What is the speed

v2 at which the water leaves the smaller cross section as in the left part of

Fig. 10.22? (b) What is the effect of lowering A2 by 10 m as in the right part

of Fig. 10.22?

A2

A1

h=10 m

A1

A2

Fig. 10.22

Solution: (a) The flow of water through the pipe in the left part is governed by

the continuity equation, or conservation of mass. That is:

ρ1A1v1 = ρ2A2v2

For most liquids, density is essentially constant. Then A1v1 = A2v2, and:

v2 = v1
A1

A2
= (15 m/s)

0.5 m2

0.05 m2 = 150 m/s
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(b) Since the continuity equation does not depend on altitude, then lowering

A2 by 10 m causes no change to the result.

Example 10.15

The fact that a water stream emerging from a faucet “necks down” as it falls is

shown in Fig. 10.23, where A1 = 1.8 cm2, A2 = 0.3 cm2, and h = 25 cm. What is

the water flow rate from the faucet, assuming a steady flow?

Fig. 10.23

A 1

A 2

h

Solution: As water falls from a faucet, its speed increases due to gravity. Because

the volume flow rate must be the same at all cross sections, the stream must “neck

down”.

The flow of water is governed by the continuity Eq. 10.32, that is:

A1v1 = A2v2

where v1 and v2 indicate the speed of the water at the marked levels shown in

Fig. 10.23. Since water is falling freely, we must have:

v2
2 = v2

1 + 2gh

Eliminating v2 from the last two equations, we get:

v1 =
√

2ghA2
2

A2
1 − A2

2

=
√

2(9.8 m/s2)(0.25 m)(0.3 cm2)2

(1.8 cm2)2 − (0.3 cm2)2 = 0.374 m/s
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The volume flow rate RV , given by Eq. 10.33, is thus:

RV = A1v1 = (1.8 × 10−4 m2)(0.374 m/s) = 6.732 × 10−5 m3/s

Finally, we find the mass-flow rate Rm using Eq. 10.31 to be:

Rm = ρA1v1 = ρRV = (103 kg/m3)(6.735 × 10−5 m3/s) = 0.067 kg/s � 70 g/s

Example 10.16

Water flowing from a faucet of cross-sectional area A = 2 cm2 is used to fill a

bucket of volume V = 30 liters = 30 × 103 cm3, see Fig. 10.24. What is the speed

v at which the water leaves the faucet if it takes exactly 1 minute to fill the bucket?

Fig. 10.24

A

Solution: According to the given information, the volume flow rate is:

RV = 30 liters/min = 500 cm3/s

Using Eq. 10.33, RV = Av, we can find the speed v as follows:

v = RV

A
= 500 cm3/s

2 cm2 = 250 cm/s = 2.5 m/s

Bernoulli’s Equation

In static fluids, the pressure is the same at all points on the same horizontal level

but increases with depth. This is not generally true when the fluid is in motion. In
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the year 1738, Bernoulli derived an expression for an ideal fluid (i.e. a fluid that

is incompressible, non-viscous and flows in a non-rotational steady manner) that

relates the pressure, speed, and elevation within different locations in the fluid.
∗ Consider a small portion of a tube of flow of an ideal fluid with density ρ through

a non-uniform pipe as shown in Fig. 10.25. The width of the tube in this figure is

exaggerated for clarity.

A1

y1

y
2

A2

a

b

P1
A1

P 2
A 2

a'.

b'

Flow

s

At time t 

At time t + Δ t

.

Δ
sΔ

Fig. 10.25 The fluid in a section of length �s1 moves to a section of length �s2, while the volume of

the two sections are the same

Using the information in Fig. 10.25, we perform the following steps:
1. At some initial time t, the fluid lies between two cross sections A1 and A2 at two

points labeled a and b, respectively.

2. After a time interval �t, the fluid’s ends undergo displacements �s1 and �s2 to

new points labeled a′ and b′, respectively.

3. The volume of fluid that passes from point a to point a′ over a time �t is equal to

the volume of fluid that passes from point b to point b′ in the same time interval,

that is �V = A1�s1 = A2�s2.

4. The force on the cross section A1 is P1A1 and the force on the cross section A2 is

P2A2. Thus, the net work done on the fluid by these forces over the time �t is:

W = P1A1�s1 − P2A2�s2 = (P1 − P2)�V (10.34)

where the negative sign in the second term is due to the fact that the fluid force

P2A2 is opposite to the displacement �s2.

5. Part of this work goes into changing the kinetic energy of the fluid, and the other

part goes into changing its gravitational potential energy. If �m is the mass of the
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fluid that passes through the tube during the time interval �t, then �m = ρ�V

and the change in kinetic and potential energy will be given by:

�K = 1
2�mv2

2 − 1
2�mv2

1 = 1
2ρ�V (v2

2 − v2
1) (10.35)

�U = �mgy2 − �mgy1 = ρ�V g(y2 − y1) (10.36)

6. We can now apply the work-energy theorem written in the form W = �K +�U,

where W is the work done by all applied forces and is given by Eq. 10.34. Thus:

(P1 − P2)�V = 1
2ρ�V (v2

2 − v2
1) + ρ�V g(y2 − y1)

If we divide both sides by �V, we get:

P1 − P2 = 1
2ρ(v2

2 − v2
1) + ρg(y2 − y1) (10.37)

7. Rearranging the terms, we get:

P1 + 1
2ρv2

1 + ρgy1 = P2 + 1
2ρv2

2 + ρgy2 (10.38)

This is the standard form of Bernoulli’s equation for non-viscous, incompressible

fluids experiencing steady flow. Since the subscripts 1 and 2 refer to any two points

along the tube flow, Bernoulli’s equation may also written as:

P + 1
2ρv2 + ρgy = constant (10.39)

When the fluid is at rest, v1 = v2 = 0 and Bernoulli’s equation becomes:

P1 − P2 = ρg(y2 − y1) = ρgh

which is of the same form as Eq. 10.20.

When we take y to be constant, say y = 0, so that the fluid does not change elevation

as it flows, then Bernoulli’s equation becomes:

P1 + 1
2ρv2

1 = P2 + 1
2ρv2

2 (Horizontal flow) (10.40)

This tells us that if the speed of a fluid increases as it travels horizontally, then its

pressure must decrease, and vice versa.
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Example 10.17

Gasoline of density ρ = 860 kg/m3 flows steadily through a horizontal pipe that

tapers in cross-sectional area from A1 = 1.5 × 10−3 m2 to A2 = 1
2 A1, see Fig.

10.26. What is the volume flow rate when the pressure difference P1 − P2 is

5,160 Pa?

Solution: The flow of gasoline is governed by the continuity Eq. 10.32, i.e.

A1v1 = A2v2. Then for A2 = 1
2 A1 we find:

A1v1 = A2v2 ⇒ A1v1 = 1
2 A1v2 ⇒ v2 = 2v1

Fig. 10.26

A1

P1

P2

Flow

1

A2

That is, the gasoline speed at the narrower section is twice that at the wider section.

Using this result in Bernoulli’s equation of a fluid traveling horizontally, see Eq.

10.40, we get:

P1 − P2 = 1
2ρ(v2

2 − v2
1) = 1

2ρ(4v2
1 − v2

1) = 3
2ρv2

1

Thus, we can find v1 in terms of ρ and P1 − P2 as follows:

v1 =
√

2(P1 − P2)

3ρ
=

√
2(5,160 Pa)

3(860 kg/m3)
= 2 m/s

Finally, the volume flow rate RV , given by Eq. 10.33, is thus:

RV = A1v1 = (1.5 × 10−3 m2)(2 m/s) = 3 × 10−3 m3/s
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Example 10.18

Flow Speed from a Reservoir (Torricelli’s Law). A tank is filled with water to

a height y1 = 3.5 m. The tank has a small hole in one of its walls at a height

y2 = 1.5 m, see Fig. 10.27. (a) What is the speed v2 of the water emerging from

the hole? (b) What is the horizontal distance x from the base of the tank to the

point at which the water stream strikes the floor?

Fig. 10.27

0

Pa

Pay1

y2

h y1 - y2

x

y

0

Solution: (a) The pressure at the top of reservoir and at the hole is the atmospheric

pressure Pa, because both of them are exposed to the atmosphere. If we assume

the tank has a large cross-sectional area A1 compared to that of the hole’s, i.e.

A1 � A2, then water at the top of the reservoir will be almost stationary, i.e. v1 � 0.

In addition to this, h = y1 − y2. Using Bernoulli’s equation, see Eq. 10.38, we get:

Pa + 1
2ρ × (0) + ρgy1 = Pa + 1

2ρv2
2 + ρgy2 ⇒ v2

2 = 2gh

That is: v2 = √
2gh

Thus: v2 = √
2gh =

√
2(9.8 m/s2)(2 m) = 6.26 m/s

The relation v2 = √
2gh is the same as that for an object falling freely from rest

through a height h. This is known as Torricelli’s law.

(b) As in Sect. 4.3, the initial water velocity →
vo ≡ →

v2 is horizontal (i.e. θ◦ = 0)

and the initial position is y◦ ≡ y2 = 1.5 m. Since water strikes the floor at y = 0,

then we use y − y◦ = (v◦ sin θ◦) t − 1
2 g t2 to first find the duration of descent for

the water as follows:
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0 − 1.5 m = 0 − 1
2 (9.8 m/s2) t2 ⇒ t = 0.553 s

The horizontal distance x covered by the water in that time is:

x = (v◦ cos θ◦) t = (6.26 m/s)(cos 0◦)(0.553 s) = 3.46 m

Example 10.19

In the Venturi meter of Fig. 10.28, air of density ρair = 1.3 kg/m3 flows from

left to right through a horizontal pipe of radius r1 = 1.25 cm that necks down

to r2 = 0.5 cm. The U-shaped tube of the meter contains mercury of density

ρmer = 13.6 × 103 kg/m3. If the speed of the air entering the meter is v1 = 10 m/s,

then find the mercury-level difference h between the two arms.

A1

P1

Air flow

A2

21

h

P2

Mercury

r1
r2

Fig. 10.28

Solution: Since the air moves horizontally, then Bernoulli’s equation at the two

openings of the U-shaped tube becomes:

P1 − P2 = 1
2ρair(v

2
2 − v2

1)

Also, from the continuity Eq. 10.32 we have:

A1v1 = A2v2 ⇒ v2 = v1
A1

A2
= v1

πr2
1

πr2
2

= v1

(
r1

r2

)2

Substituting with the form of v2 in the pressure difference, we get:

P1 − P2 = 1
2ρairv

2
1

[(
r1

r2

)4

− 1

]
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The pressure difference between the two openings of the U-shaped tube produces

a mercury-level difference h given by P1 −P2 = ρmergh. Thus, by combining the

last result with this equation we get:

h = ρairv
2
1

2ρmerg

[(
r1

r2

)4
− 1

]
= (1.3 kg/m3)(10 m/s)2

2(13.6 × 103 kg/m3)(9.8 m/s2)

[(
1.25 cm

0.5 cm

)4
− 1

]

= 0.019 m = 1.9 cm

∗ Example 10.8

The sketch in Fig. 10.29 shows a perfume atomizer before and after compressing

its bulb. When the bulb is compressed gently, air with density ρair flows steadily

through a narrow tube, reducing the pressure at the position of the vertical tube.

Liquid of density ρL can rise in this vertical tube and enter the horizontal tube and

be sprayed out. If the pressure in the bulb is Pa + P, where Pa is the atmospheric

pressure, and v2 is the speed of air in the horizontal tube, then find the pressure

formula in the horizontal tube. What must the value of v2 be in order to raise the

liquid to the horizontal tube?

Pa

Liquid

h

P1 = Pa + P

1 0

P 2

Pa h

Pa
Pa

Liquid

Before After

Air Air Air flow

Bulb Compressed bulb

2

Fig. 10.29

Solution: By applying Bernoulli’s equation on the bulb and the narrow horizontal

tube we get the following:

(Pa + P) + 1
2ρ × (0) = P2 + 1

2ρairv
2
2

That is:

P2 = Pa + P − 1
2ρairv

2
2
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So, the decrease in P2 depends on the square of the speed v2.

When the liquid rises a distance h to the horizontal tube, we have:

Pa = P2 + ρLgh

By equating the expression of P2 from the last two results we get:

P2 = Pa + P − 1
2ρairv

2
2 = Pa − ρLgh

Thus:

v2 =
√

2(P + ρLgh)

ρair

Viscosity

Fluids cannot withstand a shearing stress. However, fluids show some degree of

resistance to shearing motion, and this resistance is called viscosity.

The degree of viscosity can be understood by considering a fluid between two

sheets of glass where the lower one is kept fixed; see the sketch in Fig. 10.30. It is

easier to slide the upper glass if the fluid is oil as opposed to tar because tar has a

higher viscosity than oil.

y

At time t At time t+ tΔ

Δ x

ba

F f e

ba

F d c

ba

d

Fig. 10.30 A fluid between two sheets of glass where the lower one is kept fixed while the upper one

moves to the right with a speed v under the action of an external force of magnitude F

We can think of fluids as a set of adjacent layers. Thus, a reasonable shearing stress

produces smooth relative displacement of adjacent layers in fluids, called laminar

flow. When we apply a force of magnitude F to the upper glass of area A, it will

move to the right with a speed v. As a result of this motion, a portion of the fluid

with shape abcd will take a new shape abef after a short time interval �t.
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According to Sect. 10.2, we can define the shearing stress and the shearing strain

on the fluid of Fig. 10.30 as follows:

Shearing stress = F

A
, Shearing strain = �x

d
(10.41)

Since the upper sheet is moving with speed v,the fluid just beneath it will move with

the same speed. Thus, in time �t, the fluid just beneath the upper sheet moves a

distance �x = v�t. Accordingly, we define the rate of shear strain as:

Rate of shear strain = shear strain

�t
= �x/d

�t
= v

d
(10.42)

By analogy to the shear modulus in solids, we define in fluids, at a given temperature,

the ratio of the shear stress to the rate of shear strain. This ratio, η, is known as the

coefficient of viscosity or simply the viscosity:

η = F/A

v/d
= Fd

Av
(10.43)

The SI unit of viscosity is N.s/m2 = Pa.s which is called the poiseuille (abbreviated

by Pl) while in cgs it is dyne.s/cm2 which is called the poise (abbreviated by P). Thus,

1 N.s/m2 = 1 Pa.s = 1 Pl = 10 P = 103 cP.

Table 10.6 depicts some viscosity values.

Table 10.6 The viscosity of some fluids at specific temperatures

Fluid Temperature T (◦C) Viscosity η (N.s/m2 = Pl)

Benzene 20 0.07 × 10−3

Water 100 0.3 × 10−3

Water 20 1 × 10−3

Whole blood 37 2.7 × 10−3

10-wt Motor oil 30 250 × 10−3

Glycerin 20 830 × 10−3

∗ Equation 10.43 is valid only when the velocity of the fluid varies linearly with

the perpendicular distance to the fluid velocity. In this case, it is common to say

that the velocity gradient is uniform. In case of non-uniform velocity gradient, the

viscosity has the general form:

η = F/A

dv/dy
(10.44)
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Stokes’ law

The drag force of a small object that moves with a low speed v through a viscous

medium was given in Sect. 5.2 of Chap. 5 by the relation FD = bv, where b is a

proportionality constant.

When the small object is a sphere of radius r and it moves with a terminal speed

vt through a viscous medium with viscosity η, it experiences a drag force Fvis which

by Stokes’ law has a magnitude:

Fvis = 6πηrvt (10.45)

As an application to Stokes’ formula, Fig. 10.31 displays the fall of a small metallic

spherical ball of volume Vs = 4
3πr3, density ρs, and mass ms = Vsρs in a viscous

liquid of density ρ. The forces that act on the sphere when it reaches its terminal

(constant) speed vt will be:

1. The sphere’s weight W = ms g = ρs Vs g (downwards)

2. The buoyant force FB = ρ V g (upwards)

3. The viscous force Fvis = 6πηrvt (upwards)

Fig. 10.31 A small sphere

falling with terminal speed vt

in a liquid of density ρ and

viscosity η

ms   g

Fvis

t

F B

y

We must equate the volume of the liquid V that was displaced by the sphere with

the volume of the falling sphere Vs. Thus:

ms g = FB + Fvis ⇒ ρs Vs g = ρ Vs g + 6πηrvt

From this equation we get the following relation for the viscosity η:

η = 2

9

(ρs − ρ)r2g

vt
(10.46)
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Example 10.21

A steel plate of area A = 0.2 m2 is placed over a thin film of lubricant of thickness

d = 0.4 mm sprayed over the flat horizontal surface of a table, see Fig. 10.32.

When connected via a cord that passes over a massless and frictionless pulley to a

mass m = 10 g, the steel plate is found to move with a constant speed v = 0.05 m/s.

Find the viscosity of the lubricant oil.

Fig. 10.32

T

m g

T

d

= constant

Fvis

Lubricant

A

Solution: Since the steel plate moves with a constant speed, its resultant force

must be zero. Thus, the magnitude of the tension force must equal the magnitude

of viscous force exerted by the lubricant on the plate, i.e. Fvis = T . Also, the

magnitude of the tension in the cord is equal to the magnitude of the suspended

weight, i.e. T = m g. Thus:

Fvis = T = mg = (10 × 10−3 kg)(9.8 m/s2) = 9.8 × 10−2 N

The layer of lubricant in contact with the horizontal surface of the table is at

rest. The lubricant speed increases across the film, reaching a maximum, v, at the

layer in contact with the steel plate which moves with speed v. If we assume that

the rate of shear strain is constant, i.e. the velocity gradient is uniform, then we

can use Eq. 10.43 to evaluate the viscosity as follows:

η = Fvis/A

v/d
= Fvis d

Av
= (9.8 × 10−2 N)(0.4 × 10−3 m)

(0.2 m2)(0.05 m/s)

= 3.92 × 10−3 N.s/m2 = 3.92 cP
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Example 10.22

A tiny glass sphere of density ρs = 2.6 × 103 kg/m3 falls with a terminal veloc-

ity vt through oil which has a density ρ = 950 kg/m3 and a viscosity coefficient

η = 0.2 N.s/m2. It is experimentally observed that the sphere drops a distance

d = 20 cm between the two points A and B in time t = 50 s, see Fig. 10.33. Find

the radius r of the glass sphere.

Fig. 10.33

A

t

t = 0

t

t

B

d

Solution: From experimental observations, the terminal speed of the sphere will

be given by:

vt = d

t
= 20 × 10−2 m

50 s
= 4 × 10−3 m/s

The forces that act on the sphere when it reaches its terminal (constant) speed

vt will be: the sphere’s weight W = ms g = ρs Vs g (downwards), the buoyant

force FB = ρ V g (upwards), and the viscous force Fvis = 6πηrvt (upwards), see

Fig. 10.34. The volume of the liquid V that was displaced by the sphere equals the

volume of the falling sphere, i.e. V = Vs = 4
3πr3. Since the sphere moves with

constant speed vt, its resultant force must be zero. Thus:

ρs Vs g = ρ Vs g + 6πηrvt

Solving for the sphere’s radius, we obtain:

r =
√

9ηvt

2(ρs − ρ)g
=

√
9(0.2 N.s/m2)(4 × 10−3 m/s)

2(2.6 × 103 kg/m3 − 950 kg/m3)(9.8 m/s2)

= 4.7 × 10−4 m = 0.47 mm
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Fig. 10.34

msg

Fvis

t

FB

10.6 Exercises

Section 10.1 Density and Relative Density

(1) A solid cube of mass of 0.04 kg has a side of length 1 cm. What is the density

and the specific gravity of the cube?

(2) A solid sphere has a radius of 1 cm and a mass of 0.04 kg. What is the density

and the specific gravity of the sphere?

(3) Lead bricks like the one in Fig. 10.35 are used to shield people from the hazards

of radioactive materials. If the lead density is ρ = 11.36 × 103 kg/m3, then find

the mass and weight of such a brick.

Fig. 10.35 See Exercise (3)
5 cm

10 cm
20 cm

Section 10.2 Elastic Properties of Solids

(4) A mass of 5 kg is suspended from the end of a copper wire that has a diameter

of 1 mm. Find the tensile stress on the wire?

(5) A 4 m long structural steel rod with a cross-sectional area of 0.5 cm2 stretches

1 mm when a mass of 250 kg is hung from its lower end. Find the value of

Young’s modulus for this steel.

(6) An iron rod 10 m long and 0.5 cm2 in cross section, stretches 2.5 mm when

a mass of 300 kg is hung from its lower end. Find Young’s modulus for the

iron rod.

(7) A wire has a length L = 3 m and a radius r = 0.75 cm, see Fig. 10.36.

A force acting normally on each of its ends has a magnitude F⊥ = 9 × 104 N.
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Find the change in the wire’s length and radius, when its Young’s modulus

Y is 190 × 109 N/m2 and its Poisson’s ratio μ is 0.25.

Fig. 10.36 See Exercise (7)

F⊥ L

r || Δrr
A

F⊥

Initial 
shape

Final
shape

_

L+Δ L

(8) A uniform platform is suspended by four wires, one on each corner. The wires

are 2-m long and have a radius of 1 mm, and their material has a Young’s

modulus Y = 190 × 109 N/m2. How far will the platform drop if an 80 kg load

is placed at its center?

(9) A block of gelatin resting on a rough dish has a length L = 60 cm, width

d = 40 cm, and height h = 20 cm, see the vertical cross section abcd in Fig.

10.37. A force F‖ = 0.6 N is applied tangentially to the upper surface, leading

to a new shape abef and hence a displacement �x = 5 mm for the upper surface

relative to the lower one. Find: (a) the shearing stress, (b) the shearing strain,

and (c) the shear modulus.

a b

cd ef

h

L

x

Vertical cross section
F

Fig. 10.37 See Exercise (9)

(10) Two parallel but opposite forces, each having a magnitude F‖ = 4 × 103 N, are

applied tangentially to the upper and lower faces of a cubical metal block of

side a = 25 cm and shear modulus S = 80 × 109 N/m2, see Fig. 10.38. Find the

displacement �x of the upper surface relative to the lower one, and hence find

the angle of shear θ.
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a

a

a

xΔ
A F

F

Fig. 10.38 See Exercise (10)

(11) Show that the angle of twist θ (in radians) for a torsional shearing caused by

a tangential force F‖ on the top of a cylindrical rod of height h, radius R, and

shearing modulus S, see Fig. 10.39, is given by:

θ = F‖h

πR3S

Find θ when F‖ = 500 N, S = 80 × 109 N/m2, R = 2.5 cm, and h = 3 m.

Fig. 10.39 See Exercise (11)

h

θ
Δ x

R R

Fixed

F

F

||

||

(12) The pressure of the atmosphere around a metal block is reduced to almost zero

when the block is placed in vacuum. Find the fractional change in volume if

the bulk modulus of the metal is B = 150 × 109 N/m2.

(13) The pressure around a cube of copper of side 40 mm is changed by

�P = 2 × 1010 N/m2. Find the change in volume if the bulk modulus for copper

is B = 125 × 109 N/m2.

(14) What increase in pressure is required to decrease the volume of 200 liters of

water by 0.004%? Take the bulk modulus of water B to be 2.1 × 109 N/m2.

(15) In an experiment, 750 cm3 of water expands to 765 cm3 when heated. What

increase in pressure is required to squeeze the water back to its original volume?

(Water bulk modulus is 2 × 109 N/m2)
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Section 10.4 Fluid Statics

(16) A piston that has a cross-sectional area of 8 cm2 and a mass of 20 kg holds a

compressed gas in a tank as shown in Fig. 10.40. What is the total pressure

of the gas in the tank? What would an ordinary pressure gauge inside the tank

read?

Fig. 10.40 See Exercise (16)

Gas

Pa

(17) A vessel contains mercury of height hm = 10 cm and water of height

hw = 30 cm, see Fig. 10.41. The density of mercury is ρm = 13.6 × 103 kg/m3

and the density of water is ρw = 1.0 × 103 kg/m3. Find the pressure exerted by

the two liquids on the bottom of the vessel.

Fig. 10.41 See Exercise (17)

hw

hm

Water

Mercury

(18) If a water gauge pressure at the ground floor of a building reads 280 kPa, how

high will the water rise in the pipes of that building. Take density of water to

be ρw = 1.0 × 103 kg/m3.

(19) Two liquids are placed in a U-shaped tube as shown in Fig. 10.42. (a) Show

that the heights of the liquids above their surface of separation are inversely

proportional to their densities. (b) Assume that the two liquids are water and

oil where h1 = 20 cm and h2 = 25 cm. Find the density of oil if the density of

water is ρ1 = 1.0 × 103 kg/m3.

(20) The special manometer shown in Fig. 10.43, uses mercury of density ρ =
13.6 × 103 kg/m3. If the atmospheric pressure is 100 kPa and the height of

mercury above the surface of separation at point B is h = 10 cm, what is the

pressure of the gas tank?
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Fig. 10.42 See Exercise (19)

A B

1h
2h 2

ρ

1
ρ

Fig. 10.43 See Exercise (20)

P
h

Pa

A BGas tank

Mercury

(21) Assume the value of the atmospheric pressure Pa is 1.01 × 105 Pa and water

of density ρ = 103 kg/m3 is used as a fluid in the barometer of Fig. 10.44.

(a) What will be the height of the water column? (b) Repeat part (a) when

water is replaced by alcohol of density ρ = 7.9 × 102 kg/m3. Comment on the

practicality of your answers.

Fig. 10.44 See Exercise (21)

h PaPa

P=2

(22) The areas of the car lift pistons, shown in Fig. 10.45, are A1 = 25 cm2 and

A2 = 500 cm2. The car and the right piston have a total weight of 104 N, while

the left piston has a negligible weight and is at a height h = 10 m with respect
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to the right one. The apparatus is filled with oil of density ρ = 800 kg/m3. What

is the value of the force F1 needed to keep the system in equilibrium?

Fig. 10.45 See Exercise (22)

A1

A2

F1 Load

h

F2

(23) A piece of wood has a mass m = 0.25 kg and a density ρ = 750 kg/m3. The

wood is tied by a string to the bottom of a container of water in order to have

the wooden piece fully immersed, see Fig. 10.46. Take the water density to be

ρw = 1.0 × 103 kg/m3. (a) What is the magnitude of the buoyant force FB on

the wood? (b) What is the magnitude of the tension T in the string?

Fig. 10.46 See Exercise (23) Water
FB

W

T

w

(24) Figure 10.47 shows a metal ball weighing T = W = 9.5 × 10−2 N in air. When

the ball is immersed in water of density ρw = 103 kg/m3, it is found that it has

an apparent weight Tw = Ww = 7.0 × 10−2 N. Find the density of the metal.

Fig. 10.47 See Exercise (24)

W

T

Water

F B

W

T w
w

0 0

w
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(25) A cubical block of side a = 0.75 cm floats in oil of density ρo = 800 kg/m3 with

one-third of its side out the oil, see Fig. 10.48. (a) What is the magnitude of the

buoyant force on the cube? (b) What is the density ρb of the block?

Fig. 10.48 See Exercise (25)

o

a /3
a

b
ρ

ρ

Section 10.5 Fluid Dynamics

(26) A fluid flows in a cylindrical pipe of radius r1 with a speed v1. (a) What would

be the speed of this fluid at a point where the fluid is confined to a cylindrical

part of radius r2 = r1/5, see the top part of Fig. 10.49. (b) What is the effect

of elevating the constriction in the pipe by h = 10 m, see the lower part of Fig.

10.49?

Fig. 10.49 See Exercise (26) r1

r2

=10 m
r1

r2

h

(27) Water with a density of 103 kg/m3 is flowing steadily through a closed-pipe

system via the motor M, see Fig. 10.50. At height y1, the water speed and

pressure are v1 = 4 m/s and P1 = 30 kPa, respectively. At height y2, which is

a point higher than y1 by a height h = 2 m, the water speed is v2 = 6 m/s. (a)

What is the pressure at y2 ? (b) What would be the pressure at y2 if the water

in the closed system was to stop flowing and the pressure at y1 were 25 kPa?

(28) A large tank is kept full at a height of h = 4 m as shown in Fig. 10.51. Take

the water density to be ρ = 1.0 × 103 kg/m3. (a) Find the speed v2 of the jet
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of water emerging from a small pipe at the bottom of the tank. (b) If y2 = 2 m,

then find the horizontal distance x (from the base of the tank) that the water

stream travels before striking the floor.

Fig. 10.50 See Exercise (27)

y1

y2

P1

P2

 M

h

Fig. 10.51 See Exercise (28)

Pa

Pa
y1

y2

h=y1 - y2

x

y

0

A1

A2

(29) Assume the faucet in the previous exercise is closed. In terms of the cross-

sectional areas A2 and A1 of the small pipe and the tank, respectively, show that

v2 and x depend on the variable height h as follows:

v2 =
√

2gh

[1 − (A2/A1)2] , x = 2

√
y2h

[1 − (A2/A1)2]
(30) Figure 10.52 shows a tube of uniform cross section that is filled with water to

siphon water at a steady rate from a large vessel. (a) Use Torricelli’s approach

to find an expression for the speed at level C. (b) Use Bernoulli’s equation to

find an expression for the pressure at level B in terms of Pa, H, and h. (c) Find

the maximum value Hmax of H for which the siphon will work. (d) Calculate the

answers to the previous parts when ρw = 103 kg/m3, Pa = 100 kPa, H = 2 m,

and h = 3 m.
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Fig. 10.52 See Exercise (30)

H

h

Pa

Pa

A

C

B

(31) A child tows a thin piece of wood of surface area A = 200 cm2 through a water

puddle at a constant speed v = 15 cm/s, see Fig. 10.53. The depth of the water

puddle is d = 2 mm and its viscosity is η = 1 cP. Assume that the velocity gra-

dient is constant from the bottom to the surface of the water. Find the horizontal

force component F exerted by the tow cord.

Fig. 10.53 See Exercise (31) =  constant

d

Fvis

A

F

Water

Ground

(32) A steel plate of weight W = 0.5 N and area A = 0.2 m2 is placed over a thin film

of lubricant (oil) of thickness d = 0.2 mm sprayed over a flat surface inclined

at an angle θ = 30◦, as shown in Fig. 10.54. What is the value of the constant

speed of the plate v assuming that the rate of shear strain, v/d, is constant

across the thickness of the film and the viscosity of the oil is η = 0.05 Pa.s.

Fig. 10.54 See Exercise (32)

mg

d
= constant

fvis

Lubricant

A

(33) How fast will an aluminum sphere of radius 1 mm fall through water at 20◦C

once its terminal speed has been reached, see Fig. 10.55? Assume that the
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viscosity of water is η = 8.5 Pl and that the aluminum sphere’s density is

ρs = 2.7 × 103 kg/m3.

Fig. 10.55 See Exercise (33)

msg

Fvis

t 

FB

(34) The viscous force on a liquid flowing steadily through a cylindrical pipe of

length L is given by:

Fvis = 4πηLvm

where η is the viscosity of the liquid and vm is the maximum speed of the liquid

which occurs along the central axis of the pipe, see Fig. 10.56. If the pressures

in the rear and front horizontal segments of the pipe are respectively P1 and

P2, where P1 > P2, then show that vm will be given by:

vm = (P1 − P2) r2/4ηL

where r is the radius of the cylinder.

P 1 P 2

v

P 1 P 2

Cross sectional
 Streamlines

Cross sectional 
velocity distribution

Flow Flow

L L

rr

Fig. 10.56 See Exercise (34)

(35) Blood of viscosity η = 4 × 10−3 PI is passing through a capillary of length

L = 1 mm and radius r = 2 μm. If the speed of this blood as it travels through

the center of this capillary is found to be vm = 0.66 mm/s, calculate the blood

pressure (in pascal and mm Hg) using the result from the previous exercise.
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In this chapter, we introduce a physical quantity known as temperature, which is

one of the seven SI base quantities. Temperature is associated with our sense of hot

and cold. Physicists and engineers measure temperature more objectively using the

Kelvin scale, which is independent of the properties of any substance. We will study

the effect of temperature on matter; solid, liquid, and gas.

11.1 Temperature

The Kelvin Scale

The limiting temperature of a body is taken as the zero of the Kelvin scale, and called

the absolute zero.

To set up the Kelvin temperature scale, we select a standard fixed point and give

it a standard fixed point temperature. We select the triple point of water, where

liquid water, solid ice, and water vapor can coexist in thermal equilibrium at only

specific values of pressure and temperature. By international agreement, at water

vapor pressure of 4.58 mm Hg, the temperature of this mixture has been assigned a

value 273.16 Kelvins, written as 273.16 K. That is:

T3 = 273.16 K (Triple-point temperature) (11.1)

where the subscript 3 denotes the triple point. This agreement sets the size of the

kelvin as 1/273.16 of the difference between absolute zero and the triple-point tem-

perature of water. This scale is used mostly in basic scientific calculations and studies.

H. A. Radi and J. O. Rasmussen, Principles of Physics, 357
Undergraduate Lecture Notes in Physics, DOI: 10.1007/978-3-642-23026-4_11,
© Springer-Verlag Berlin Heidelberg 2013
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On the Kelvin scale, measurements show that the lowest reached temperature is

∼10−10 K, and the freezing and boiling (at 1 atm. Pressure) temperature points are:

Tice = 273.15 K and Tsteam = 373.15 K

The Celsius Scale

The symbol ◦C stands for degrees Celsius. The size of 1 ◦C on the Celsius scale is

the same as the size of 1 K on the Kelvin scale. However, the zero of the Celsius scale

is shifted by 273.15 ◦ with respect to the absolute zero of the Kelvin scale. On the

Celsius scale, any temperature value TC is related to its Kelvin equivalent T by:

TC = T − 273.15, (◦C) or T = TC + 273.15, (K) (11.2)

For example, the Celsius temperature of the triple point of water is 0.01 ◦C, because

T3 = 273.16 K and the ice point (273.15 K) corresponds to 0.00 ◦C, and the steam

point (373.15 K) corresponds to 100.00 ◦C. Note that we do not use a degree mark

in reporting Kelvin temperatures.

The Fahrenheit Scale

The symbol ◦F stands for degrees Fahrenheit. The Fahrenheit scale has a smaller

degree size than the Celsius and has a different zero (the freezing point of a cer-

tain concentration of salt water). The relation between the Celsius and Fahrenheit

scales is:

TF = 9
5 TC + 32 (◦F) (11.3)

Accordingly, 9 degrees on the Fahrenheit scale equals 5 degrees on the Celsius scale.

Moreover, 0 ◦C = 32 ◦F and 100 ◦C = 212 ◦F. Table 11.1 shows some corresponding

temperatures and Fig. 11.1 compares graphically the Kelvin, Celsius, and Fahrenheit

scales.
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Table 11.1 Some corresponding temperatures

Temperature K ◦C ◦F

Boiling point of water (at 1 atm.) 373.15 100 212

Normal body temperature (average) 310.15 37 98.6

Triple point of water 273.16 0.01 32.02

Freezing point of water 273.15 0 32

Triple point of hydrogen 13.81 −259.34 −434.82

Absolute zero 0 −273.15 −459.67

Fig. 11.1 The Kelvin,

Celsius, and Fahrenheit

temperature scales
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Example 11.1

The normal boiling point of nitrogen is −195.75 ◦C. (a) What is this temperature

in Kelvin and in Fahrenheit? (b) If the temperature changes from −195.75 ◦C to

−100 ◦C, find the change in the temperature on the Fahrenheit scale.

Solution: (a) Substituting TC = −195.75 ◦C into Eq. 11.2, we get:

T = TC + 273.15 = −195.75 + 273.15 = 77.4 K

Also, from Eq. 11.3, we get:

TF = 9
5 TC + 32 = 9

5 × (−195.75) + 32 = −320.35 ◦F

Thus, −195.75 ◦C, 77.4 K, and −320.35 ◦F are equivalent temperatures on dif-

ferent scales.

(b) For a change�TC = [−100 ◦C – (−195.75 ◦C)] = 95.75 C◦,we use Eq. 11.3

to find the change in temperature on the Fahrenheit scale as:
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�TF = 9
5�TC = 9

5 [−100 − (−195.75)] = 172.35 F◦

Thus, a change 95.75 C◦ = 172.35 F◦, where the notations C◦ and F◦ refer to

temperature difference, not to be confused with actual temperatures, which are

written in terms of symbols ◦C and ◦F.

11.2 Thermal Expansion of Solids and Liquids

Most bodies expand as their temperatures increase. This phenomenon plays an impor-

tant role in numerous engineering applications, such as the joints in buildings, high-

ways, railroad tracks, bridges . . . etc. Such thermal expansion is not always desirable.

Microscopically, thermal expansion arises from the change in the separation

between the constituent atoms or molecules of the solid. To understand this, we

consider a crystalline solid of a regular array of atoms or molecules held together by

electrical forces. A mechanical model can be used to imagine the electrical interaction

between the atoms or molecules, as shown in Fig. 11.2. At an ordinary temperature,

the average spacing between the atoms is of the order of 10−10 m, and they vibrate

about their equilibrium positions with an amplitude of about 10−11 m and a fre-

quency of about 1013 Hz. As the temperature increases, the atoms vibrate with larger

amplitudes and the average separation between them increases.

Average 
separation

Atom or a
 molecule

Fig. 11.2 A mechanical model representing the average spacing in a unit cell of crystalline solid at a

given instant. Neighboring atoms or molecules (red spheres) are imagined to be attached to each other by

elastic stiff springs, which represent the inter-atomic electric forces

If the thermal expansion of an object is sufficiently small compared to its initial

dimensions, then the change in any dimension (length, width, or thickness) is, to a

good approximation, a linear function of the temperature.
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11.2.1 Linear Expansion

If a rod of length L and temperature T experiences a small change in temperature �T ,

its length changes by an amount �L, see Fig. 11.3. For a sufficiently small change

�T , experiments show that �L is proportional to both L and �T . We introduce a

proportionally coefficient α for the solid and write:

�L = αL�T (11.4)

where the proportionality constant α is called the coefficient of linear expansion

for a given material. Note that Eq. 11.4 describes an expansion when �T is positive

and a contraction when �T is negative. If we set1 �T = 1C◦, we see from Eq. 11.4

that α represents the fractional change in length (�L/L) per one degree change in

temperature. Thus the unit of α is (degree−1). An α value of 24 ×10−6 (C◦)−1 means

that the length L of an object changes by 24 parts per million for every Celsius degree

change (C◦) in temperature.

Fig. 11.3 The length L of the

rod will increase by �L when

its temperature changes from T

to T + �T . The expansion is

exaggerated in the figure

L L+ LΔ

T T+ TΔ

Generally, the coefficient of linear expansion α varies with temperature, but this

variation is negligible over the temperature range of most everyday measurements.

Table 11.2 depicts some values of α.

Table 11.2 Coefficients of linear expansion α for some materials at room temperature (approximate)

Material Name α (C◦)−1 Material Name α (C◦)−1

Fused quartz 0.5 × 10−6 Concrete 12 × 10−6

Diamond 1.2 × 10−6 Copper 17 × 10−6

Glass (Pyrex) 3.2 × 10−6 Brass & bronze 19 × 10−6

Glass (ordinary) 9 × 10−6 Aluminum 24 × 10−6

Steel 11 × 10−6 Lead 29 × 10−6

1 As in Example 11.1, temperature changes are expressed in units of Celsius degrees, abbreviated
C◦ which should not to be confused with actual temperatures, written with the symbol ◦C and read
degree Celsius.
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Example 11.2

A steel rod has a length L = 8 m and radius r = 1.5 cm when the temperature

is 20 ◦C. Take α = 11 × 10−6 (C◦)−1 and Young’s modulus of the rod to be

Y = 200 × 109 N/m2 (a) What is its length on a hot day when the temperature

is 50 ◦C? (b) If the rod’s ends were originally fixed, then find the compression

force on the rod?

Solution: (a) From Eq. 11.4, we can find the increase �L when the change in

temperature is �TC = 50 ◦C − 20 ◦C = 30 C◦ as follows:

�L = αL�T = [11×10−6(C◦)−1](8 m)(30 C◦) = 2.64×10−3 m = 2.64 mm

Therefore, the rod’s new length at 50 ◦C is 8.00264 m.

(b) If the rod is not allowed to expand, we then calculate what force would be

required to compress the rod by the amount 2.64 × 10−3 m. From the definition

of Young’s modulus Y = (F⊥/A)/(� L/L):

F⊥ = AY� L

L
= πr2 Y� L

L

= (3.14)(1.5 × 10−2 m)2(200 × 109 N/m2)(2.64 × 10−3 m)

(8 m)

= 4.7 × 104 N

Note that this answer is independent of the length L.

11.2.2 Volume Expansion

Not only does the length of an object increase with temperature, but its area and

volume change as well. The change in volume �V at a constant pressure is propor-

tional to the original volume V and to the change in temperature �T according to

the following relation:

�V = β V�T (11.5)

where the proportionality constant β is called the coefficient of volume expansion

for a given solid or liquid. Setting �T = 1 C◦ in Eq. 11.5, we see that β is numer-

ically equal to the fractional change in volume (�V/V) per one degree change

in temperature. Thus, like α, the unit of β is (deg−1). For example, a β value of
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24 × 10−3 (C◦)−1 means that the volume V of a solid or liquid changes by 24 parts

in 103 for every Celsius degree change (C◦) in temperature.

An isotropic solid is a solid that has a coefficient of linear expansion that is

equal in all directions. Accordingly, for an isotropic solid, the coefficient of volume

expansion is approximately three times the linear expansion coefficient, i.e. β = 3α.

Table 11.3 depicts some values of β.

Table 11.3 Coefficients of volume expansion β for some materials at room temperature (approximate)

Material Name β (C◦)−1 Material Name β (C◦)−1

Alcohol, ethyl 1.12 × 10−4 Water 6.3 × 10−4

Benzene 1.24 × 10−4 Turpentine 9 × 10−4

Acetone 1.5 × 10−4 Gasoline 9.6 × 10−4

Mercury 1.82 × 10−4 Air 3.67 × 10−3

Glycerin 4.85 × 10−4 Helium 3.665 × 10−3

Example 11.3

On a hot day, when the temperature was Ti = 45 ◦C, an oil trucker fully loaded his

truck from an oil station with 10,000 gal of gasoline (1 gallon � 3.8 liter). On his

way to a delivery city, he encountered cold weather, where the temperature went

down to Tf = 20 ◦C, see Fig. 11.4. The coefficients of volume expansion of gaso-

line and steel are β = 9.6 × 10−4 (C◦)−1 and β = 11 × 10−6 (C◦)−1, respectively.

How many gallons did the trucker deliver?

Fig. 11.4

Ti

Hot pickup day Cold delivery day

Movement

Tf

VfVi

Solution: The change in temperature from the production city to the delivery

city is �TC = Tf − Ti = 20 ◦C − 45 ◦C = −25 C◦. From Eq. 11.5, we can find the

change in the gasoline volume �V as follows:

�V = βV�T = [9.6 × 10−4 (C◦)−1](10,000 gal)(−25 C◦)

= −240 gal
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Thus, the amount of gasoline delivered was:

Vf = Vi + �V = 10,000 gal − 240 gal

= 9,760 gal

The thermal expansion of the volume of the steel tank can also be calculated as

follows:

�V = βV�T = [11 × 10−6 (C◦)−1](10,000 gal)(−25 C◦)

= −2.75 gal

This change is very small and has nothing to do with the problem, since the

decrease in the gasoline volume is much bigger than that of the steel. Question:

Who paid for the missing gasoline?

The most common liquid, water, does not behave like other liquids, see Fig. 11.5a.

Above 4 ◦C, water expands as its temperature rises, and thus its density decreases

as shown in the Fig. 11.5b. Between 0 ◦C and 4 ◦C, however, water contracts as its

temperature increases, and thus its density increases. Hence, the density of water

reaches a maximum value of 1,000 kg/m3 at 4 ◦C.

990
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Fig. 11.5 (a) The density of water versus temperature at atmospheric pressure. The maximum density

of 103 kg/m3 occurs at 4 ◦C. (b) The warmer water from 1 to 4 degrees stays below the ice because it is

more dense than the ice

This unusual thermal expansion behavior of water explains why a pond or lake

frezes only at its surface. As the water on the surface is cooled towards the freezing

point, it becomes denser (heavier) than the water below it and sinks to the bottom.

Warmer, less dense (lighter) water rises upwards to take its place and this in turn is

also cooled down. The water only stops circulating this way when it has all cooled
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to 4 ◦C (the maximum density). Further cooling below 4 ◦C makes the water on the

surface less dense than the water below it, so it stays on the surface until it freezes.

In time, ice continues to build up at the surface, and the denser warmer water at the

bottom is unlikely to cool any further because it does not circulate, and water near

the bottom remains at 4 ◦C. The water temperature stabilizes as shown in Fig. 11.5b.

Fish can survive by staying in the warmer deeper water.

11.3 The Ideal Gas

Let us examine the basic thermal properties of gases from an elementary point of

view. To do that, we will consider the properties of a gas of mass m confined within

a container of volume V at absolute pressure P and temperature T. The relation that

interrelates these quantities, the equation of state, is complicated. However, if the gas

is maintained at a very low pressure (or density), this equation is found experimentally

to be quite simple, and this keeps the mathematics relatively simple. This model is

known as the ideal gas model and the low-pressure gas is commonly referred to as

an ideal gas. Most gases at room temperature and atmospheric pressure behave as

ideal gases.

Equation of State of an Ideal Gas

One mole (1 mol) of a substance is the amount of substance that contains as many

particles as in exactly 12 g of the isotope carbon-12. Although the mole is one of

the seven SI base units, it is convenient to introduce the One kilomole (1 kmol) of

a substance as the amount of substance that contains as many particles as in exactly

12 kilograms of the isotope carbon-12. Thus:

One kilomole (1 kmol):

One kmol is the number of atoms in a 12 kg sample of pure carbon-12.

This number is called Avogadro’s number, NA, after A. Avogadro, who suggested

that all gases contain the same number of particles (atoms or molecules) when they

occupy the same volume under the same conditions of pressure and temperature.

Avogadro’s number is determined experimentally to be:

NA = 6.022 × 1026 particles/kmol (11.6)

Depending on the kind of study, atoms or molecules will replace the term “particles”.
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In addition, the molar mass of each chemical element is defined as:

Molar Mass (M):

The molar mass M of a chemical element is its atomic mass expressed in g/mol

or equivalently in kg/kmol.

For example, the mass of one 12C atom is 12 u (12 atomic mass units, see

Chap. 1); then the molar mass M of 12C is 12 kg/kmol and contains NA atoms.

For a molecular substance or chemical compound, we add up the molar mass from

its molecular formula. Thus, the molar mass M of nitrogen gas (N2) is 28 kg/kmol

and it consists of NA molecules; this is because the mass of one nitrogen atom is

14 u.

Now, for an ideal gas of mass m (in kg) confined to a container of volume V

(in m3) at a pressure P (in Pa) and temperature T (in K), it is convenient to express

the amount of the gas in terms of the number of kilomoles n, see Fig. 11.6. This

number is related to the gas mass m and its molar mass M through the expression:

n = m

M
(m in kg and M in kg/kmol) (11.7)

Fig. 11.6 An ideal gas

defined by P, V, T, and n is

contained in a cylinder with a

movable piston to allow the

volume to be varied

P, V, T, n

Ideal gas

Moreover, we consider that the volume of the container can be varied, and hence the

gas volume, by means of the movable piston of Fig. 11.6.

For this system, experiments show that at low densities, all gases tend to obey the

following equation of state (which is known as the ideal gas law):

PV = nRT (The ideal gas law) (11.8)

where n is the number of kilomoles of gas present and R is the gas constant which

is determined from experiments to have the same value for all gases, namely:

R =
{

8.314 × 103 J/kmol.K if n is the number of kmol

8.314 J/mol.K if n is the number of mol
(11.9)
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Using this value of R and the equation of state, Eq. 11.8, we can find the volume

occupied by 1 kmol (kilomolar volume) of any ideal gas at the standard temperature

and pressure (STP), which means temperature of 0 ◦C (273.15 K) and atmospheric

pressure (1 atm), as follows:

V = nRT

P
= (1 kmol)(8.314 × 103 J/kmol.K)(273.15 K)

(1.013 × 105 Pa)
= 22.42 m3 = 22,420 L

where 1 L ≡ 1 liter = 103 cm3 = 10−3 m3. Thus:

Volume of 1 kmol:

One kmol of any ideal gas at atmospheric pressure and at 0 ◦C occupies a space

of 22.42 m3 = 22,420 L.

We can express the ideal gas law in terms of the total number of molecules N by

using the fact that N equals the product of the number of kmol n and Avogadro’s

number NA, i.e. N = n NA. Thus:

PV = nRT = N

NA
RT = N

R

NA
T

or,

PV = NkBT (11.10)

where kB is called Boltzmann’s constant, which has the value:

kB = R

NA
= 8,314 J/kmol.K

6.022 × 1026 molecules/kmol
= 1.38 × 10−23 J/K (11.11)

Equation 11.10 indicates that the pressure of a fixed volume of gas depends only on

the temperature and the number of molecules in that volume.

Example 11.4

According to the periodic table of elements, see Appendix C, the molar mass of

copper is M(Cu)= 63.546 kg/kmol. Use this information to find the mass of one

atom.

Solution: The molar mass of 63.5Cu is M(Cu)= 63.546 kg/kmol and contains

NA = 6.022 × 1026 atoms/kmol. The mass of 1 atom is then:
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Mass of one Cu atom = M(Cu)

NA
= 63.546 kg/kmol

6.022 × 1026 atoms/kmol

= 1.059 × 10−25 kg/atom

Example 11.5

The main constituents of air are nitrogen molecules of molar mass M(N2)=
28 kg/kmol and oxygen molecules of molar mass M(O2)= 32 kg/kmol with

approximate proportions of 80% and 20%, respectively. Using the ideal gas law,

find the mass of air in a volume of 50 cm3 at a pressure of 700 torr and temperature

of 20 ◦C.

Solution: The molar mass of air can be obtained from the ratios of the two gases

as follows:

M(air) = 0.8 M(N2) + 0.2 M(O2)

= 0.8 (28 kg/kmol) + 0.2 (32 kg/kmol) = 28.8 kg/kmol

The volume, pressure, and temperature values can be written as:

V = 50 cm3 = 5 × 10−5 m3

P = 700 torr = 700 torr × 1 atm

760 torr
× 1.01 × 105 Pa

1 atm
= 9.3 × 104 Pa

T = 20 ◦C = 20 + 273 = 293 K (From now on, we ignore the 0.15 K)

We can use the ideal-gas equation PV = nRT with n = m/M(air), where m is

the mass of air under consideration, to find m as follows:

m = PVM(air)

RT
= (9.3 × 104 Pa)(5 × 10−5 m3)(28.8 kg/kmol)

(8.314 × 103 J/kmol.K)(293 K)
= 5.5 × 10−5 kg

Example 11.6

(a) How many molecules are there in 1 cm3 of air at room temperature (27 ◦C)?

(b) How many kilomoles of air are in that volume? (c) The best vacuum that can
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be produced corresponds to a pressure of about 10−16 atm. How many molecules

remain in 1 cm3?

Solution: The number of molecules in 1 cm3 can be calculated from the ideal gas

equation PV = NkBT . (a) Rewriting the quantities given, we have:

V = 1 cm3 = 10−6 m3

P = 1 atm � 105 Pa

T = 27 ◦C = 27 + 273 = 300 K

Thus : N = PV

kBT
= (105 Pa)(10−6 m3)

(1.38 × 10−23 J/K)(300 K)
= 2.4 × 1019 molecules

(b) We use the ideal gas equation PV = nRT to calculate the number of kilo-

moles as follows:

n = PV

RT
= (105 Pa)(10−6 m3)

(8.314 × 103 J/kmol.K)(300 K)
= 4 × 10−8 kmol

Also, we can use the relation N = n NA to get n as follows:

n = N

NA
= 2.4 × 1019 molecules

6.022 × 1026 molecules/kmol
= 4 × 10−8 kmol

(c) Rewriting the quantities given, we have:

V = 1 cm3 = 10−6 m3

P = 10−16 atm � 10−11 Pa

T = 27 ◦C = 27 + 273 = 300 K

Thus : N = PV

kBT
= (10−11 Pa)(10−6 m3)

(1.38 × 10−23 J/K)(300 K)
= 2,415 molecules

There are still a large number of molecules left in this 1 cm3 vacuum.

Example 11.7

A metal barrel is filled with air and is closed firmly when the pressure is 1 atm

and the temperature is 20 ◦C. On a hot sunny day, the barrel’s temperature rises
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to 60 ◦C while its volume remains almost the same. Find the final pressure inside

the barrel.

Solution: We mark the initial state of air with P1, V1, T1 and final state with

P2, V2, T2, see Fig. 11.7. If no air escapes from the barrel, the number of moles

of air n remains constant. Therefore, using the ideal gas law PV = nRT in the

initial and final states and the fact that V2 = V1, we get:

nR = P1 V1

T1
= P2 V2

T2
⇒ P1

T1
= P2

T2
⇒ P2 = P1

T2

T1

The quantities given are:

⎧⎪⎪⎨
⎪⎪⎩

P1 = 1 atm = 1.01 × 105 Pa

T1 = 20 ◦C = 20 + 273 = 293 K

T2 = 60 ◦C = 60 + 273 = 333 K

Thus: P2 = (1 atm)
333 K

293 K
= 1.14 atm = 1.15 × 105 Pa

Fig. 11.7
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Example 11.8

The initial volume, pressure, and temperature of helium gas trapped in a container

with a movable piston are 2 × 10−3 m3, 150 kPa, and 300 K, respectively; see

Fig. 11.8. If the volume is decreased to 1.5 × 10−3 m3 and the pressure increases

to 300 kPa find the final temperature of the gas, assuming it behaves like an ideal

gas.

Fig. 11.8

Pi ,Vi , Ti Pf ,Vf , Tf
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Solution: The initial state of helium is Pi, Vi, Ti and final state is Pf , Vf , Tf .

With the use of the ideal gas law PV = nRT , we get:

Pi Vi

Ti
= Pf Vf

Tf
⇒ Tf = Ti

Pf Vf

Pi Vi

= (300 K)
(300 kPa)(1.5 × 10−3 m3)

(150 kPa)(2 × 10−3 m3)
= 450 K

11.4 Exercises

Section 11.1 Temperature

(1) Convert the temperatures −30 ◦C, 10 ◦C, and 50 ◦C to Kelvin and Fahrenheit.

(2) Express the normal human body temperature, 37 ◦C, and the sun’s surface

temperature, ∼6000 ◦C, in Fahrenheit and Kelvin.

(3) A Celsius thermometer indicates a temperature of −40 ◦C. (a) What Fahrenheit

and Kelvin temperatures correspond to this Celsius temperature? (b) If the

temperature changes from −40 ◦C to +10 ◦C, find the change in temperature

on the Fahrenheit scale.

(4) The normal melting point of gold is 1064.5 ◦C and its boiling point is 2660 ◦C.

(a) Convert these two values to the Fahrenheit and Kelvin scales. (b) Find the

difference between those two values in Celsius. (c) Repeat (b) using the Kelvin

scale.

(5) The height of an alcohol column in an alcohol thermometer has a length 12 cm

at 0 ◦C and a length 22 cm at 100 ◦C. Assume that the temperature and the

length of the alcohol thermometer are linearly related. What is the temper-

ature that the thermometer will measure if the alcohol column has a length

12.5 cm?

Section 11.2 Thermal Expansion of Solids and Liquids

(6) The Eiffel tower is built from iron and it is about 324 m high. Its coefficient

of linear expansion is approximately 12 × 10−6 (C◦)−1 and assumed constant.

What is the increase in the tower’s length when the temperature changes from

0 ◦C in winter to 30 ◦C?
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(7) A copper rod is 8 m long at 20 ◦C and has a coefficient of linear expansion

α = 17 × 10−6 (C◦)−1. What is the increase in the rod’s length when it is heated

to 40 ◦C?

(8) A road is built from concrete slabs, each of 10 m long when formed at 10 ◦C,

see Fig. 11.9. How wide should the expansion cracks between the slabs be at

10 ◦C to prevent road buckling if the range of temperature changes from −5 ◦C

in winter to +40 ◦C in summer? The coefficient of linear expansion for concrete

is α = 12 × 10−6 (C◦)−1.

Fig. 11.9 See Exercise (8)
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(9) An iron steam pipe is 100 m long at 0 ◦C and has a coefficient of linear

expansion α = 10 × 10−6 (C◦)−1. What will be its length when heated to

100 ◦C?

(10) An ordinary glass window has a coefficient of linear expansion α = 9 ×
10−6 (C◦)−1. At 20 ◦C the sides a and b have the values 1 m and 0.8 m respec-

tively, see Fig. 11.10. By how much does the area increase when its temperature

rises to 40 ◦C?

Fig. 11.10 See Exercise (10)

a
b

Δ a

Δ b

Δ a Δ b

(11) A steel tape measure has a coefficient of linear expansion α = 12×10−6 (C◦)−1

and is calibrated at 20 ◦C. On a cold day when the temperature is −20 ◦C, what

will be the percentage error for a reading made using this tape measure?
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(12) A bar of length L = 4 m and linear expansion α = 25 × 10−6 (C◦)−1 has a crack

at its center. The ends of the bars are fixed as shown in Fig. 11.11. As a result

of a temperature rise of 40 C◦, the bar buckles upwards, see Fig. 11.11. Find

the vertical rise d of the bar’s center.

Fig. 11.11 See Exercise (12)

L

T

T+ΔT

L

d

(13) A composite rod of length L is made from two different rods of lengths L1 and

L2 with linear expansion coefficients of α1 and α2, respectively, see Fig. 11.12.

(a) Show that the coefficient of linear expansion α for this composite rod is

given by α = (α1L1 + α2L2)/L. (b) Using the linear expansion coefficients of

steel and brass given in Table 11.2, find L1 and L2 in the case where L = 0.8 m

and α = 14 × 10−6 (C◦)−1.

Fig. 11.12 See Exercise (13) L1 L2

L

(14) A homogeneous metal ring of temperature T has inner and outer radii a and b,

respectively. As the metal ring is heated to a temperature of T + �T , its inner

and outer radii increase linearly to a + �a and b + �b respectively, see Fig.

11.13. Show that the heating has no effect on the ratio between the inner and

the outer radii.

Fig. 11.13 See Exercise (14)

b
a

a + Δ aT

b + Δ b

T + Δ T
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(15) A spherical brass plug has a diameter d of 10 cm at T = 150 C◦ and has a

coefficient of linear expansion α = 19 × 10−6 (C◦)−1, see Fig. 11.14. At what

temperature will its diameter be 9.950 cm?

Fig. 11.14 See Exercise (15) r − | Δ r |

T

T − | Δ T |
r

(16) Two rods of the same diameter, one made of brass of length L1 = 25 cm, and the

other rod made of steel of length L2 = 50 cm, are placed end-to-end and pinned

to two rigid supports, see Fig. 11.15. The Young’s modulus for the brass and

steel rods are Y1 = 100 × 109 N/m2 and Y2 = 200 × 109 N/m2 respectively,

and their respective coefficients of linear expansion are α1 = 18 × 10−6 (C◦)−1

and α2 = 12 × 10−6 (C◦)−1. The two rods are heated until the rise in temper-

ature becomes �T = 40 C◦. What is the stress in each rod?

Fig. 11.15 See Exercise (16) T
30.00 mm 59.63 mmL1 L2

27.35 mm 62.27 mmL'1 L'2
T + ΔT

FFFF

(17) Two parallel metal bars with the same length L and negligible width, but dif-

ferent linear expansion coefficients α1 and α2, are fixed at a distance d apart,

see Fig. 11.16. When their temperature changes by �T , they will bend into two

circular arcs intercepting at an angle θ as shown in Fig. 11.16. Find their mean

radius of curvature r.

(18) Find the change in volume of an aluminum sphere that has a radius of 5 cm

when it is heated from 0 ◦C to 300 ◦C. Assume that the coefficient of volume

expansion is β = 7.2 × 10−5 (C◦)−1.

(19) A glass flask holds 50 cm3 at a temperature of 20 ◦C. What is its capacity

at 30 ◦C? Assume the coefficient of volume expansion of this glass flask is

2.7 × 10−5 (C◦)−1.
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Fig. 11.16 See Exercise (17) 14.82d 14.16d

53.30
r
1

L1

L
2

69.51 mmr 2

T T + ΔT

45
.0

0 
m

m

L

12 2 1
61.09r q

(20) A flask is completely filled with mercury at 20 ◦C and is sealed off, see

Fig. 11.17. Ignore the expansion of the glass and assume that the bulk modulus

of mercury is B = 2.5 × 109 N/m2 and its coefficient of volume expansion is

β = 1.82 × 10−4 (C◦)−1. Find the change in pressure inside the flask when it

is heated to 100 ◦C.

Fig. 11.17 See Exercise (20)

T=20 °C 

Mercury

Sealed flask

(21) A glass flask of volume 200 cm3 is filled with mercury when the temperature is

T = 20 ◦C, see Fig. 11.18. The coefficient of volume expansion of the glass and

mercury are β = 1.2 × 10−5 (C◦)−1 and β = 18 × 10−5 (C◦)−1 respectively.

How much mercury will overflow when the temperature of the flask is raised

to 100 ◦C?

T T + ΔT

Mercury Mercury

Fig. 11.18 See Exercise (21) (Take 1 atm � 105 Pa unless specified)
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Section 11.3 The Ideal Gas

(22) Find the density of nitrogen (N2) and oxygen (O2) at STP assuming they behave

like an ideal gas.

(23) A tank contains 0.5 m3 of nitrogen at a pressure of 1.5 × 105 N/m2 and a

temperature of 27 ◦C. (a) What will be the pressure if the volume is increased

to 5.0 m3 and the temperature is raised to 327 ◦C? (b) Answer part (a) if the

volume remains constant.

(24) A tank contains nitrogen N2 at an absolute pressure of 2.5 atm. What will be

the pressure of an equal mass of CO2 that replaces the nitrogen at the same

temperature?

(25) A tire is filled with air at 27 ◦C in a normal day to a gauge pressure of 2 atm.

Then its temperature reaches 40 ◦C in a hot day. What fraction of the original

air must be removed if the original pressure is to be restored?

(26) A 1,000 L container holds 50 kg of argon gas at 27 ◦C. The molar mass of argon

is M = 40 kg/kmol. What is the pressure of the gas?

(27) A bubble of air rises from the bottom of a lake, where the pressure is 3 atm

and the temperature is 7 ◦C, to the surface, where the pressure is 1 atm and

the temperature is 27 ◦C, see Fig. 11.19. What is the ratio of the volume of the

bubble just as it reaches the surface to its volume at the bottom?

Fig. 11.19 See Exercise (27)

3 atm

1 atm

7 °C

27 °C

bubble

(28) (a) How many molecules are there in 1 L of air at a temperature of 27 ◦C?

(b) How many kilomoles of air are in that volume? (c) The best vacuum that

can be produced corresponds to a pressure of about 10−16 atm. How many

molecules remain in 1 L?

(29) A cylindrical metallic container is filled with air and is closed firmly when the

pressure is Pi = 1 atm and the temperature is Ti = 27 ◦C. In a very hot sunny

day, the container’s temperature rises to Tf = 70 ◦C while its volume remains

almost the same, see Fig. 11.20. Find the final pressure inside the container.
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Fig. 11.20 See Exercise (29)

Before After

P1

V1

T1

P2

V2

T2

V2 =V1

inside
Air

inside
Air

(30) The main constituents of air are nitrogen molecules of molar mass M(N2)=
28 kg/kmol and oxygen molecules of molar mass M(O2)= 32 kg/kmol with

approximate ratios of 80 and 20%, respectively. Using the ideal gas law, find

the mass of air in a volume of 1 L at atmospheric pressure and temperature

of 27 ◦C.

(31) The initial volume, pressure, and temperature of helium gas trapped in a

container with a movable piston are Vi = 3 L, Pi = 150 kPa, and Ti = 300 K,

respectively, see Fig. 11.21. If the volume is decreased to Vf = 2.5 L and the

pressure increases to Pf = 300 kPa, find the final temperature of the gas assum-

ing that it behaves like an ideal gas.

Fig. 11.21 See Exercise (31)

Pi ,Vi , Ti Pf ,Vf , Tf

Initial Final

(32) The volume of an oxygen tank is 50 L. As oxygen is withdrawn from the tank,

the pressure of the remaining gas in the tank drops from 20 atm to 8 atm,

and the temperature also drops from 30 to 10 ◦C. (a) How many kilograms of

oxygen were originally in the tank? (b) How many kilograms of oxygen were

withdrawn from the tank? (c) What volume would be occupied by the oxygen

that withdrawn from the tank at a pressure of 1 atm and a temperature of 27 ◦C?

(33) A balloon filled with helium is left free on the surface of the ground when

the temperature is 27 ◦C. When the balloon reaches an altitude of 3,000 m,

where the temperature is 5 ◦C and the pressure is 0.65 atm, how will its volume

compare to the original volume on the ground?
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(34) The density of water vapor at exactly 100 ◦C and 1 atm = 1.013 × 105 Pa is

ρ = 0.598 kg/m3. Calculate the density of water vapor, with a molecular mass

M = 18 kg/kmol, from the ideal gas law. Why would you expect a difference?

(35) An empty room of volume V contains air having a molar mass M. At

atmospheric pressure Pa, the mass and temperature of the room are initially

mi and Ti, respectively. Assuming that the room is maintained at atmospheric

pressure while its temperature is increased to Tf , show that the final mass of

air left in the room, mf , will be given by:

mf = mi − Pa V M

R

(
1

Ti
− 1

Tf

)
.



Heat and the First Law of Thermodynamics 12

Our focus in this chapter will be on the concept of internal energy, energy transfer,

the first law of thermodynamics, and some applications of this law. The first law of

thermodynamics expresses the general principle of conservation of energy. Accord-

ing to this law, an energy transfer to or from a system by either heat or work can

change the internal energy of the system.

12.1 Heat and Thermal Energy

It is important to make a major distinction between heat and internal energy (thermal

energy).

Internal energy is all the energy of a system that is associated with its micro-

scopic constituents. Internal energy includes kinetic energy of random translational,

rotational, and vibrational motion of molecules, potential energy of molecules and

between molecules.

Heat is defined as the transfer of energy from one system to another due to a

temperature difference between them.

12.1.1 Units of Heat, The Mechanical Equivalent of Heat

Previously, heat was measured in terms of its ability to raise the temperature

of water. Thus, the calorie (cal), in cgs units, was defined as the amount of

heat required to raise the temperature of 1 g of water from 14.5 to 15.5 ◦C. The

H. A. Radi and J. O. Rasmussen, Principles of Physics, 379
Undergraduate Lecture Notes in Physics, DOI: 10.1007/978-3-642-23026-4_12,
© Springer-Verlag Berlin Heidelberg 2013
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‘Calorie’ with a capital C, used by nutritionists, is a kilocalorie (1 Cal = 1 kcal =
103 cal).The British Thermal Unit (Btu) was also defined as the amount of heat

required to raise the temperature of 1 lb of water from 63 to 64 ◦F. Since heat is now

known as transferred energy, the SI unit for it is the joule (J).

In a famous experiment, see Fig. 12.1, Joule measured the calorie (cal) by

converting mechanical energy into heat energy, expressed as an increase in water

temperature.

Fig. 12.1 Joule’s experiment

for measuring the mechanical

equivalent of heat from the

temperature rise in water

Water
Thermal 
insulator

h

Thermometer

m

Joule found that the loss in mechanical energy is proportional to the increase

in temperature of the water. The proportionality constant was found to be equal to

4,180 J/kg.C◦. Hence, 4,180 J of mechanical energy will raise the temperature of

1 kg of water from 14.5 to 15.5 ◦C. One kilocalorie (1 kcal) is now defined to be

exactly 4,186 J without reference to the heating of substance. Thus:

1 kcal = 4,186 J (12.1)

The relations among the various heat units are as follows:

1 J = 2.389 × 10−4 kcal = 9.478 × 10−4 Btu

or

1 kcal = 4,186 J = 3.968 Btu

(12.2)

12.1.2 Heat Capacity and Specific Heat

The quantity of heat energy Q required to raise the temperature of an object by some

amount �T varies from one substance to another.
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The heat capacity C of an object is defined as:

The Heat Capacity C:

The heat capacity C of an object of a particular material is defined as the amount

of heat energy needed to raise the object’s temperature by one degree Celsius.

Accordingly, if Q units of heat energy are required to change the temperature by

�T = Tf − Ti, where Ti and Tf are the initial and final temperatures of the object,

then:

Q = C �T , where �T = Tf − Ti (12.3)

Heat capacity C has the unit J/C◦(≡J/K) or kcal/C◦(≡kcal/K).

The heat capacity for any object is proportional to its mass m. For this reason,

we define the “heat capacity per unit mass” or the specific heat c which refers to a

unit mass of the material of which the object is made. Thus, with C = m c, Eq. 12.3

becomes:

Q = m c �T , where �T = Tf − Ti (12.4)

Specific heat c has the unit:

J/kg.C◦ ≡ J/kg.K

or

kcal/kg.C◦ ≡ kcal/kg.K

The specific heat of water at 15 ◦C and atmospheric pressure is:

cwater = 4,186 J/kg.K = 1 kcal/kg.C◦

Note that, when heat energy is added to objects, Q and �T are both positive, i.e. the

temperature increases. Likewise, when heat is removed from objects, Q and �T are

both negative, i.e. the temperature decreases.

In general, specific heat c varies with temperature. However, if temperature inter-

vals are not too big, the temperature variation can be ignored, and c can be treated

as a constant. For example, the specific heat of water varies by about 1% from

0 to 100 ◦C at atmospheric pressure. Table 12.1 presents some specific heat values

for various substances, measured at room temperature and atmospheric pressure.
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Table 12.1 Specific heat c of some substances at atmospheric pressure and room temperature (20 ◦C)

with few exceptions

Substance Specific heat

J/kg.C◦ kcal/kg.C◦

Silver 230 0.0564

Copper 390 0.0923

Iron or steel 450 0.107

Aluminum 900 0.215

Brass 380 0.092

Granite 790 0.19

Glass 840 0.20

Ice (−5 ◦C) 2,100 0.50

Ice (−10 ◦C) 2,220 0.530

Mercury 140 0.033

Alcohol (Ethyl) 2,400 0.58

Seawater 3,900 0.93

Water (15 ◦C) 4,186 1

Steam (100 ◦C) 2,010 0.48

Measuring Specific Heat

Figure 12.2 shows an example of a calorimeter, which is a device used to determine the

specific heat of a solid or liquid substance. The substance (represented by a circular

object, having a specific heat cx and mass mx) is heated up to some known initial

temperature Tx, and then placed in a perfectly insulated vessel containing water of

specific heat cw, mass mw, and initial temperature Tw. If Tf is the final temperature

after reaching equilibrium, then Tw < Tf < Tx. Using Eq. 12.4, we calculate the heat

gained by the water to be Q = mw cw (Tf − Tw), and calculate the heat energy lost

by the object to be −Q = mx cx (Tf − Tx).

Assuming that the entire system does not lose or gain any heat from its surround-

ing, then the heat gained by the water must equal the heat lost by the object. That is:

Q = mw cw (Tf − Tw) = −mx cx (Tf − Tx) (12.5)
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Solving for cx gives:

cx = cw
mw

mx

(Tf − Tw)

(Tx − Tf)
, (Tw < Tf < Tx) (12.6)

When calculating cx, we neglected heat exchange with the vessel, which is acceptable

when the mass of the water is considerably larger than that of the vessel, and when

the vessel has a negligible specific heat.

Water

Thermal 
insulator

cx , mx

cw , mw

Tx 

Tw 

Object

Tf 

Tw 

Initial Initial Final

+ =
Tf 

Tf 

Fig. 12.2 In the method of mixtures, a calorimeter filled with water is used to find the specific heat of

unknown heated objects

Example 12.1

The specific heat of zinc is 352 J/kg.C◦ for temperatures near 25 ◦C. Determine

the amount of heat required to raise the temperature of 0.5 kg zinc from 20 to

30 ◦C. Take the specific heat to be constant in that temperature range.

Solution: The given values are c = 352 J/kg.C◦, m = 0.5 kg, Ti = 20 ◦C, and

Tf = 30 ◦C. The temperature change has the following magnitude:

�T = Tf − Ti = 30 ◦C − 20 ◦C = 10 C◦

Using Eq. 12.4 we find the amount of heat required as follows:

Q = m c �T = (0.5 kg)(352 J/kg.C◦)(10 C◦) = 1,760 J
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Example 12.2

A steel metal object of mass 0.05 kg is heated to 225 ◦C and then dropped into a

vessel containing 0.55 kg of water initially at 18 ◦C. When equilibrium is reached,

the temperature of the mixture is 20 ◦C. Find the specific heat of the metal.

Solution: For the steel metal object, we are given mx = 0.05 kg and Tx = 225 ◦C,

but its specific heat cx is unknown. For water, the known values are mw = 0.55 kg,

Tw = 18 ◦C, and cw = 4,186 J/kg.C◦ (Table 12.1). For the mixture, the equilibrium

temperature occurs at Tf = 20 ◦C. Since the heat gained by the water is equal in

magnitude to the heat lost by the steel, see Eq. 12.6 and Fig. 12.2, then we must

have:

mw cw (Tf − Tw) = −mx cx (Tf − Tx), (Tw < Tf < Tx)

Solving for cx we get:

cx = cw
mw

mx

(Tf − Tw)

(Tx − Tf)

= (4,186 J/kg.C◦) (0.55 kg)

(0.05 kg)

(20 ◦C − 18 ◦C)

(225 ◦C − 20 ◦C)

= 449 J/kg.C◦

12.1.3 Latent Heat

When heat energy is transferred from one substance to another, the temperature of

the substance often changes. However, there are situations in which the transfer of

energy does not change the temperature. Instead, the substance may change from

one form to another. Such a change is commonly referred to as a phase change or

phase transition, see Sect. 13.4 and especially Fig. 13.10.

We consider the following two main common phase changes:

1. A phase change from solid to liquid (as ice melting) and from liquid to gas

(as water boiling), where heat energy is absorbed while the temperature remains

constant.

2. A phase change from gas to liquid (as steam condensing) and from liquid to

solid (as water freezing), where heat energy is released while the temperature

remains constant.

The amount of heat energy per unit mass, L, that must be transferred when a

substance completely undergoes a phase change without changing temperature is



12.1 Heat and Thermal Energy 385

called the latent heat (literally, the “hidden” heat). If a quantity Q of heat energy

transfer is required to change the phase of a pure substance of a mass m, then

L = Q/m characterizes an important thermal property of that substance. That is:

Q = ±m L (12.7)

A positive sign is used in this equation when energy enters the system, causing melting

or vaporization of the substance, while a negative sign corresponds to energy leaving

the system such that the substance condenses or solidifies.

When a substance experiences a phase change from solid to liquid by absorbing

heat, the heat of transformation is called the latent heat of fusion LF, see Fig. 12.3.

When the substance releases heat and experiences a phase change from liquid back

to solid, the heat of transformation is called the latent heat of solidification and is

numerically equal to the latent heat of fusion, see Fig. 12.3. In the case of water at

its normal melting or freezing temperature, we have:

LF = 3.33 × 105 J/kg = 79.5 kcal/kg = 6.01 × 106 J/kmol (12.8)

When a substance experiences a phase change from liquid to gas by absorbing

heat, the heat of transformation is called the latent heat of vaporization LV, see

Fig. 12.3. When the gas releases heat and experiences a phase change from gas back

to liquid, the heat of transformation is called the latent heat of condensation and

is numerically equal to the latent heat of vaporization, see Fig. 12.3. For water at its

normal boiling and condensation temperatures, we have:

LV = 2.256 × 106 J/kg = 539 kcal/kg = 40.7 × 103 J/kmol (12.9)

Latent heat
 of fusion

Latent heat of
vaporization

Liquid

LF
LV

GasSolid

Fusion
Q (positive)

Solidification
Q (negative)

Vaporization
Q (positive)

Condensation
Q (negative)

Fig. 12.3 A sketch showing heat of fusion/vaporization (positive Q) as well as heat of condensation/

solidification (negative Q)
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Phase changes can be described in terms of a rearrangement of molecules when

heat energy is added or removed from a substance. Consider, for example, the solid-

to-liquid phase change. The molecules in the solid are strongly attracted to each

other. As thermal energy is absorbed, the molecules usually move further apart and

their potential energy increases. (Water-ice is an exception where there is shrinkage.)

This leads to no change in the average kinetic energy of the molecules during the

melting process, which involves molecules moving from fixed lattice positions to a

random liquid state, the temperature stays constant. The latent heat of fusion is equal

to the work done in separating the molecules during the melting process and hence

breaking their bonds and transforming the substance from the ordered solid phase

into the disordered liquid phase.

Now, we consider the liquid to gas phase change. The attractive forces between

molecules in liquid form are stronger than in gas form because the average distance

between molecules is smaller in the liquid state. As described in the solid-to-liquid

phase transition, work must be done against these attractive forces. The latent heat

of vaporization is the amount of energy added to the molecules in liquid form to

accomplish this.

Table 12.2 gives some latent heats of various substances.

Table 12.2 Latent heats of fusion and vaporization (approximates)

Substance Melting Boiling

Melting point ◦C Latent heat of
fusion J/kg

Boiling point ◦C Latent heat of
vaporization J/kg

Helium −270 5.23 × 103 −269 2.09 × 104

Nitrogen −210 2.55 × 104 −196 2.01 × 105

Oxygen −219 1.38 × 104 −183 2.13 × 105

Water 0 3.33 × 105 100 2.26 × 106

Sulfur 119 3.81 × 104 445 3.26 × 105

Lead 327 2.45 × 104 1,750 8.70 × 105

Aluminum 660 3.97 × 105 2,450 1.14 × 107

Silver 961 8.82 × 104 2,193 2.33 × 106

Gold 1,063 6.44 × 104 2,660 1.58 × 106

Copper 1,083 1.34 × 105 1,187 5.06 × 106

Silicon 1,410 1.65 × 106 2,447 1.06 × 107
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To understand the role of latent heat in phase changes, we calculate the energy

required to convert 1 g of ice at −50 ◦C into steam at 150 ◦C. Figure 12.4 shows the

results obtained when energy is added gradually to 1 g of ice. The red curve of the

figure is divided into the following five stages:

Ice
A

B

C

D E

0 500 1000 3000
-50

0

50

100

150

Ice +
Water

Water

Water + steam

St
ea

m

T ( 
oC)

Thermal energy (J)

111 444 863 3123 3224

Fig. 12.4 Temperature as a function of the thermal energy added gradually to convert 1 g of ice at −50 ◦C

into steam at 150 ◦C

Stage A—Changing the temperature of ice from −50 to 0 ◦C:

With a specific heat of ice ci = 2,220 J/kg.C◦, the amount of heat added

QA is:

QA = mici�T = (1 × 10−3 kg)(2,220 J/kg.C◦)(50 C◦) = 111 J

Stage B— Ice-water mixture remains at 0 ◦C (even heat is added):

With a latent heat of fusion LF = 3.33 × 105 J/kg, the amount of heatadded

QB until all of the ice melts is:

QB = m LF = (1 × 10−3 kg)(3.33 × 105 J/kg) = 3.33 × 102 J

Stage C— Changing the temperature of water from 0 to 100 ◦C:

With a specific heat of water cw = 4,186 J/kg.C◦, the amount of heat

added QC is:

QC = mwcw�T = (1 × 10−3 kg)(4,186 J/kg.C◦)(100 C◦) � 419 J
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Stage D—Water-steam mixture remains at 100 ◦C (even heat is added):

With a latent heat of vaporization LV = 2.26 × 106 J/kg, the amount of

heat added QD until all of the water evaporates is:

QD = m LV = (1 × 10−3 kg)(2.26 × 106 J/kg) = 2.26 × 103 J

Stage E—Changing the temperature of steam from 100 to 150 ◦C:

With a specific heat of steam cs = 2,010 J/kg.C◦, the amount of heat

added QE is:

QE = mscs�T = (1 × 10−3 kg)(2,010 J/kg.C◦)(50 C◦) � 101 J

The total heat added to change 1 g of ice at −50 ◦C to steam at 150 ◦C is Qtot =
3,224 J. That is, if we cool 1 g of steam at 150 ◦C until we have ice at −50 ◦C, we

must remove 3,224 J of heat.

Example 12.3

Find the quantity of heat required to convert ice of mass 500 g at −10 ◦C into water

at 20 ◦C. The specific heat of ice is ci = 2,220 J/kg.C◦, the latent heat of fusion

is LF = 3.33 × 105 J/kg, and the specific heat of water is cw = 4,186 J/kg.C◦.

Solution: The ice gains heat throughout the following three stages.

Ice
 at -10 oC Q 

A

Ice
 at 0 oC Q 

B

Water
 at 0 oC Q 

C

Water
 at 20 oC

Fusion

In stage A we raise the temperature of ice from −10 to 0 ◦C. Using Eq. 12.4 we

get:

QA = mici �T = (0.5 kg)(2,220 J/kg.C◦)(10 C◦) = 11,100 J = 11.1 kJ

In stage B we melt the 500 g of ice at constant temperature (0 ◦C) by supplying

the latent heat of fusion. Using Eq. 12.7 we get:

QB = m LF = (0.5 kg)(3.33 × 105 J/kg) = 166,500 J = 166.5 kJ

In stage C we raise the temperature of water from 0 to 20 ◦C. Using Eq. 12.4

we get:
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QC = mwcw �T = (0.5 kg)(4,186 J/kg.C◦)(20 C◦) = 41,860 J = 41.86 kJ

Note that QB > QC > QA and the total required heat is Qtot = 219.46 kJ.

Example 12.4

A glass beaker of water is at 20 ◦C. The beaker has a mass mg = 200 g with specific

heat cg = 840 J/kg.C◦ and contains water of mass mw = 300 g with specific heat

cw = 4,186 J/kg.C◦. A quantity of steam initially at 120 ◦C is used to warm the

system to 50 ◦C. If the specific heat of steam is cs = 2,010 J/kg.C◦ and latent heat

of vaporization is LV = 2.26 × 106 J/kg, what is the mass of the steam?

Solution: The heat lost by the steam equals the heat gained by both beaker and

water. The steam loses heat over the stages shown below.

Steam
 at 120 oCQ 

A

Steam
 at 100 oCQ 

B

Water
 at 100 oCQ 

C

Water
 at 50 oC

Condensation

In the first stage, the steam is cooled from 120 to 100 ◦C, i.e. �T = Tf − Ti =
100 ◦C−120 ◦C = −20 C◦. The heat liberated in this stage by the unknown mass

ms of steam is:

QA = mscs �T = ms(2,010 J/kg.C◦)(−20 C◦) = −ms(40,200 J/kg)

In the second stage, the steam is condensed to water at 100 ◦C. Since the latent

heat of condensation equals the latent heat of vaporization, we use Eq. 12.7 to find

the heat liberated as follows:

QB = −ms LV = −ms(2.26 × 106 J/kg)

In the last stage the temperature of water is reduced from 100 to 50 ◦C. This

liberates an amount of heat given by:

QC = mscw �T = ms(4,186 J/kg.C◦)(−50 C◦) = −ms(209,300 J/kg)

The heat lost is thus Qlost = QA + QB + QC = −ms(2,509,500 J/kg). The heat

gained by the beaker and water system from 20 to 50 C◦ is:

Qgained = mwcw �T + mgcg �T = (mwcw + mgcg)�T

= [(0.3 kg)(4,186 J/kg.C◦) + (0.2 kg)(840 J/kg.C◦)](30 C◦)

= 42,714 J
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If we equate the magnitude of heat lost by the steam, |Qlost|, with the heat gained

by the beaker and water system, Qgained, we get:

ms = 42,714 J/(2,509,500 J/kg) = 0.017 kg = 17 g

12.2 Heat and Work

In thermodynamics, when an isolated system is in thermal equilibrium internally, we

describe its macroscopic state with the variables P, V, and T to represent pressure,

volume and temperature. For such a system, we describe its microscopic state of

internal energy with the variable Eint (some other textbooks use the symbol U).

Let us assume our system consists of gas confined to a cylinder with insulated

walls and a movable frictionless piston of area A, as shown in Fig. 12.5. The cylinder

rests on a heat reservoir whose temperature T is controlled by a knob. At equilibrium,

the upward force on the piston due to the pressure of the confined gas is equal to the

weight of the load on the top of the piston.

P, V, T
Insulation

Q

Heat reservoir
T Control 

knob

Piston
W

LoadA

Fig. 12.5 Gas confined to a cylinder with a movable frictionless piston. The gas can do work W to raise

or lower the piston. By regulating the temperature T of the thermal reservoir, by means of a control knob,

a quantity of heat Q can be added or removed from the gas

Consider that we start at an initial state i, where the system is described to have

pressure Pi, volume Vi, and temperature Ti. We then change the system to a final

state f, described to have pressure Pf , volume Vf , and temperature Tf . The process

of changing the system from the initial state to the final state is a thermodynamic

process. During such a process, work is done by the system to raise the piston
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(positive work1) or lower it (negative work). In addition, heat may be transferred

into the system from the thermal reservoir (positive heat) or vice versa. We assume

that the state of the gas changes quasi-statically, i.e. slowly enough to allow the

system to remain essentially in a thermodynamic equilibrium at all times.

Now, assume we reduce the load from the piston in such a way that the piston will

move upward through a differential displacement d→s with almost constant upward

force
→
F ,as shown in Fig. 12.6. From the definition of pressure, we have F = PA,

where A is the area of the piston. The differential work dW done by the gas during

the displacement is:

dW = →
F • d→s = F ds = P A ds

Since A ds is the differential change in the volume of the gas dV (i.e. dV = A ds),

we can express the work done by the gas as follows:

dW = P dV (12.10)

V

Before After

V+dV

A

P

dsP
A dW

Reduced
load

Load

Fig. 12.6 A confined gas in a cylinder at pressure P does work dW on a free piston as the gas expands

from volume V to volume V + dV because of a decreased load

If the gas expands, as in Fig. 12.7, then dV is positive and the work done by the

gas is positive, whereas if the gas is compressed, dV is negative, indicating that the

work done by the gas is negative (which can be interpreted as work done on the gas).

When we remove an appreciable amount of load from the piston, the volume of the

gas changes from Vi to Vf , and the total work done by the gas is:

1 For historical reasons, we choose W to represent the work done by the system. In other parts of
the text, W is the work done on the system. This difference affects only the sign of W.
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W =
�

dW =
Vf�
Vi

P dV (12.11)

During the change in volume of the gas, the pressure and temperature of the gas may

also change. To evaluate the integral in the last equation, we need to know how the

pressure varies with volume. For example, Fig. 12.7 indicates that the work done by

the gas is represented by the area under the PV diagram of the figure.

Pf

Pi

VfVi

P

V

W > 0

i

f

W= + Area under the curve

Pi

Pf

ViVf

P

V

W < 0

f

i

W= - Area under the curve

Expansion Compression

(a) (b)

Fig. 12.7 The figure shows a gas that goes from an initial state i to a final state f by means of a

thermodynamic process. (a) When the gas expands, the work done by the gas is positive and equals the

area under the PV curve. (b) Similar to (a), except that the gas is compressed and the work done by the

gas is negative

As seen from Fig. 12.7, the total work done during the expansion or compression

of the gas depends on the specific path taken from the initial state i to the final state f.

In Fig. 12.8, we illustrate this important point further by considering several dif-

ferent paths for the gas along the PV curve, from state i to state f, regardless of how

we achieve each path.

Path a—The gas expands from Vi to Vf while the pressure decreases from Pi to Pf .

The work done by the gas along this path is positive and represented by the colored

area under the curve between i and f.

Path b—The gas first expands from Vi to Vf at constant pressure Pi, and then its

pressure is reduced to Pf at constant volume Vf . The work done along this path is

Pi (Vf − Vi).

Path c—The pressure of the gas is first reduced from Pi to Pf by cooling at a constant

volume Vi, and then allowing the gas to expand from Vi to Vf at constant pressure

Pf . The work done along this path is Pf (Vf − Vi).
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Fig. 12.8 The gas of Fig. 12.5

goes from an initial state i to a

final state f by means of

several different

thermodynamic processes

P

V
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f
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W > 0
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W > 0
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W < 0
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Vi Vf 

Pi

Pf

Vi Vf

Pi

Pf

Vi Vf

Pi

Pf

Vf Vi

Pf

Pi

Vi Vf

Pi

Pf

Path a

Path b

Path c

Path d

Path e

Path d—The gas is compressed from Vi to Vf while the pressure increases from Pi

to Pf . The work done along this path is the negative of the colored area under the

curve.
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Path e—The net work done by the system during a closed cycle is the sum of the

positive work done during the expansion and the negative work done during the

compression. Here, the net work done by the gas is positive and is represented by

the enclosed area between the two curves.

From the graphs of Fig. 12.8, we see that W could be small or large depending on

the thermodynamic path between i and f. Thus:

Spotlight

The net work done by a system W depends on the thermodynamic process (or

the path) chosen between its initial and final states.

In a similar manner, we also find that the heat energy transfer Q into or out of

a system depends on the thermodynamic process. This can be demonstrated for an

ideal gas as shown in Fig. 12.9.

In Fig. 12.9a, the piston is held at a position where the gas is at its initial pressure

Pi, volume Vi, and temperature Ti. When the force holding the piston is reduced

slightly, the piston rises very slowly to a final pressure Pf and final volume Vf , i.e.

the gas is doing work W on the piston. During this expansion process, heat energy Q

is transferred from the reservoir to the gas to maintain a constant temperature Ti.

In Fig. 12.9b, the thermally insulated gas has the same initial state as in Fig. 12.9a,

but with a membrane replacing the piston. When the membrane is broken, the gas

expands rapidly into the vacuum until it acquires a pressure Pf and volume Vf . In

this case, the gas does no work, i.e. W = 0, and no heat is transferred, i.e. Q = 0.

Initial Final

Pi

Vf

QVi Ti

TiPf

Initial Final

Vf TiPf

Vacuum

Membrane

Vi TiPi

Insulation

Q = 0

(a) (b)

Very
slow

motion

Heat reservoir at Ti Heat reservoir at Ti

Insulation

Fig. 12.9 (a) An ideal gas at temperature Ti expands slowly while absorbing heat energy Q from a

reservoir in order to maintain its constant temperature Ti. (b) An ideal gas expands rapidly into an

evacuated chamber after a membrane is broken
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In both parts of Fig. 12.9, the initial and final states of the ideal gas are identical,

although the path is different. In part (a) of the figure the gas does work W on the

piston, and heat energy Q is transferred slowly to the gas from the reservoir. In part

(b) of the figure the work done by the gas is zero and no heat energy is transferred.

Thus:

Spotlight

The heat energy transfer Q depends on the thermodynamic process (or the

path) chosen between the initial and final states of a system.

Finally, we conclude that neither the work done nor the heat energy are indepen-

dently conserved during a thermodynamic process between the initial and final states

of a system.

12.3 The First Law of Thermodynamics

In Chap. 6, we discussed the principle of conservation of energy as applied to sys-

tems that are not isolated, and we expressed this principle in Eq. 6.61, namely

W = �Etot = �K + �U + �Eint. In this chapter, we assume that there are no

changes in kinetic energy and potential energy of the system as a whole; that is,

�K = �U = 0 and hence W =�Etot = �Eint. Moreover, before this chapter, the

term work and the symbol W always meant the work done on a system. But start-

ing from Eq. 12.10 and continuing to the rest of this chapter, we focus on the work

done by a system. Thus, we replace the symbol W by −W and Eq. 6.61 becomes

−W = �Etot = �Eint. If we need to account for the transfer of heat energy Q that is

added (if Q positive) or taken (if Q negative) from the system, then we add Q to the

left hand side of this equation and arrive at the following thermodynamic equation:

�Eint = Q − W (The first law of thermodynamics) (12.12)

As we saw, W and Q are path-dependent, yet a surprising experimental discov-

ery was found: The quantity Q − W is the same for all thermodynamic processes.

It depends only on the initial and final states of the system and is path-independent.

Equation 12.12 is known as the first law of thermodynamics. This law states that a

change in internal energy in a system can occur as a result of energy transfer by heat

or by work, or by both. If the thermodynamic system undergoes only a differential

change, we can write the first law as:
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dEint = dQ − dW (The first law of thermodynamics) (12.13)

Spotlight

The internal energy Eint of a system increases if energy is added via heat Q

and decreases if energy is lost via work W done by the system.

Some special cases of the first law of thermodynamics
are as follows

1. Isolated Systems

Consider a system that is not interacting with its surroundings. In this case, no energy

transfer by heat takes place, i.e. Q = 0, and the value of the work done by the system

is zero, i.e. W = 0. Then, from the first law we have �Eint = 0. Thus, we conclude

that the internal energy of an isolated system remains constant.

Eint = constant (Isolated system) (12.14)

2. Cyclic Processes

Consider a non-isolated system that is taken through a cyclic process, i.e. a process

that starts and ends at the same state. In this case, the change in the internal energy

must again be zero, i.e. �Eint = 0. Then, from the first law we have:

�Eint = 0 and Q = W (Cyclic process) (12.15)

On the PV curve, a cyclic process appears as a closed curve as shown in path (e) of

Fig. 12.8. For this clockwise cyclic path, the net work done by the system (and Q)

equals the area enclosed by the path.

12.4 Applications of the First Law of Thermodynamics

The first law of thermodynamics relates the changes in internal energy of a system

to transfers of energy by work W or heat Q, or both. In this section, we consider

applications of the first law in processes in which certain restrictions are imposed.
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1. Adiabatic Process

An adiabatic process is one that occurs so rapidly or occurs in thermally insulated

systems during which no transfer of heat energy enters or leaves the system, i.e.

Q = 0. With this restriction and the application of the first law of thermodynamics

to an adiabatic process, we get:

Q = 0 and �Eint = −W (Adiabatic process) (12.16)

Figure 12.10 shows an idealized adiabatic process. Heat cannot enter or leave the

system because of the insulation. The only way of transferring energy to the system

is by work. We see in this figure that if a gas is compressed adiabatically such that

W is negative, then �Eint is positive and hence the temperature of the gas increases.

Conversely, if a gas expands adiabatically such that W is positive, then �Eint is

negative, and hence the temperature of the gas decreases.

Initial

Pi

Vf

Vi Ti

TfPf

Insulation Pf Vf Tf
Q = 0

Q = 0

Tf < Ti
Expansion Compression

Tf > Ti

W > 0 W < 0

Ti

Fig. 12.10 An adiabatic compression/expansion is carried out for an ideal gas leading to an increase/

decrease in internal energy

Adiabatic processes have a very important role in mechanical engineering.

Some of the common examples include the approximately adiabatic compression/

expansion of a mixture of gasoline vapor and air that takes place during operation of

a combustion engine, leading to a temperature increase/decrease.
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2. Adiabatic Free Expansion Process

The free expansion process is an adiabatic process, i.e. Q = 0, in which no work is

done on or by the system, i.e. W = 0. Thus, with these restrictions and the application

of the first law we have:

Q = W = 0 and �Eint = 0 (Free expansion) (12.17)

Figure 12.11 shows how such an expansion can be carried out. An ideal gas in

thermal equilibrium is initially confined by a closed valve to one-half of an insulated

chamber; the other half is evacuated. When we open the valve, the gas expands freely

to fill both halves of the chamber. No heat is transferred to or from the gas because

of the insulation. No work is done by the gas because it rushes into vacuum, during

which its motion is unopposed by any counteracting pressure.

Initial

Vi

Ti

Pi

Insulation

Vf

Ti

Pf

Final

Vacuum

Q = W = 0 and Δ E int = 0

Ti

Pf
expansion

Free

Fig. 12.11 In a free expansion process there will be no change in internal energy or temperature between

the initial and final states

A free expansion differs from any other thermodynamic process since it cannot

be performed slowly in a controlled way. As a result, at any given instant during the

sudden expansion, the gas is not in thermal equilibrium and its pressure is not the

same everywhere.

3. Isobaric Process

An isobaric process is one that takes place at constant pressure. In general, the first

law of thermodynamics does not assume any special values for the isobaric process;

that is, Q, W, and �Eint are all non-zero.

Assume the piston of Fig. 12.12 is free to move in such a way that it is always

in equilibrium under the effect of the net force from a gas pushing upwards and
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the weight of the piston plus the force due to atmospheric pressure pushing down-

wards. Then, an isobaric process could be established by transferring heat energy

Q to or from the gas by any mechanism. This transfer causes the gas to expand or

contract depending on the sign of Q. In the PV diagram of Fig. 12.8, the first process

in path (b) and the second process in path (c) are examples of isobaric processes.

Fig. 12.12 An isobaric

process could be achieved by

transferring heat energy to a

gas enclosed by a freely

moving piston to attain a

constant pressure

Freely
moving
piston

PVi

Ti

W isobaric

Q

Insulation

Constant pressure P

By any
mechanism

The work done by the gas as it expands or contracts in this isobaric process could

be obtained from Eq. 12.11, after removing the constant pressure from the integral,

as follows:

Wisobaric = P(Vf − Vi) (Isobaric process) (12.18)

4. Isovolumetric Process

An isovolumetric process is one that takes place at constant volume. In the PV

diagram of Fig. 12.8, the second process in path (b) and the first process in path (c)

are examples of isovolumetric processes.

Assume the piston of Fig. 12.13 is clamped to a fixed position to ensure an iso-

volumetric process. In such a process, the value of the work done by the gas is zero,

i.e. W = 0, because the volume does not change. Thus, with this restriction and the

application of the first law of thermodynamics to an isovolumetric process, we get:

W = 0 and �Eint = Q (Isovolumetric process) (12.19)
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Vi Ti QPi

(Eint)i

Fixed
piston

Vi TfPf

(Eint)f = (Eint)i + Q

(Eint)f

Fixed volume process
Fixed
piston

Insulation

Fig. 12.13 An isovolumetric process could be achieved by fixing the piston’s position. The pressure

increases, and all the transferred heat energy remains in the system as an increase in its internal energy

This expression specifies that if energy is added by heat to a system kept at constant

volume, then all of the transferred energy remains in the system as an increase in

its internal energy, and hence, temperature. For example, when a closed metallic

can is thrown into a fire, energy enters the gas in the can by the conduction of heat

through the metal walls of the can. The temperature, and thus the pressure, in the can

increases until the can possibly explodes, hence the warning label on such cans.

5. Isothermal Process

An isothermal process is one that takes place at constant temperature. This process

can be established by putting a gas container in contact with a constant-temperature

reservoir. If we plot P versus V at constant temperature for an ideal gas described

by Eq. 11.8, the plot yields a hyperbolic curve called an isotherm. In Chap. 13,

we will prove that the internal energy of an ideal gas is a function of temperature

only. Consequently, in an isothermal process involving an ideal gas we must have

�Eint = 0. Therefore, for an isothermal process, we conclude from the first law that

the energy transfer Q must be equal to the work done by the gas W. That is:

� Eint = 0 and Q = W (Isothermal process) (12.20)

Any energy that enters the system by heat is transferred out of the system by work;

as a result, no change in the internal energy of the system occurs in an isothermal

process.
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Suppose that an ideal gas is allowed to expand at constant temperature as described

by the PV diagram in Fig. 12.14. According to Eq. 11.10, the curve is a hyperbola

with the equation PV = constant.

Fig. 12.14 The PV diagram

for an isothermal expansion of

an ideal gas from initial state i

to a final state f

Pf

Pi

VfVi

P

V

i

f

PV=constant

Isotherm

Let us calculate the work done by the gas in the isothermal expansion from state

i to state f, as shown in Fig. 12.14. Because the gas is ideal and the process is quasi-

static, we can use the expression PV = n RT for each point on the path. Therefore,

we have:

W =
Vf�
Vi

P dV =
Vf�
Vi

n RT

V
dV (12.21)

Since T is constant and also n and R are constants, then they can be moved from the

integral sign. Thus:

W = n RT
Vf�
Vi

dV

V
= n RT

∣∣ln V
∣∣ Vf

Vi
(12.22)

where we used
�

dV/V = ln V to evaluate the last integral. Thus:

W = n RT ln

(
Vf

Vi

)
(12.23)

If the gas expands, the work W equals the positive of the shaded area under the PV

curve shown in Fig. 12.14; this is because ln(Vf/Vi)> 0. If the gas is compressed,

Vf < Vi, then ln(Vf/Vi)< 0 and the work done is the negative of the area under the

PV curve.
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Table 12.3 summarizes the characteristics of the previous processes.

Table 12.3 The first law of thermodynamics in five special cases

Process Restriction Consequence

Adiabatic Q = 0 �Eint = −W

Free expansion Q = W = 0 �Eint = 0

Isobaric P = constant Wisobaric = P(Vf − Vi)

Isovolumetric V = constant, W = 0 �Eint = Q

Isothermal (ideal gas) T = constant,�Eint = 0 Q = W = n RT ln(Vf/ Vi)

Example 12.5

At a constant pressure of 1 atm and a temperature of 0 ◦C, the heat fusion of ice

is LF = 3.33 × 105 J/kg, the density of ice is ρi = 920 kg/m3, and the density of

liquid water is ρw = 1,000 kg/m3. (a) Find the work W done by 1 kg of ice that

melts completely to water. (b) Find the change in internal energy of this process.

Solution: (a) The initial volume of ice is:

Vi = m/ρi = (1 kg)/(920 kg/m3) = 1.087 × 10−3 m3

The final volume of ice after it melts completely to water is:

Vw = m/ρw = (1 kg)/(1,000 kg/m3) = 10−3 m3

The work done by 1 kg of ice that melts completely to water under constant

pressure of 1 atm (1.01 × 105 Pa) and temperature of 0 ◦C, is:

W =
Vw�
Vi

P dV = P(Vw − Vi)

= (1.01 × 105 Pa)(10−3 m3 − 1.087 × 10−3 m3) = −8.787 J � −8.8 J

The minus sign appears because ice contracts when it melts.

(b) The heat energy transferred to change the phase of 1 kg of ice to water is:

Q = m LF = (1 kg)(3.33 × 105 J/kg) = 3.33 × 105 J
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Thus, from the first law of thermodynamics, we can find the change in internal

energy of this process as follows:

�Eint = Q − W = 3.33 × 105 J + 8.8 J = 3.330088 × 105 J

We see from parts (a) and (b) that |W | is less than 0.003% of Q in this process, i.e.

|W | � Q. That is, the mechanical energy is negligible in comparison to the heat

of fusion. So, all the added heat of fusion shows up as an increase in the internal

energy.

Example 12.6

At a constant pressure of 1 atm, a movable piston encloses 1 kg of water with a

volume of 10−3 m3 and a temperature of 100 ◦C, see Fig. 12.15. Heat is added

from a reservoir until the liquid water changes completely into steam of volume

1.671 m3, see the figure. (a) How much work is done by the system (water +

steam) during the boiling process? (b) How much heat energy is added to the

system? (c) What is the change in the internal energy of the system?
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Fig. 12.15

Solution: (a) The work done by 1 kg of water that is converted completely into

steam under a constant pressure of 1 atm (1.01 × 105 Pa) and a constant temper-

ature of 100 ◦C, is:

W =
Vf�
Vi

P dV = P(Vf − Vi) = (1.01 × 105 Pa)(1.671 m3 − 10−3 m3) = 169 kJ



404 12 Heat and the First Law of Thermodynamics

(b) Since the heat of vaporization of water at atmospheric pressure is

2.26 × 106 J/kg, the heat energy required to change the phase of 1 kg of water to

steam will be:

Q = m LV = (1 kg)(2.26 × 106 J/kg) = 2,260 kJ

(c) From the first law of thermodynamics, we can find the change in internal

energy of this process as follows:

�Eint = Q − W = 2.26 × 106 J − 1.69 × 105 J = 2,091 kJ

We see that about 92.5% of the heat energy goes into internal energy while the

remaining 7.5% goes into external work.

Example 12.7

An aluminum rod of mass 1 kg is heated from 25 to 55 ◦C at constant atmospheric

pressure, see Fig. 12.16. The aluminum rod has a density ρ of 2.7 × 103 kg/m3,

a coefficient of volume expansion β of 7.2 × 10−5 (C◦)−1 and a specific heat c

of 900 J/kg.C◦. (a) How much work is done by the rod? (b) How much heat is

transferred to the rod? (c) Quantify the rod’s internal energy change.

V

T

V + Δ V

T + Δ T

Fig. 12.16

Solution: (a) The initial volume of the aluminum rod is given by:

V = m

ρ
= 1 kg

2.7 × 103 kg/m3 = 3.704 × 10−4 m3

Using the change in temperature �T = Tf − Ti = 55 ◦C − 25 ◦C = 30 C◦, the

change in the rod’s volume can be obtained from Eq. 11.5 as follows:
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�V = β V �T

= (7.2 × 10−5 (C◦)−1)(3.704 × 10−4 m3)(30 C◦) = 8 × 10−7 m3

Since the expansion is carried out at a constant pressure, the work done by the

aluminum rod is:

W =
Vf�
Vi

P dV = P(Vf − Vi) = P�V

= (1.01 × 105 Pa)(8 × 10−7 m3) = 8.08 × 10−2 J

(b) We use the specific heat value in Eq. 12.4 to calculate the amount of heat

transferred to the rod as follows:

Q = m c �T = (1 kg)(900 J/kg.C◦)(30 C◦) = 2.7 × 104 J

(c) From the first law of thermodynamics, we can find the change in internal

energy of this process as follows:

�Eint = Q − W = 2.7 × 104 J − 8.09 × 10−2 J = 2.699 × 104 J

We notice that almost all of the heat energy goes towards increasing the internal

energy of the aluminum rod. The fraction of heat energy that is used as work

against the atmospheric pressure is only about 4 × 10−4%. Therefore, in thermal

expansion of solids, the amount of energy that goes into work is usually neglected.

Example 12.8

Find the work done by 1 kmol of an ideal gas that is kept at a constant temperature

of 27 ◦C in an expansion process from 2 to 5 L.

Solution: Rewriting these values and the gas constant R, we have:

n = 1 kmol

R = 8.314 × 103 J/kmol.K

T = 27 ◦C = 27 + 273 = 300 K

Vi = 2 L = 2,000 cm3 = 2 × 10−3 m3

Vf = 5 L = 5,000 cm3 = 5 × 10−3 m3
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Since this process is isothermal, the work done by the ideal gas is given by

Eq. 12.23. Substitution in this equation results in:

W = n RT ln

(
Vf

Vi

)

= (1 kmol)(8.314 × 103 J/kmol.K)(300 K) ln

(
5

2

)
= 2.29 × 106 J

This means that the heat energy Q that must be given to the ideal gas from the

reservoir to keep its temperature T = 27 ◦C is also 2.29 × 106 J.

12.5 Heat Transfer

We discussed the transfer of heat energy between a system and its surroundings,

but we did not describe how that transfer takes place and at what rate. The three

common energy-transfer mechanisms that are responsible for changing the internal

energy state of a system are:

1. Conduction:

The flow of heat that reduces the temperature difference between two materials.

2. Convection:

The flow of heat in liquids or gases that carries heat from one place to another

if the liquids or gases are free to move.

3. Radiation:

The transfer of energy in the form of electromagnetic waves from objects that

have temperatures greater than absolute zero. The transfer of heat energy from

one location to another is by infrared radiation.

In this section we focus only on the first mechanism, leaving the other two mech-

anisms for other thermodynamic studies.

Thermal Conduction in One Dimension (Plain Walls)

In thermal conduction, heat transfer can be represented on the atomic scale as an

exchange of kinetic energy between microscopic particles (molecules, atoms, and

electrons) in which less energetic particles gain energy in collisions with more ener-

getic particles. By this method, heat energy is transferred from the hot parts of an

object to its cold parts.
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Consider the flow of heat along the x-axis between the faces of a slab of a material

of thickness �x and face area A, as shown in Fig. 12.17. Assume the opposite faces are

maintained at different temperatures TH and TC, where TH > TC. Let �T = TC − TH

denote the change in temperature that is maintained along the thickness �x. The

temperature difference TH − TC = −�T is what gives rise to heat flow.

Fig. 12.17 Linear heat

transfer through a conducting

slab of face area A and

thickness �x, when the

opposite faces are at different

temperatures, TH and TC A TC

TH

Δ x

Heat flow
TH > TC

x
o

Let �Q be the heat energy that is transferred through the slab from its hot face

to its cold face, in a time interval �t. Let H =�Q/�t denote the rate of heat flow

across the slab (H is measured in watts). Experiments show that H should be directly

proportional to the face area A, the temperature difference −�T = TH − TC > 0, and

inversely proportional to the thickness �x. That is:

H = �Q

�t
∝ −A

�T

�x

or

H = �Q

�t
= −kA

�T

�x
(12.24)

where k is a proportionality constant that has the SI unit W/m.C◦ and is called the

thermal conductivity of the material. For a slab of differential thickness dx and

differential temperature difference dT, we can write what is called the law of heat

conduction as follows:

H = −kA
dT

dx
(12.25)
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where dT/dx is known as the temperature gradient. The minus sign in Eq. 12.25 is

due to the fact that heat energy flows in the direction of decreasing temperature.

Now, consider a long uniform rod of length L, as shown in Fig. 12.18. The rod is

insulated so that thermal energy cannot enter nor escape from its surface except at

its ends, which are in thermal contact with heat reservoirs having temperatures TH

and TC, where TH > TC.

A

Heat flow

TH > TC

x

Heat 
reservoir

Insulation

L

TH TC

o

Heat 
reservoir

Fig. 12.18 Conduction of heat through a uniform conducting, insulated rod of length L and face area A,

where the opposite faces are at different temperatures, TH and TC (TH > TC)

When a steady-state has been reached, the temperature at each point along the rod

is constant in time. In such a case, the temperature gradient is the same everywhere

along the rod and is given by:

dT

dx
= TC − TH

L
(12.26)

Thus, the rate of heat flow becomes:

H = kA
TH − TC

L
(12.27)

The thermal conductivity k is a constant that depends on the material of the rod.

Large values of k indicate that a material is a good thermal conductor, and vice versa.

Table 12.4 displays the thermal conductivities of some common metals, gases, and

building materials.
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Table 12.4 Thermal conductivity of some substances around normal room temperature.

Substance Thermal conductivity W/m.C◦

Metals

Stainless steel 14

Lead 35

Aluminum 238

Gold 314

Copper 401

Silver 427

Gases

Air (dry) 0.026

Helium 0.15

Hydrogen 0.18

Building materials

Foam 0.024

Rock wool 0.043

Fiberglass 0.048

Asbestos 0.08

Wood 0.08

Rubber 0.2

Glass 0.8

Concrete 0.8

Window glass 1.0

Steel 18

These values are approximate because k depends on the temperature

Example 12.9

A glass window measures 1 m × 1.5 m × 0.5 cm and has a thermal conductivity

of 0.8 W/m.C◦. The temperature of the inner surface of the glass is TH = 20 ◦C,

while the temperature for the outer surface is TC = −15 ◦C, see Fig. 12.19. (a)

Calculate the rate of heat flow by conduction through the window. (b) If the inner

face of the window is taken to be at x = 0, see the figure, then find the temperature

of the glass as a function of x.
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Fig. 12.19
A

Heat
flow

TH

TH

> TC

TC

x
o

Glass

xΔ

Solution: (a) The thickness of the glass is �x = 0.5 cm = 5 × 10−3 m and the

change in temperature is �T = TC − TH = −15 ◦C − 20 ◦C = −35 C◦. Using

Eq. 12.24 we get:

H = −kA
�T

�x
= −(0.8 W/m.C◦)(1 m × 1.5 m)

(−35 C◦)
5 × 10−3 m

= 8,400 W

This enormous rate of heat flow by conduction shows that glass is not a very

good insulator. The rate of heat flow through a glass window can be reduced

substantially by using two layers of glass with a thin air layer between them. This

is called double glazing.

(b) The temperature gradient for the window is given by:

dT

dx
= �T

�x
= (−35 C◦)

5 × 10−3 m
= −7,000 C◦/m

This equation can be integrated to give:

T�
TH

dT = (−7,000 C◦/m)

x�
0

dx ⇒ T − TH = (−7,000 C◦/m) (x − 0)

Thus: T = 20 ◦C − (7,000 C◦/m) x

We can check whether this gives the correct temperature of −15 ◦C for the outer

surface as follows:

T = 20 ◦C − (7,000 C◦/m) (5 × 10−3 m) = −15 ◦C
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Example 12.10

Figure 12.20 shows two slabs of thickness L1 and L2, thermal conductivities k1

and k2, and an equal surface area A. The temperatures at the outer faces of the slabs

are TH and TC, where TH > TC. In a steady-state condition, find: (a) the interface

temperature T, when TH = 25 ◦C, TC = −5 ◦C, L2 = 2L1, and k2 = 4k1, and (b)

the rate of heat transfer by conduction through the slabs.

A

Heat flow

TH > TLHeat
reservoir

Insulation

L1

TH
TL

Heat
reservoir

L2

k2k1

T

H2H1

Heat flow

Fig. 12.20

Solution: (a) If T is the temperature at the interface, then the rate of heat flow

through the two slabs is:

H1 = k1A
TH − T

L1
, and H2 = k2A

T − TC

L2

When a steady-state is reached, these two rates must be equal, that is:

k1A
TH − T

L1
= k2A

T − TC

L2

Solving for T gives: T = k1L2TH + k2L1TC

k1L2 + k2L1

Inserting the given relations and the known temperatures gives:

T = 2k1L1TH + 4k1L1TC

2k1L1 + 4k1L1
= 1

6 (2TH + 4TC) = 1
6 [2(25 ◦C) + 4(−5 ◦C)] = 5 ◦C

(b) The expression of the rate of heat flow by conduction will be:

H = H1 = H2 = A (TH − TC)

(L1/k1) + (L2/k2)
= 10 A k1

L1
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Home Insulation

Insulation is important in building houses, since it helps limit heat loss and hence

keeps homes at a comfortable temperature with less cost, see Fig. 12.21. Good insu-

lation requires many insulation slabs.

Poor attic
insulation

Fig. 12.21 In houses, heat is conducted from the inside to the outside more rapidly where insulation is

poor. Thus, houses should be well insulated especially in the attic to minimize heat loss

For a compound slab containing several materials of thicknesses L1, L2, . . . and

thermal conductivities k1, k2, . . ., we can perform similar steps as in Example 12.10

to show that the rate of heat transfer at a steady-state will take the form:

H = A (TH − TC)∑
n

Ln/kn
, (n = 1, 2, . . .) (12.28)

In the engineering practice, the term L/k for a particular substance is referred to

as the R value of the material, and Eq. 12.28 takes the following form:

H = A (TH − TC)∑
n

Rn
, (n = 1, 2, . . .) (12.29)

where Rn = Ln/kn. If a wall contains three slabs of insulation, then we can find the

value of R for the wall by adding the values of R for each slab. Table 12.5 lists the

R-values for common building materials.
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Table 12.5 The R-values of some common building materials

Material Thickness (cm) R-value (m2. C◦/W)

Hardwood siding 2 0.185

Wood shingles 1.3 0.111

Brick 10 0.704

Fiberglass batting 8 1.918

Fiberglass board 2.5 0.766

Cellulose fiber 2.5 0.651

Flat glass 0.3 0.151

Insulating glass 0.3 0.318

Air space 10 0.178

Drywall 1.5 0.095

Sheathing 1.5 0.233

Thermal Conduction in Two Dimensions (Cylindrical Shells)

We can apply the law of heat conduction to situations where heat flows in two

dimensions by varying the area in consideration.

As an example, consider a steam pipe in which heat flows radially outwards. This

type of heat flow is called cylindrical heat flow and is illustrated geometrically in

Fig. 12.22.

TC

L

rH

rC

r
r+dr

TH

Cylindrical
shell

Overhead view
r

C

rH

Fig. 12.22 Geometry for heat flow in a cylinder of length L. Left The inner and outer radii and temper-

atures are rH, rC, TH, and TC, respectively. Right A cylindrical shell has a radius r and thickness dr

Conceptually, we can divide a cylindrical pipe of length L into a series of thin

concentric cylindrical shells. The rate of heat flow through a cylindrical shell of

radius r and thickness dr is given by:
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H = −kA
dT

dr
(12.30)

where A is the surface area of the cylindrical shell and is given by:

A = 2πrL (12.31)

Thus, for cylindrical heat flow, the law of heat conduction becomes:

H = −2πk Lr
dT

dr
(12.32)

For steady-state conditions H remains constant, and we can find how T varies with r

by rearranging Eq. 12.32 as follows:

dT = − H

2πkL

dr

r
(12.33)

We can now integrate this equation from the initial radius rH (where the temperature

is TH) to some arbitrary radius r where the temperature is T ≡ T(r) as follows:

T�
TH

dT = − H

2πkL

r�
rH

dr

r
(12.34)

Thus: T − TH = − H

2πkL
ln

(
r

rH

)
(12.35)

This result shows that for cylindrical heat flow the temperature decreases logarith-

mically with an increasing r.

The rate of heat flow through the pipe section that has inner and outer radii rH

and rC, and inner and outer temperatures TH and TC, is given by letting T = TC and

r = rC in Eq. 12.35. That is:

H = 2πkL (TH − TC)

ln (rC/rH)
(12.36)

Example 12.11

A stainless-steel pipe has inner and outer radii of 2 and 2.5 cm, respectively. The

pipe carries hot water at a temperature of TH = 60 ◦C and has a thermal con-

ductivity of 19 W/m.C◦. The pipe’s outer surface temperature is TC = 56 ◦C,

see Fig. 12.23. (a) What is the rate of heat flow per unit length of the pipe?
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(b) When an additional cylindrical insulator of thermal conductivity of 0.2 W/m.C◦

is used, what is the thickness required to reduce heat loss by a factor of 10 and

achieve an outer temperature of 37 ◦C?

Fig. 12.23

TC

rC
rH

TH

Solution: (a) The temperature difference is:

TH − TC = 60 ◦C − 56 ◦C = 4 C◦

This value is used in Eq. 12.36 to get the value of the rate of heat flow per unit

length, H/L, as:

H

L
= 2πk(TH − TC)

ln (rC/rH)
= 2π(19 W/m.C◦)(4 C◦)

ln(2.5 cm/2 cm)
= 2,140 W/m

This great rate of heat flow per unit length shows that stainless steel is not a very

good material to use alone for an isolated hot-water pipe.

(b) As far as the stainless-steel pipe is concerned, a reduction in H/L by

a factor of 10 requires that the temperature difference between the inner and

outer surfaces be reduced by the same factor. Thus, the original 4 C◦ differ-

ence is reduced to 0.4 C◦. Hence, the inner surface of the cylindrical insulator

will be at TH = 59.6 ◦C and its outer surface temperature will be at TC = 37 ◦C,

i.e. TH − TC = 59.6 ◦C − 37 ◦C = 22.6 C◦, see Fig. 12.24. In addition H/L will be

reduced to 214 W/m. Solving Eq. 12.36 again for ln (rC/rH), where rH = 2.5 cm,

we get:

ln (rC/rH) = 2πk(TH − TC)

H/L
= 2π(0.2 W/m.C◦)(22.6 C◦)

214 W/m
= 0.133

Thus: rC/rH = exp(0.133) = 1.142 ⇒ rC = 1.142 × rH = 2.9 cm

The required insulation thickness is rC − rH = 2.9 cm − 2.5 cm = 0.4 cm.
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Fig. 12.24

TC

rC

r
H

TH

12.6 Exercises

Section 12.1 Heat and Thermal Energy

Subsection 12.1.1 Units of Heat, The Mechanical Equivalent of Heat

(1) A room is lighted by a 200 W light bulb. A 200 W of power is the rate at which

the bulb converts electrical energy into heat and visible light. Assuming that

90% of the energy is converted into heat, how much heat is added to the room

in 4 h?

(2) Suppose your mass is 70 kg and you ate a 250 kcal meal. To compensate, you

decided to lose an equivalent amount of energy by climbing the stairs of a

building. What is the total height that you must climb?

Subsection 12.1. 2 Heat Capacity and Specific Heat

(3) 159.2 g of water is initially at 15 ◦C. To what temperature will this quantity of

water rise when 1,000 J of energy is supplied?

(4) The brakes of a 1,500 kg car are used to decelerate its speed from 72 km/h

to rest. How many joules and kilocalories are generated during the stopping

process?

(5) How many calories of heat are required to raise the temperature of 4 kg of iron

of specific heat 448 J/kg.C◦ from 20 to 40 ◦C?

(6) The water cooling system (radiator) of a car holds 20 L of water. How much

heat does the radiator absorb if its temperature rises from 20 to 95 ◦C?
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(7) The specific heat of aluminum is 900 J/kg.C◦. (a) What is the heat capacity of

5 kg of aluminum? (b) How much heat must be added to 5 kg of aluminum to

raise its temperature from 27 to 37 ◦C?

(8) What is the specific heat of a 4 kg material when its temperature increases from

27 to 37 ◦C after 18 kJ of heat is added?

(9) A hammer head of mass 1.5 kg strikes an iron nail of mass 15 g that has a specific

heat 450 J/kg.C◦. The hammer has a speed v = 6 m/s just before striking the

nail and then comes to rest after the impact, see Fig. 12.25. Assume that all the

energy of the hammer goes into heating the nail during the strike. What is the

rise in temperature of the nail?

Fig. 12.25 See Exercise (9)

(10) What is the final equilibrium temperature when 20 g of milk at 10 ◦C is added

to 200 g of tea at 100 ◦C? (Assume that the specific heat of milk, tea, and water

are all the same, and neglect the heat capacity of the container).

(11) A 2 kg metallic object is heated to 500 ◦C and then dropped into a bucket

containing 20 kg of water initially at 20 ◦C. When equilibrium is reached, the

temperature of the mixture is 70 ◦C. What is the specific heat of the metal?

(Neglect the heat capacity of the container).

(12) In an experiment where the specific heat of aluminum is measured using the

method of mixtures, see Fig. 12.26, a student obtains the following data:
Mass of aluminum: mx = 0.2 kg

Initial temperature of aluminum: Tx = 27 ◦C

Mass of water: mw = 0.4 kg

Specific heat of water: cw = 4,186 J/kg.C◦

Mass of calorimeter: mc = 0.04 kg

Initial temperature of water and calorimeter: Ti = 70 ◦C

Specific heat of the calorimeter: cc = 630 J/kg.C◦

Final temperature of the mixture: Tf = 66.4 ◦C
Use these data to determine the specific heat of aluminum cx.
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Water

cx , mx

cw , mw

Ti

Aluminum

Tf

Ti

Initial Initial Final

+ =
Tf

Tf

Tx

cc , mc

Calorimeter

Fig. 12.26 See Exercise (12)

Subsection 12.1.3 Latent Heat

(13) Aluminum has a melting temperature of 660 ◦C, latent heat of fusion of

3.97 × 105 J/kg, and specific heat of 900 J/kg.C◦. How much heat is needed to

melt 15 kg of aluminum that is initially at 27 ◦C?

(14) A runner loses 150 kcal of heat in 15 min by evaporating water from his skin.

The latent heat of vaporization of water at room temperature is 2.26×106 J/kg.

How much water has been lost?

(15) Follow similar steps like the calculations done in Fig. 12.4 to find the energy

required to change a 50 g ice cube from the ice state at −10 ◦C to the steam

state at 110 ◦C.

(16) A 150 g of ice is enclosed in a thermally insulated container. What is the mass

of steam at 100 ◦C that must be mixed with the ice to produce liquid water at

50 ◦C. (For the ice and steam, use the constants of Tables 12.1 and 12.2)

(17) A 100 g block of ice at 0 ◦C is added to 400 g of water at 30 ◦C. Assuming we

have a perfectly insulated calorimeter for this mixture, what will be its final

temperature when all of the ice has melted?

(18) A copper calorimeter has a mass mc = 100 g. The calorimeter contains water

of mass mw = 500 g at a temperature of 20 ◦C. How much steam must be con-

densed into water if the final temperature of the mixture is to reach 50 ◦C?

Assume the specific heat of copper is cc = 840 J/kg.C◦, the specific heat of

water is cw = 4,186 J/kg.C◦, and the latent heat of condensation of steam is

LV = 2.26 × 106 J/kg.

(19) A 60 kg ice skater glides from a speed vi = 10 m/s to a speed vf = 4 m/s on ice

at 0 ◦C, see Fig. 12.27. Assume that 80% of the heat generated by friction is
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absorbed by the ice and all of the melted ice stays at 0 ◦C. The latent heat of

fusion of ice is 3.33 × 105 J/kg. How much ice melts?

Fig. 12.27 See Exercise (19)
i f

f f

Section 12.2 Heat and Work (Take 1 atm � 105 Pa)

(20) An ideal gas is enclosed in a container at a pressure of 2 atm and has a volume

of 3 m3. What is the work done by the gas if: (a) the gas expands at a constant

pressure to three times its initial volume? (b) the gas is compressed at a constant

pressure to one half of its initial volume?

(21) (a) An ideal gas is taken from an initial state i to a final state f, as shown in

Fig. 12.28. Find the work done by the gas along the three paths iaf, if, and ibf.

(b) Answer part (a) if the gas is taken from f to i.

Fig. 12.28 See Exercise (21)

V (Liters)

i

f

P (atm)

1 2 3

1

2

0

a

b

Section 12.4 Applications of the First Law of Thermodynamics

(22) An ideal gas of 2 kmol is carried around the thermodynamic cycle as shown

in Fig. 12.29. The cycle consists of three parts; the isothermal expansion ab

at T = 300 K an isobaric compression bc, and an isovolumetric increase in

pressure ca. (a) When Pa = 4 atm and Pb = 1 atm, then find the work done by

the gas per cycle. (b) Answer part (a) when the direction of the cycle is reversed.
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Fig. 12.29 See Exercise (22) P

V

a

Va Vb

Pa

Pb bc

Isotherm
T = 300 K

(23) An ideal gas expands from an initial volume Va = 0.5 m3 to a final volume

Vb = 1.5 m3 in a quasi-static process for which P = kV, where k = 2.5 atm/m3,

see Fig. 12.30. How much work was done by the expanding gas?

Fig. 12.30 See Exercise (23) P

V

a

Va Vb

P=kV
b

(24) An amount of work of 100 J is done on a system, and 100 cal of heat are

extracted from it. In light of the first law of thermodynamics, what are the

values (including algebraic signs) of: (a) W, (b) Q, and (c) �Eint?

(25) A cylindrical steel rod of mass 3.9 kg is heated from T = 27 ◦C to T + �T =
37 ◦C at a constant atmospheric pressure, see Fig. 12.31. The rod has a density ρ

of 7.8 × 103 kg/m3, a coefficient of volume expansionβ of 3.3 × 10−6 (C◦)−1,

and a specific heat c of 450 J/kg.C◦. (a) How much work is done by the rod?

(b) How much heat is transferred to the rod? (c) What is the change in the rod’s

internal energy?

Fig. 12.31 See Exercise (25)
T

T + Δ T

V

V + Δ V
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(26) An ideal helium gas of 1 kmol is carried around the thermodynamic cycle as

shown in Fig. 12.32. The path ab is isothermal, with Pa = 2 atm, Pb = 1 atm,

and Va = 22.4 m3. (a) What are the values of Ta, Vb, and Tc? (b) How much

work is done by the gas in this cycle?

Fig. 12.32 See Exercise (26) P

V

a

Va Vb

Pa

Pb bc

Isotherm

(27) An ideal gas of one kmol does 4,000 J of work as it expands isothermally to

a volume of 12 × 10−3 m3 that has a final pressure of 2 atm. (a) What is the

temperature of the gas? (b) What is the initial volume of the gas?

(28) A fluid is carried through the cycle abcd as shown in Fig. 12.33. How much

work (in kilojoules) is done by the fluid during: (a) the isobaric expansion ab,

(b) the isovolumetric process bc, and (c) the isobaric compression cd? (d) What

is the net amount of heat transferred to work during the cycle abcd?

Fig. 12.33 See Exercise (28)

V (m3)
d c

P (atm)

1 5

4

8

0

a b

(29) At a constant pressure of 2 atm (2 Pa), the boiling point of water is 120 ◦C,

and its heat of vaporization is LV = 2.20 × 106 J/kg. Under these conditions,

assume a movable piston encloses 1 kg of water with a volume of Vi = 10−3 m3,

see the left part of Fig. 12.34. Heat is added from a reservoir until the liquid

water changes completely into steam of volume Vf = 0.824 m3, see the right

part of Fig. 12.34. (a) How much work is done by the system (water + steam)
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during the boiling process? (b) How much heat energy is added to the system?

(c) What is the change in the internal energy of the system?

Initial Intermediate

Insulation

2Pa

2Pa 2Pa

2Pa

Final

2Pa

2Pa

Q

Heat reservoir, 120 oC Heat reservoir,120 oC Heat reservoir, 120 oC

Water

Steam

Vf
Vi

Fr
ee

ly
m

ov
in

g
pi

st
on

Fig. 12.34 See Exercise (29)

(30) An ideal gas has an initial temperature of 27 ◦C and an initial volume of 1 m3.

An isobaric expansion of the gas to a new volume of 3 m3 is achieved by adding

9,500 J of heat at a constant pressure of 3,000 Pa. (a) Determine the work done

by the gas during expansion. (b) What is the change in the internal energy of

the gas? (c) Find the final temperature of the gas.

(31) An ideal gas is taken from a to c along the curved path in Fig. 12.35. Along this

path, the work done by the gas is Wac = 15 J and the heat added to the gas is

Qac = 43 J. In addition, the work done along path abc is Wabc = 34 J. (a) What

is the change in internal energy of the gas �Eac for path ac? (b) What is Qabc

for path abc? (c) What is Wcda for path cda? (d) What is Qcda for path cda?

Fig. 12.35 See Exercise (31)

V

d c

P (atm)

a b

Va Vb

1

2

0

(32) Helium with an initial volume of 10−3 m3 and an initial pressure of 10 atm

expands to a final volume of 1 m3. The relationship between pressure and
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volume during this expansion process is kept PV = constant by supplying heat

at a constant temperature. (a) Calculate the value of the constant. (b) Find the

final pressure. (c) Determine the work done by the helium during the expansion.

(d) How much heat was absorbed by the expanding helium?

Section 12.5 Heat Transfer

(33) The thermal conductivity of a special type of Pyrex glass at 0 ◦C is

3 × 10−3 cal/cm.C◦.s. (a) Express this quantity in W/m.C◦ and in Btu/ft.F◦.h.

(b) What is the R value of a 1 cm sheet of Pyrex?

(34) A slab of a thermal insulator has a cross section of 0.1 m2, a thickness of 2 cm,

and thermal conductivity of 0.1 J/m.s.C◦. If the temperature difference between

the opposite faces of the insulator is 100 C◦, how much heat flows through the

slab in 24 h?

(35) Consider the slab of copper shown in Fig. 12.36, where A = 9 × 10−3 m2,

L = 0.25 m, and the thermal conductivity is 400 W/m.C◦. In the steady-state

condition, the temperature of the hot surface is TH = 125 ◦C, and the temper-

ature for the cold surface is TC = 10 ◦C. Find the rate of heat transfer through

the slab.

Fig. 12.36 See Exercise (35)
A

TCTH

L

Heat
flow

TH > TC
Copper

(36) A pair of metal plates having equal areas and equal thicknesses is in thermal

contact, as shown in Fig. 12.37. One plate is made of aluminum, and the other is

made of iron. Assume that the thermal conductivity of aluminum kA is exactly

three times that of iron kF. The outer face of the iron plate is maintained at

TC = 0 ◦C, while the outer face of the aluminum plate is maintained at

TH = 60 ◦C. In a steady-state condition, find the interface temperature T and

the relation that gives the rate of heat transfer by conduction through the slabs.
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Fig. 12.37 See Exercise (36)

TH TC

T

FeAl

Heat flow

(37) Bricks and insulation are used to construct the walls of a house. The

insulation has R1-value of 0.095 m2.C◦/W. The bricks have an R2-value of

0.704 m2.C◦/W, see Fig. 12.38. In the steady-state condition, the temperature

inside the house is TH = 24 ◦C and the outside temperature is TC = 10 ◦C. Find

the rate of heat loss through such a wall, if its area is 20 m2.

TC TH

TH > TC

Heat flow

R1R2

Fig. 12.38 See Exercise (37)

(38) A pipe made of steel has inner and outer radii of 2.5 and 3 cm respec-

tively. The pipe carries hot water at a temperature TH = 70 C◦ and has a

thermal conductivity of 14 W/m.C◦. The pipe’s outer surface temperature is

TC = 60 ◦C, see the left part of Fig. 12.39. (a) What is the rate of heat flow per

unit length of the pipe? (b) When an additional cylindrical insulator of thermal

conductivity of 0.2 W/m.C◦ is used, see the right part of Fig. 12.39, what is the

thickness required to reduce heat loss by a factor of 10 and achieve an outer

temperature of 30 ◦C?

(39) Show that the rate of heat that flows radially outwards in a spherically symmetric

system is governed by the equation:
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H = − 4πr2k
dT

dr

where r is the distance from the center of the source to the point where the tem-

perature is T. When the inner and outer radii and temperatures are rH, rC, TH,

and TC, respectively, show that:

H = 4πk(TH − TC)

(1/rH − 1/rC)

Fig. 12.39 See Exercise (38)

TC

rC

rH

TH

TC

rC

rH

TH

(40) An insulating spherical container has a total inner surface area of 1.5 m2 and

a thickness of 5 cm. A 60 W (assumed to be a point source) electric bulb

inside the container is used to maintain a constant temperature difference

TH − TC = 100 C◦ between the inside and the outside of the container, see

Fig. 12.40. What is the thermal conductivity k of the insulating material?

Fig. 12.40 See Exercise (40)

T
 C

T H

Heat flowInsulator

TH > TC



Kinetic Theory of Gases 13

In the simplest model of an ideal gas, which was presented in Chap. 11, we

consider each atom/molecule to be a hard sphere that collides elastically with other

atoms/molecules or with the walls of the container holding the gas.

In this chapter, our aim is to relate macroscopic parameters (such as volume,

pressure, temperature, . . . etc.) to microscopic parameters (such as average kinetic

energy per molecule, internal energy of the gas, . . . etc.). To keep the mathematics

relatively simple, we develop a microscopic model that incorporates further justified

assumptions.

13.1 Microscopic Model of an Ideal Gas

In this model, the pressure P that a gas exerts on the walls of its encompassing

container, of volume V, is due to the collisions of n moles of the gas (or N = nNA

molecules) with those walls. Moreover, in such a model we assume that gases have

the following:

1. A large number of molecules

2. Large separations between molecules compared to their average sizes

3. Molecules that move randomly and obey Newton’s laws of motion

4. Negligible molecular collisions and experience only elastic collisions with the

walls of the container

5. A thermal equilibrium at temperature T with the container’s walls.

Now consider the collision of the ith molecule of such a gas with the colored yz

wall of a cubical container of side L, as shown in Fig. 13.1. In this figure, the gas

H. A. Radi and J. O. Rasmussen, Principles of Physics, 427
Undergraduate Lecture Notes in Physics, DOI: 10.1007/978-3-642-23026-4_13,
© Springer-Verlag Berlin Heidelberg 2013
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molecule of mass m is moving with velocity →
v i which has the velocity components

vxi, vyi, and vzi.

Fig. 13.1 A cubical container

of side L, containing n moles

or N molecules of an ideal gas.

The figure shows an ith

molecule of mass m and

velocity →v i that is about to

collide with the colored right

yz wall

x

y

z

L

m

L

L

i

Because we assume elastic collisions, only the x component of the above mole-

cule’s velocity changes, while its y and z components remain unchanged. This is

illustrated in Fig. 13.2, which captures only the motion in the xy plane. Using the

definition of momentum (see Sect. 7.1), the only change in the molecule’s momen-

tum is along the x-axis. Its momentum before the collision is mvxi and its momentum

after the collision is −mvxi. The change in momentum in one collision is:

�pxi = (pxi)fin − (pxi)ini = −mvxi − mvxi = −2mvxi

�pyi = 0

�pzi = 0

⎫⎪⎪⎬
⎪⎪⎭

(13.1)

Fig. 13.2 A molecule moving

in the xy plane undergoes an

elastic collision with a wall

perpendicular to that plane.

The x component of the

velocity is reversed, while the y

component remains unchanged
x

y

o

i

ix

iy

iy

ix

f

θ
θ

Since the momentum of the system (molecule + wall) is conserved, the momentum

delivered by the wall to the molecule for the ith molecule is �pxi = −2mvxi. The
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molecule in Fig. 13.1 will travel to the opposite wall and back again. It will repeat

this journey, hitting the colored wall repeatedly. The time between two successive

collisions with this wall is �t. This means that the molecule travels with a speed vxi

a distance 2L in time �t. Thus:

�t = 2L

vxi
(13.2)

This time is very small and the molecule will make many collisions with the wall,

each separated by time �t. Therefore the number of collisions per unit time is large.

Consequently, the average force exerted on the ith molecule over many collisions

will be equal to the momentum change during one collision �pxi divided by the time

�t between collisions (Newton’s second law).

If Fxi is the average perpendicular force exerted by the wall on the molecule, then

from Newton’s third law, the average perpendicular force exerted on the wall by the

molecule is Fxi,on wall = −Fxi. That is:

Fxi,on wall = −Fxi = −�pxi

�t
= −−2mvxi

�t
= 2mvxi

2L/vxi

= mv2
xi

L

(13.3)

To find the total average force Fx,on wall exerted on the wall we must add up the

contributions of all molecules that strike the wall and then divide this total force by

the area of the wall. This gives the average pressure P on the wall. Thus:

P = �Fxi,on wall

L2 = mv2
x1/L + mv2

x2/L + · · · + mv2
xN/L

L2

= m

L3 (v2
x1 + v2

x2 + · · · + v2
xN )

= m

L3

N∑
i = 1

v2
xi

(13.4)

Since the average value of the square of the x component of all the molecular speeds

is given by:

v2
x = v2

x1 + v2
x2 + · · · + v2

xN

N

=
∑N

i=1v
2
xi

N

(13.5)

and the volume of the container is given by V = L3, then we can express the average

pressure in the following form:
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P = mN

V
v2

x (13.6)

Since v2
i = v2

xi + v2
yi + v2

zi for the ith molecule, then this result and Eq. 13.5 lead

to v2 = v2
x + v2

y + v2
z . In addition, because there is a large number of molecules

moving randomly in all directions, the average values of the squares of their velocity

components are equal, i.e. v2
x = v2

y = v2
z .

Thus: v2
x = v2

y = v2
z = 1

3v2 (13.7)

Hence, Eq. 13.6 can be expressed as:

P = 2
3

N

V

(
1
2 mv2

)
(13.8)

The square root of v2 is called the root mean square (rms) speed of the molecules

and is symbolically written as vrms, i.e. v2
rms = v2. Thus:

vrms =
√

v2 (13.9)

By substitution, Eq. 13.8 will take on the form:

P = 2
3

N

V

( 1
2 mv2

rms

)
(13.10)

where 1
2 mv2

rms is the average translational kinetic energy per molecule. Equation

13.10 connects the macroscopic quantities P and V to the microscopic quantity rep-

resenting the average molecular speed vrms.

We should remember that we ignored inter-molecular collisions as we derived Eq.

13.10. Note that these collisions only affect the momenta of the molecules and have

no net effect on the walls, so including such collisions will yield the same equation.

This is consistent with the random motion assumption, which implies that the velocity

distribution of the molecules does not change with time despite the collision between

molecules. In addition, this equation is valid for any shaped container, although it

was derived assuming a cubical container.

To get some insight into the meaning of temperature, we first rewrite Eq. 13.10

in the following form:

PV = 2
3 N

( 1
2 mv2

rms

)
(13.11)

Then we compare this with the ideal gas law Eq. 11.10:
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PV = NkB T (13.12)

where this equation is based on experimental facts concerning the macroscopic

behavior of the ideal gas. Equating the right-hand sides of the last two equations, we

find that:

T = 2

3 kB

( 1
2 mv2

rms

)
(13.13)

Since K = 1
2 mv2

rms is the average translational kinetic energy per molecule, we see

that temperature is a direct measure of it. In addition, we can relate the average

translational molecular kinetic energy per molecule to the temperature as follows:

K = 1
2 mv2

rms = 3
2 kBT (13.14)

With v2
x = v2

y = v2
z = 1

3v2 = 1
3v2

rms, we can find the average translational kinetic

energy per molecule associated with the motion along the x, y, and z axes as follows:

1
2 mv2

x = 1
2 kBT

1
2 mv2

y = 1
2 kBT

1
2 mv2

z = 1
2 kBT

(13.15)

Thus, each translational degree of freedom1 contributes an equal amount of energy to

the gas, namely 1
2 kBT . A generalization of that is known as the theory of equipartition

of energy.

Theory of equipartition of energy:

The energy of a system experiencing thermal equilibrium is equally divided

among all degrees of freedom. Each degree of freedom contributes 1
2 kBT to

the energy of the system.

The total translational energy Ktot (which is the internal energy in this model) of

N molecules of an ideal gas is the product of N with the average translational energy

per molecule K = 1
2 mv2

rms. That is:

1 The translational degrees of freedom refer to the number of independent ways by which a
molecule can possess energy when moving in a three-dimensional space.
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Ktot = N
( 1

2 mv2
rms

) = 3
2 NkBT = 3

2 nRT (13.16)

where we have used N = nNA for the number n of kilomoles of the gas and kB =
R/NA for Boltzmann’s constant.

Using the molar mass M = mNA in Eq. 13.16, where m here is the molecular

mass and not to be confused with the mass of the gas as in Chap. 11, we can relate

vrms to the gas temperature T as follows:

vrms =
√

3kBT

m
=

√
3RT

M
(13.17)

Table 13.1 shows some rms speeds calculated from Eq. 13.17.

Table 13.1 Some molecular speeds at room temperature (T = 300 K)

Gas Molar mass (kg/kmol) vrms (m/s)

Hydrogen (H2) 2.02 1,925

Helium (He) 4.0 1,368

Water vapor (H2O) 18 645

Nitrogen (N2) or Carbon monoxide (CO) 28 517

Nitrogen oxide (NO) 30 499

Oxygen (O2) 32 484

Carbon dioxide (CO2) 44 412

Sulfur dioxide (SO2) 48 394

Example 13.1

Three moles of hydrogen gas are confined to a volume of 0.4 m3 at a temperature

of 24 ◦C. (a) What is the total translational kinetic energy of the gas molecules?

(b) What is the average kinetic energy per molecule? (c) What is the rms speed

of the molecules?

Solution: (a) Using Eq. 13.16 with T = 24 + 273 = 297 K, we get:

Ktot = 3
2 nRT = 3

2 (3 × 10−3 kmol)(8.314 × 103 J/kmol.K)(297 K)= 1.1 × 104 J

(b) Using Eq. 13.14 with T = 297 K, we get:

K = 3
2 kBT = 3

2 (1.38 × 10−23 J/K)(297 K) = 6.15 × 10−21 J

(c) Using Eq. 13.17 with T = 297 K and the known hydrogen molar mass

M = 2.02 kg/kmol, we get
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vrms =
√

3RT

M
=

√
3(8.314 × 103 J/kmol.K)(297 K)

2.02 kg/kmol
= 1,915 m/s

Internal Energy of a Monatomic Ideal Gas

In the ideal-gas model presented in this section, we assumed each molecule behaved

like a hard sphere and had no structure. We were then able to find its average

translational kinetic energy in terms of the temperature of the gas. This average

kinetic energy is associated with the motion of the center of mass of each molecule.

This model does not include the energy associated with the internal motions of the

gas, such as the vibrational and rotational motions of the molecules.

In light of this, consider an ideal monatomic gas, such as helium (He), where

the gas molecules include only one atom. Essentially, all of the kinetic energy of

such monatomic molecules are associated with the motion of each molecule’s center

of mass. Therefore, when we add energy to a monatomic gas, all the added energy

goes into increasing the translational kinetic energy of the atoms. Thus, the total

internal energy Eint of an ideal monatomic gas of N atoms (or n kmol) at pressure

P, volume V, and temperature T will all be translational energy Ktot, i.e. Eint = Ktot.

Using Ktot = 3
2 NkBT = 3

2 nRT we find:

Eint =
{

3
2 NkBT
3
2 nRT

or

�Eint =
{

3
2 NkB�T
3
2 nR�T

(Monatomic ideal gas) (13.18)

In general, the internal energy of an ideal gas is a function of T only, and the exact

relationship depends on the type of gas.

Internal energy of an ideal gas:

The internal energy Eint of n kilomoles of an ideal gas is a function of the gas

temperature only; it does not depend on any other variable.

With this result, we are going to find two expressions for the molar specific heat

of an ideal gas. By convention, the symbol CV will be used when the gas volume is
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constant while heat energy is added, whereas the symbol CP will be used when the

gas pressure remains constant while heat energy is added.

13.2 Molar Specific Heat Capacity of an Ideal Gas

Consider an ideal gas undergoing several processes such that the change in tempera-

ture is achieved by taking a variety of different paths from one isotherm at temperature

T to another isotherm at temperature T + �T , as shown in Fig. 13.3. Because �T is

the same for each path, the change in internal energy �Eint is the same for all paths.

However, from the first law of thermodynamics, �Eint = Q − W, we know that the

heat Q is different for each path because W is different. Thus, the heat associated

with a given change in temperature �T does not have a unique value.

Fig. 13.3 An ideal gas is

taken from initial state i of

isotherm at temperature T to

another at temperature

T + �T along three different

paths. The change in internal

energy is the same for all paths

V

P

V

i

f V

Isotherms

P

P + Δ P

T

T + Δ T
f P

V + Δ V

f

We can treat this situation by defining specific heats for two processes that fre-

quently occur: changes at constant volume and changes at constant pressure. Because

the number of moles is a convenient measure of the amount of gas, we define the

molar specific heats associated with these processes with the following equations:

QV = nCV �T (Constant volume) (13.19)

QP = nCP�T (Constant pressure) (13.20)

where n now is the number of moles, CV is the molar specific heat at constant

volume, and CP is the molar specific heat at constant pressure. When we deliver

heat to the gas at constant pressure, the heat QP must account for both the increase in

internal energy �Eint and the work W. But, when we deliver heat to the gas at constant

volume, then the heat QV must account for only the same increase in internal energy
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�Eint, since W = 0. For this reason, QP is greater than QV for all given values of n

and �T . Thus, CP is greater than CV .

The molar specific heat capacities CV and CP are related to the specific heats cV

and cP by the following two relations:

CV = M cV

CP = M cP

(13.21)

where M is the molar mass of the gas.

13.2.1 Molar Specific Heat at Constant Volume

We consider n moles of an ideal gas at pressure P and temperature T, confined to a

cylinder of fixed volume V, as shown in Fig. 13.4a. The initial state i of the gas is

identified on the PV graph of Fig. 13.4b. When we add a small amount of heat QV to

the gas, by slowly turning up the temperature of a heat reservoir, the gas temperature

rises to T + �T and its pressure rises to P + dP, bringing the gas to the final state f

that is identified in Fig. 13.4b.

Fixed volume process

Fixed
piston

Insulation

Heat reservoir V

P

V

i

f Isotherms

P

P + Δ P

T

T + Δ T

(a) (b)

VQ

VQ

Temperature
Control nob

Fig. 13.4 (a) The temperature of an ideal gas is increased from T to T +�T in a constant volume process

by adding heat QV . (b) The constant volume process i → f on a PV diagram

Since W = �
P dV = 0 for a constant volume process, then all of the transferred

energy will be stored in the gas as an increase in its internal energy, and the change

in the internal energy of the gas will be given by the first law of thermodynamics as:

�Eint = QV (13.22)
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Substituting this expression into Eq. 13.19, we get:

QV = �Eint = nCV �T (Ideal gas) (13.23)

If the molar specific heat CV is constant, we can express the internal energy of an

ideal gas as:

Eint = nCV T (Ideal gas) (13.24)

This equation applies to all ideal gases (to gases having one or more than one atom

per molecule). In the limit of infinitesimal changes, we can use Eq. 13.24 to express

the molar specific heat at constant volume as follows:

CV = 1

n

dEint

dT
(13.25)

For monatomic gases, if we substitute the internal energy Eint = 3
2 nRT from

Eq. 13.18 into Eq. 13.25, we get:

CV = 3
2 R =

{
12.5 J/mol.K

12.5 × 103 J/kmol.K
(Monatomic ideal gas) (13.26)

This result is in agreement with experimentally measured values for monatomic gases

at a wide range of temperatures.

13.2.2 Molar Specific Heat at Constant Pressure

We now consider n moles of an ideal gas at pressure P and temperature T, confined

to a volume V by a freely moving piston, as shown in Fig. 13.5a. The initial state i

of the gas is identified on the PV diagram of Fig. 13.5b. Under a constant pressure,

a small amount of heat QP is added to the gas, by slowly turning up the temperature

of a heat reservoir; the gas temperature rises to T +�T , bringing the gas to the final

state f that is identified in Fig. 13.5b.

To relate CP to CV , we start with the first law of thermodynamics:

�Eint = QP − W (13.27)

and then replace each term. From Eq. 13.23, we have:

�Eint = nCV �T (13.28)
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Fixed pressure process
Freely

moving
piston

Insulation

Temperature
Control nob

Heat reservoir

P

V

i
f

Isotherms

P

T

T + Δ T

(a) (b)
V V + Δ V

P Δ V

PQ

PQ

P

P

Fig. 13.5 (a) The temperature of an ideal gas is increased from T to T + �T in a constant pressure

process by adding heat QP . (b) The work PdV is given by the colored area for the constant pressure

process i → f on the PV diagram

Also, from Eq. 13.20, we have:

QP = nCP�T (13.29)

The work done by the ideal gas in the constant pressure process of Fig. 13.5b is

W = P�V . Then we use the ideal-gas equation PV = nRT to find W as follows:

W = P�V = nR�T (13.30)

Substituting with Eq. 13.28, 13.29, and 13.30 into Eq. 13.27, and then dividing by

n�T , we find

CP − CV = R (13.31)

This prediction of kinetic theory agrees well with experiments, not only for monatomic

gases but for gases in general, as long as their density is low enough so that we may

treat them as ideal.

For monatomic gases, we substitute with CV = 3R/2 into Eq. 13.31 to find:

CP = 5
2 R =

{
20.8 J/mol.K

20.8 × 103 J/kmol.K
(Monatomic ideal gas) (13.32)

The ratio of the molar specific heats CP and CV is a dimensionless quantity γ given

by:
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γ = CP

CV
= 5

2 R
3
2 R

= 5

3
= 1.67 (Monatomic ideal gas) (13.33)

Theoretical values of CV , CP, and γ are in excellent agreement with experimental

values obtained for monatomic gases, but they are in serious disagreement with the

values for more complex gases (those with multiple atoms per molecule). This is

because their internal energy Eint, and their molar specific heats CP and CV include

components from rotational and vibrational motions of the molecules.

Example 13.2

A cylinder contains 2 moles of helium at a temperature of 27 ◦C. Heat is added

to the gas to increase its temperature to 227 ◦C. (a) Find the quantity of heat QV

used if the gas was heated at constant volume. (b) Find the quantity of heat QP

and the work done by the gas W if the gas was heated at constant pressure.

Solution: (a) Treating the helium gas as an ideal monatomic gas, the work done in

this case is zero. We use CV = 3R/2 = 12.5 J/mol.K and �T = 227 ◦C−27 ◦C =
200 C◦ = 200 K in Eq. 13.23 to get:

QV = nCV �T = (2 mol)(12.5 J/mol.K)(200 K) = 5,000 J

(b) For a constant pressure process we use CP = 5R/2 = 20.8 J/mol.K in

Eq. 13.20 to get:

QP = nCP�T = (2 mol)(20.8 J/mol.K)(200 K) = 8,320 J

The work done by the gas in this process is:

W = QP − QV = 8,320 J − 5,000 J = 3,320 J

Example 13.3

A cylinder contains 5 moles of monatomic helium. At constant pressure, the

helium gas undergoes a volume expansion and a temperature increase �T =
Tf − Ti = 20 C◦ due to the addition of heat QP, as shown in Fig. 13.6. (a) How

much heat QP is added to the helium? (b) What is the change �Eint in the internal

energy of the helium? (c) How much work W is done by the helium as it expands?
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Fig. 13.6
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Solution: (a) Treating the helium as an ideal monatomic gas undergoing a

constant-pressure process, we use CP = 20.8 J/mol.K and �T = 20 C◦ = 20 K

in Eq. 13.20 to get:

QP = nCP�T = n(5R/2)�T = (5 mol)(20.8 J/mol.K)(20 K) = 2,080 J

(b) Even though the temperature of the helium increases at a constant pressure

(not at constant volume), we use Eq. 13.23 to calculate the change in internal

energy when CV = 12.5 J/mol.K as follows:

�Eint = nCV �T = n(3R/2)�T = (5 mol)(12.5 J/mol.K)(20 K) = 1,250 J

(c) From the first law of thermodynamics, �Eint = QP − W, we calculate the

work done by the gas in this process as follows:

W = QP − �Eint = 2,080 J − 1,250 J = 830 J

Of all the heat energy QP = 2,080 J that is transferred to the helium during the

increase in temperature, only 1,250 J goes to increasing the helium’s internal

energy and hence its temperature. The remaining 830 J is transferred out of the

helium as work done during the expansion.

Internal Energy of a Diatomic Ideal Gas

In a diatomic ideal-gas model, a molecule can rotate about two different axes, while

the rotation about the third axis passing through the two atoms gives very little energy

because the moment of inertia about this axis is very small, see Fig. 13.7.

Therefore, a diatomic gas is said to have five energy degrees of freedom: three

translational and two rotational. According to the principle of equipartition of energy,
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each active degree of freedom of a molecule has on average an energy equal to 1
2 kBT .

Thus, the average energy for a molecule in a diatomic gas is:

E = 5
2 kBT (Diatomic ideal gas) (13.34)

Axis

Axis

Very small moment of inertia

Axis

Fig. 13.7 A diatomic molecule can rotate about two perpendicular axes with appreciable rotational

energy while the rotation about the third axis gives very little rotational energy (i.e. only two degrees of

freedom)

Hence, the internal energy Eint of a diatomic ideal gas of N (or n kmol) at pressure

P, volume V, and temperature T will be:

Eint =
{

5
2 NkBT
5
2 nRT

(Diatomic ideal gas) (13.35)

In general, the internal energy of an ideal gas is a function of T only, and the

exact relationship depends on the type of gas. The vibrational (kinetic and poten-

tial) degrees of freedom have only a tiny effect on Eqs. 13.34 and 13.35 unless the

temperature is extremely high. Quantum mechanical study (which is not our aim)

predicts discrete vibrational levels with spacing generally much larger than kBT .

We can use the above results and Eq. 13.25 to find CV and CP as follows:

CV = 1

n

dEint

dT
= 1

n

d

dT

(
5
2 nRT

)
= 5

2 R

CP = CV + R = 7
2 R

(Diatomic ideal gas) (13.36)

Table 13.2 displays the measured molar specific heats of some gases. These results

are in good agreement with the predicted CV and CP. The small deviations from

the predicted values are due to the fact that real gases are not ideal gases. Real

gases experience weak intermolecular interactions, which are not addressed in the

presented ideal gas model.
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Table 13.2 Some molar specific heats of various gases at 15 ◦C

Molar specific heat (J/mol C◦)

Gas Cp CV CP − CV γ = CP/CV

Monatomic gases

He 20.8 12.5 8.33 1.67

Ar 20.8 12.5 8.33 1.67

Ne 20.8 12.7 8.12 1.64

Kr 20.8 12.3 8.49 1.69

Diatomic gases

H2 20.8 20.4 8.33 1.41

N2 29.1 20.8 8.33 1.40

O2 29.4 21.1 8.33 1.40

CO 29.3 21.0 8.33 1.40

Cl2 34.7 25.7 8.96 1.35

Triatomic gases

CO2 37.0 28.5 8.50 1.30

SO2 40.4 31.4 9.00 1.29

H2O 35.4 27.0 8.37 1.30

13.3 Distribution of Molecular Speeds

Molecules in a gas at thermal equilibrium are assumed to be in random motion, i.e.

they have a wide range of molecular speeds. In 1859, James Clerk Maxwell derived

an expression that describes the distribution of speeds in a gas containing N molecules

in thermal equilibrium at temperature T. The number of molecules dN with speeds

in the range v and v + dv is defined by the distribution function f (v) (known as

Maxwell-Boltzmann distribution) through the following relation:

dN = f (v) dv = 4πN

(
m

2πkBT

)3/2

v2 e− 1
2 mv2/kBT dv (13.37)

where m is the mass of a gas molecule, kB is Boltzmann’s constant, and T is the

absolute gas temperature. A sketch of the distribution function f (v) is shown in

Fig. 13.8 at a certain temperature T.

The average speed v̄ can be obtained by integrating the product of the speed v

with dN and dividing by the total number N. In addition, one can find vrms and the

most probable speed vp as follows:
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v̄ = 1

N

∞�
0

vf (v) dv =
√

8

π

kBT

m
(13.38)

vrms =
√

v2 =
√

1

N

� ∞
0

v2f (v) dv =
√

3kBT

m
(13.39)

vp =
√

2kBT

m
(13.40)

From these results, we see that vrms > v̄ > vp as displayed in Fig. 13.8.

p rms

( )f
T

Fig. 13.8 Distribution of speeds of an ideal gas, f (v). The area under the curve gives the total number

of gas molecules. The speed at the peak vp is less that v̄ and vrms because f (v) is skewed to the right of

the peak

13.4 Non-ideal Gases and Phases of Matter

The isothermal PV-diagram presented in Sect. 12.4 and Sect. 13.2 can help us grasp

the overall behavior of a gas described by the gas law PV = nRT . The PV-isotherm for

a constant amount of an ideal gas is displayed for temperatures T4 > T3 > T2 > T1 in

Fig. 13.9a. Notice that the pressure P is inversely proportional to V and that the

isotherms are hyperbolic curves.

Fig. 13.9b displays a PV-diagram for a substance that does not obey the ideal

gas law for temperatures T4 > T3 > Tc > T2 > T1 . The solid curve at T4 represents

the behavior of the non-ideal gas, while the dashed curve represents the behavior

predicted by the ideal gas law at the same temperature. The curves at T3 and Tc deviate

more from the dashed curves predicted by the ideal gas law. At successively lower

temperatures T2 and T1 (both below Tc), the behavior deviates even more from the

curves of part a, and the isotherms develop flat regions in which the substance can be

compressed without an increase in its pressure. Observation shows that the non-ideal

gas is condensing from vapor (gas) to a liquid state. The colored region represents

isotherms in their liquid-vapor phase equilibrium. A transition from one phase to
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another requires phase equilibrium between the two phases. This occurs at only one

definite temperature for a given pressure value.

P

V
(b)

P

V

Isotherms

1T

2T
3T

4T

Isotherms
4 3 2 1T T T T> > >

(a)

b a

1T

2T

3T
4T

cT
c

4 3 2 1cT T T T T> > > >

Liquid-vaporL
iq

ui
d Vapor

Ideal gas Non-ideal gas

Fig. 13.9 (a) An isothermal P-V diagram of an ideal gas for temperatures T4 > T3 > T2 > T1 . (b) An

isothermal P-V diagram for a non-ideal gas for temperatures T4 > T3 > Tc > T2 > T1 .

Kinetic theory can help us understand this behavior if we note that at higher

pressures, and particularly at lower temperatures, the attractive potential energy due

to attractive forces between molecules cannot be ignored as in the case of an ideal

gas. These attractive forces at lower temperatures tend to pull the molecules and

cause liquefaction.

The curve at Tc in Fig. 13.9b represents the substance at its critical temperature,

and point c on the curve is called the critical point. When we compress the gas at

constant temperature T2(<Tc) it will be in the vapor state until point a is reached. As

the volume decreases even more, it begins to liquefy and both the temperature and

pressure remain constant. At point b, the substance is in the liquid state. Note that,

a substance below Tc in the gaseous state is called a vapor, whereas above Tc, it is

called a gas.

We can represent the condition of phase equilibrium on a PT-diagram such as

that in Fig. 13.10. This diagram is referred to as a phase diagram and displays the

following:

1. The curve labeled L-V represents points where liquid and vapor phases are in

equilibrium (boiling point versus pressure curve)

2. The curve labeled S-L represents points where solid and liquid phases are in

equilibrium (freezing point versus pressure curve)
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3. The curve labeled S-V represents points where solid and vapor phases are in

equilibrium (sublimation point versus pressure curve)

Fig. 13.10 A P-T diagram of

a non-ideal substance showing

regions of temperature and

pressure at which the various

phases exist

P

T

L-V

S-V

S-
L

Vapor

Solid, liquid, and
vapor coexist

Liquid
Solid

Critical point

Triple point

All three curves meet at the triple point, the only condition under which all

three phases can coexist. Because the triple point corresponds to a unique value of

temperature and pressure, it is precisely reproducible and is frequently used as a

reference point. In Sect. 11.1, we used the triple-point temperature of water to define

the Kelvin scale. This point occurs at T = 273.16 K and P = 4.58 mm Hg = 6.026 ×
10−3 atm.

13.5 Exercises

Section 13.1 Microscopic Model of an Ideal Gas

(1) In an interval of 1 s, the total number of oxygen molecules that collide per-

pendicularly with a wall of an area A = 10−3 m2 is N = 5 × 1023 molecules.

Assume that each molecule has a mass m = 5.3 × 10−26 kg and moves with a

perpendicular speed v = 500 m/s. What is the pressure exerted on the wall by

these oxygen molecules?

(2) A 2-mol sample of oxygen gas is at STP [A standard temperature and pressure

implies a temperature of 0 ◦C (273.15 K) and an atmospheric pressure of 1 atm].

(a) What is the average translational kinetic energy of an oxygen molecule under

these conditions? (b) What is the total translational kinetic energy of the oxygen

molecules?

(3) A gas is at 27 ◦C. Find the temperature at which the rms (root mean square)

speed of its molecules is doubled.
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(4) Bellatrix (or Amazon) star is one of the hottest stars that we can see with the

naked eye and its surface temperature is about 3×104 K. (a) Find the rms speed

of helium atoms near the surface of this star. (b) Compare the value of part (a)

with the rms speed at 27 ◦C.

(5) A vessel of volume V = 4 × 10−2 m3 filled with nitrogen gas contains n = 4 mol

at a pressure P = 2 atm. (a) What is the temperature of this gas? (b) What is

the average translational kinetic energy of a nitrogen molecule under these

conditions?

(6) (a) Use the definition of Avogadro’s number to find the mass of a helium

atom, given that the molar mass of He is 4.00 kg/kmol. (b) How many atoms of

helium are confined in a container of volume V = 10−4 m3 at 27 ◦C and 1 atm?

(c) What is the rms speed of the helium atoms?

(7) A sample of 2-mol of monatomic argon is at 27 ◦C. The molar mass of argon

(Ar) is 39.95 kg/kmol. (a) What is the average translational kinetic energy of

an argon atom in this sample? (b) What is the total translational kinetic energy

of all the argon atoms?

(8) At a temperature of 100 ◦C, a mixture of the monatomic helium and argon gases

is in thermal equilibrium. (a) What is the average kinetic energy for each type

of atom? (b) What is the rms speed for each type of atom? Assume this mixture

displays the properties of an ideal gas, and that the molar mass of helium (He)

is 4.00 kg/kmol, and the molar mass of argon (Ar) is 39.95 kg/kmol.

(9) (a) Find the change in internal energy of n = 4 mol of monatomic neon gas

when its temperature is increased by 10 C◦. (b) Will your answer change if the

gas is diatomic? Explain your reasoning.

(10) Assume that oxygen at STP is an ideal gas, and that each molecule occupies the

same cubical volume a3, where a is the length of one side of the cube. (a) Find

the volume of each molecule. (b) Estimate of the average distance between the

oxygen molecules.

(11) Find a relation that gives the rms speed vrms = √
3RT/M of gas molecules in

terms of the pressure P of the gas and its density ρ.

(12) A sample of nitrogen gas is at 0 ◦C. (a) What is the rms speed of a nitrogen

molecule at this temperature? (b) Assuming that each molecule has no preferred

direction and does not collide with any other molecule, find the time that one

molecule will cross a cubical container of side a = 1.5 m. (c) Estimate the

number of times that a molecule would move back and forth on the average.
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Section 13.2 Molar Specific Heat Capacity of an Ideal Gas

(13) A cylinder contains 3 kmol of helium at a temperature of 27 ◦C. Heat is added

to the gas to increase its temperature to 127 ◦C, (a) Find the quantity of heat QV

if the gas is heated at a constant volume. (b) As the gas is heated at a constant

pressure, find the amount of added heat QP, the work done by the gas W, and

the increase in internal energy.

(14) A cylinder contains 1 kmol of monatomic ideal gas at initial temperatures of

27 ◦C, see the Fig. 13.4. In a fixed volume process, QV = 2 × 105 J of heat is

transferred to the gas from a heat reservoir. Find (a) the increase in the internal

energy of the gas, and (b) its final temperature.

(15) A monatomic ideal gas has a specific heat cV = 95.2069 J/kg.C◦, which is

nearly constant over a wide range of temperatures. What is the molar mass of

the gas? Use the periodic table to find the name of this gas.

(16) A room 4 m × 4.5 m × 2.8 m contains air at 17 ◦C and 1 atm. Assume that the

air in the room is an ideal diatomic gas with a molar specific heat at constant

volume CV = 20.79 × 103 J/kmol.K. Also assume that there is no air or heat

loss to the outside. If a heater in the room supplies 106 J/h, by how much will

the temperature of the room rise in one hour?

(17) A two mol of an ideal diatomic gas at 20 ◦C is heated to 70 ◦C at constant

pressure of 1 atm. (a) What is the change in the internal energy? (b) What is

the work done by the gas? (c) Determine the quantity of heat added to the gas?

(18) A four mol of an ideal diatomic gas is at −30 ◦C. Assume that all the active

degrees of freedom are three translational, two rotational, and two vibrational.

What is the internal energy of the gas?

(19) Assume that a molecule in an ideal gas has α active degrees of freedom. Show

that for n moles of this gas, the principle of equipartition theory predicts that:

(a) the total internal energy is Eint = 1
2αnRT; (b) the molar specific heat at

constant volume is CV = 1
2αR; (c) the molar specific heat at constant pressure

is CP = 1
2 (α+2)R; (d) the molar specific heat ratio is γ = CP/CV = (α+2)/α.

(20) The diatomic molecule of chlorine (Cl2) has a molar mass M = 70 kg/kmol.

The distance between two chlorine atoms is d = 2 × 10−10 m. These two atoms

rotate about their center of mass with an angular speed ω = 2 × 1012 rad/s, see

Fig. 13.11. What is the rotational kinetic energy of such a molecule?

(21) A cylinder contains 2 moles of air (a diatomic ideal gas) of volume

V = 6 × 10−3 m3 at 27 ◦C. At constant pressure, the air undergoes a volume
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expansion due to the addition of heat QP = 5 kJ, as shown in Fig. 13.12. (a) Use

Table 13.2 to find the values of CP and CV for air, if air contains 78.08% N2,

20.95% O2, 0.93% Ar, and 0.03% CO2. (b) Find the change in temperature.

(c) What is the change �Eint of the internal energy of the air? (d) Find the final

volume of the air.

Fig. 13.11 See Exercise (20) Axis
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Fig. 13.12 See Exercise (21)

Section 13.3 Distribution of Molecular Speeds

(22) For the Maxwell-Boltzmann speed distribution given by Eq. 13.37 and dis-

played in Fig. 13.8, the most probable speed vp of a gas molecule corresponds

to a point on the curve at which the slope is zero, i.e. when the condition

df (v)/dv|v = vp = 0 is fulfilled. Use this condition to show that vp is given by

Eq. 13.40.

(23) A container is filled with oxygen gas at T = 300 K. (a) Find the rms speed

vrms of the oxygen molecule. (a) What is the average speed v̄ of the oxygen

molecule? (c) Find the value of the most probable speed vp?
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(24) The rms speed vrms of a gas at temperature T1 is equal to the most probable

speed vp at temperature T2. Evaluate the ratio T2/T1.

(25) A container is composed of N = 106 oxygen molecules at T = 300 K. Assume

that the gas obeys the Maxwell’s speed distribution and the oxygen molecule has

a mass m = 5.31 × 10−26 kg. Calculate the number of molecules with speeds

between: (a) 300 m/s and 301 m/s; (b) 1,000 m/s and 1,001 m/s.



Part IV

Sound and Light Waves



Oscillations and Wave Motion 14

Any object that repeats its motion at regular time intervals is said to perform a

periodic or harmonic motion. If the motion is a sinusoidal function of time, we call

it simple harmonic motion.

14.1 Simple Harmonic Motion

Assume the motion of a particle moving back and forth about the origin o of the

x-axis between the limits x = +A and x = −A, as shown in Fig. 14.1.

t = 0

A-A o
x

t = T/4

t = T/2

t = 3T/4

t = T

O
ne

 c
om

pl
et

e 
cy

cl
e

Fig. 14.1 Multiple snapshots of a particle oscillating about the origin of the x-axis between the two limits

x = + A and x = − A. If the time t = 0 is chosen to be when the particle is at x = + A, then the particle

returns to x = + A when t = T , where T is the period of the motion

In this figure, we chose t = 0 at the point where the particle is at x = +A

and t = T when the particle returns to the same point x = +A after one complete

H. A. Radi and J. O. Rasmussen, Principles of Physics, 451
Undergraduate Lecture Notes in Physics, DOI: 10.1007/978-3-642-23026-4_14,
© Springer-Verlag Berlin Heidelberg 2013
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cycle. In this case, T represents the period of the motion. The frequency f of

the simple harmonic motion is equal to the number of oscillations per unit time.

Therefore, the frequency is related to the period T by the following relation:

f = 1

T
(Harmonic motion) (14.1)

and has the SI unit s−1, cycle/s, or hertz (Hz). Additionally, we define the angular

frequency of the motion by the relation:

ω = 2π

T
(Harmonic motion) (14.2)

Accordingly, this relation can be written in terms of the frequency f as follows:

ω = 2π f (Harmonic motion) (14.3)

where the SI unit of ω is rad/s. For such a motion, the displacement x of the particle

from o is given generally as a function of time as:

x(t) = A cos(ω t + φ) (14.4)

where A is the amplitude of the motion and φ is the phase angle or phase constant

(φ is zero in Fig. 14.1). The cosine function in Eq. 14.4 varies between the limits ±1,

so the displacement x(t) varies between the limits ±A, as shown in Fig. 14.2.

x

to
A

-A

+A

A

φφ = 0

Τ

= -π/4

Fig. 14.2 A sketch of the relation x(t) = A cos(ω t + φ) for φ = 0 and φ = −π/4

14.1.1 Velocity and Acceleration of SHM

We can find an expression for the velocity v of a particle moving with a harmonic

motion by differentiating Eq. 14.4 as follows:
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v(t) = dx

dt
= d[A cos(ω t + φ)]

dt

Thus:

v(t) = −ω A sin(ω t + φ) = −vmax sin(ω t + φ) , vmax = ω A (14.5)

By differentiating this expression, we generate the following expression for the accel-

eration of the oscillating particle:

a(t) = dv

dt
= d[−ω A sin(ω t + φ)]

dt

Thus:

a(t) = −ω2A cos(ω t + φ) = −amax cos(ω t + φ) , amax = ω2A (14.6)

Figure 14.3 shows a plot of Eqs. 14.4–14.6 for φ = 0.
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Fig. 14.3 The upper part of the figure shows the variation of the displacement x(t) with time t of

a particle oscillating with a SHM when the phase angle φ is equal to zero. The middle and lower

parts display the variation of v(t) and a(t) with time. In all parts of the figure, the period T marks one

complete oscillation
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Example 14.1

A particle oscillates with a simple harmonic motion along the x axis. Its displace-

ment from the origin varies with time according to the equation:

x = (2 m) cos(0.5π t + π/3)

where t is in seconds and the argument of the cosine is in radians. (a) Find the

amplitude, frequency, and period of the motion. (b) Find the velocity and accelera-

tion of the particle at any time. (c) Find both the maximum speed and acceleration

of the particle. (d) Find the displacement of the particle between t = 0 and t = 2 s.

Solution: (a) By comparing the given equation to the general form x(t)=
A cos (ω t + φ), we find that: the amplitude A = 2 m, the angular frequency

ω = 0.5π rad/s, and the phase constant φ = π/3 rad.

Therefore, the frequency will be:

f = ω/2π = (0.5π rad/s)/(2π rad) = 0.25 s−1 = 0.25 Hz

Hence the period will be given by:

T = 1/f = 1/0.25 s−1 = 4 s

(b) We differentiate x to find v, and then v to find a, as follows:

v = dx

dt
= d[(2 m) cos(0.5π t + π/3)]

dt

= (2 m)[−sin(0.5π t + π/3)] × (0.5π rad/s)

= −(π m/s) sin(0.5π t + π/3)

a = dv

dt
= d[(−π m/s) sin(0.5π t + π/3)]

dt

= (−π m/s)[cos(0.5π t + π/3)] × (0.5π rad/s)

= −(0.5π2 m/s2) cos (0.5π t + π/3)

Remember, the rad is a dimensionless quantity and can be removed from or

inserted into any calculation without altering the dimension of the result.

(c) Since the maximum values of the sine and cosine are unity, then v of part

(b) varies between ±πm/s, and a of part (b) varies between ±0.5π2 m/s2. Thus,

the maximum speed and maximum acceleration are as follows:
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vmax = π m/s

amax = 0.5π2 m/s2

We can also use Eqs. 14.5 and 14.6 to find vmax and amax as follows:

vmax = ω A = (0.5π rad/s)(2 m) = π m/s

amax = ω2A = (0.5π rad/s)2(2 m) = 0.5π2 m/s2

(d) The position of the particle at t = 0 is denoted by xi and is given by:

xi = (2 m) cos(0 + π/3) = (2 m)(0.5) = 1 m

The position of the particle at t = 2 s is denoted by xf and is given by:

xf = (2 m) cos(π + π/3) = (2 m)(−0.5) = −1 m

Therefore, the displacement between t = 0 and t = 2 s is:

�x = xf − xi = −1 m − 1 m = −2 m

Figure 14.4a shows the plot of x versus t for the given function, while Fig. 14.4b

depicts snapshots of the oscillating particle about the origin of the x-axis between

the two limits x = +2 m and x = −2 m.
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Fig. 14.4

14.1.2 The Force Law for SHM

We can combine Eqs. 14.4 and 14.6 to yield:

a(t) = −ω2 x(t) (14.7)
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This equation is the hallmark of simple harmonic motion. It states that the acceleration

is proportional to the displacement but opposite in sign, and they are related by the

square of the angular frequency, ω2.

Once we know the acceleration as a function of time, we can use Newton’s second

law to find what force must act on the particle to produce this acceleration. Now, we

combine Newton’s second law with Eq. 14.7 as follows:

F = m a = −(m ω2)x or
d2x

dt2 + ω2 x = 0 (14.8)

This form (a force proportional to the displacement but opposite in sign) is familiar

to us. It is Hooke’s law for a spring, which was introduced in Sect. 6.3. That is:

F = −kH x (Hooke’s law) (14.9)

By comparison, the equivalent spring constant in SHM is:

kH = m ω2 (14.10)

We can take Eq. 14.9 as an alternative definition of SHM.

Simple Harmonic Motion

SHM is the motion executed by a particle of mass m subject to a force propor-

tional to its displacement but opposite in sign.

The block-spring system of Fig. 14.5 forms a linear simple harmonic oscillator.

The angular frequency ω of the simple harmonic motion is related to the spring

constant kH and the mass of the block by Eq. 14.10, which gives:

ω =
√

kH

m
(14.11)

Therefore, using Eqs. 14.5, 14.6, and 14.11, we can find the maximum values for

the velocity and acceleration of the oscillations as follows:

vmax = ω A =
√

kH

m
A (14.12)

amax = ω2A = kH

m
A (14.13)
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Fig. 14.5 The variation of the

force of a spring on a block.

(a) When x = 0, the force is

zero (equilibrium position).

(b) When x is negative, the

force is positive (compressed

spring). (c) When x is positive,

the force is negative (stretched

spring)
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By combining Eqs. 14.2 and 14.11, we can find the period T of the oscillations as

follows:

T = 2π

ω
= 2π

√
m

kH
(14.14)

That is, the period T and hence the frequency f = 1/T depend only on the mass of

the particle m and the spring constant kH, and not on the parameters of the motion,

such as A or φ.

Example 14.2

A block of mass m = 400 g is attached to a light spring of force constant

kH = 10 N/m, see Fig. 14.6a. The block is pushed against the spring from x = 0 to

xi = −10 cm, see Fig. 14.6b, and then released to oscillate on a horizontal fric-

tionless surface. (a) Find the angular frequency and the period of the block-spring

system. (b) Find the maximum speed and maximum acceleration of the block. (c)

Find the position, speed, and acceleration of the block at any time. (d) Repeat the

above parts when the block is projected with initial velocity vi = −0.5 m/s from

another initial position xi = +10 cm.
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Fig. 14.6

x = 0

x = 0

x

Equilibrium position

x

xi
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Solution: (a) Using Eqs. 14.11 and 14.14 we find the angular frequency and the

period of motion as follows:

ω =
√

kH

m
=

√
10 N/m

400 × 10−3 kg
= 5 rad/s

T = 2π

ω
= 2 × 3.1416 rad

5 rad/s
= 1.26 s

(b) Since A = |xi| = 10 cm, then Eqs. 14.12 and 14.13 will give:

vmax = ω A = (5 rad/s)(0.1 m) = 0.5 m/s

amax = ω2A = (5 rad/s)2(0.1 m) = 2.5 m/s2

(c) We can find the phase constant φ when we apply the initial condition

x(0)= −A at t = 0 to the form x(t)= A cos(ω t + φ). Thus:

x(t)= A cos(ω t +φ) ⇒ x(0) = A cos(φ) ⇒ − A = A cos(φ) ⇒ φ = π

Therefore, x(t) = A cos(ω t + π). Using this expression and the results of parts

(a) and (b), we get:

x(t) = A cos(ω t + π) = (0.1 m) cos(5 t + π)

v(t) = −ω A sin(ω t + π) = −(0.5 m/s) sin(5 t + π)

a(t) = −ω2A cos(ω t + π) = −(2.5 m/s2) cos(5 t + π)
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(d) In this case, we start with the general form x(t)= A cos(ω t + φ),

where A and φ are not known, but ω does not change because it is independent of

how the oscillation is set into motion. Thus:

(1) x(0) = A cos(0 + φ) = xi

(2) v(0) = −ω A sin(0 + φ) = vi

Dividing Eq. (2) by Eq. (1) gives a phase-constant relation:

−ω A sin(φ)

A cos(φ)
= vi

xi
⇒ tan(φ) = − vi

ω xi
= − −0.5 m/s

(5 rad/s)(0.1 m)
= 1

Thus: φ = tan−1(1) = 0.785 rad = 0.25 π rad

Now, Eq. (1) allows us to find the new amplitude A as follows:

A = xi

cos(φ)
= (0.1 m)

cos(0.25π)
= 0.14 m = 14 cm

The new maximum speed and acceleration will be:

vmax = ω A = (5 rad/s)(0.14 m) = 0.7 m/s

amax = ω2A = (5 rad/s)2(0.14 m) = 3.5 m/s2

Finally, the new expressions for x, v, and a are as follows:

x(t) = A cos(ω t + φ) = (0.14 m) cos(5 t + 0.25π)

v(t) = −ω A sin(ω t + φ) = −(0.7 m/s) sin(5 t + 0.25π)

a(t) = −ω2A cos(ω t + φ) = −(3.5 m/s2) cos(5 t + 0.25π)

14.1.3 Energy of the Simple Harmonic Oscillator

Consider the block-spring system shown in Fig. 14.6 when the spring is massless

and the horizontal surface is frictionless (known as the linear oscillator). In such a

situation, the kinetic energy of the system is associated entirely with the block. Its

value depends only on the velocity v given by Eq. 14.5. Thus:

K = 1
2 mv2 = 1

2 mω2A2 sin2(ω t + φ) (14.15)
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When using Eq. 14.11 to substitute kH/m for ω2, we find:

K = 1
2 mv2 = 1

2 kH A2 sin2(ω t + φ) (14.16)

On the other hand, the potential energy of the linear oscillator of Fig. 14.6 is

associated entirely with the spring. Its value depends only on the position x given by

Eq. 14.4. Thus:

U = 1
2 kH x2 = 1

2 kH A2 cos2(ω t + φ) (14.17)

The mechanical energy E of the simple harmonic oscillator is thus:

E = K + U = 1
2 kH A2 sin2(ω t + φ) + 1

2 kH A2 cos2(ω t + φ)

= 1
2 kH A2[sin2(ω t + φ) + cos2(ω t + φ)]

(14.18)

When we use the identity sin2 θ + cos2 θ = 1, we find:

E = K + U = 1
2 kH A2 (14.19)

That is, the mechanical energy (or the total energy) of a simple harmonic oscillator

is constant, independent of time, and is proportional to the square of the amplitude.

Because v = 0 at x = ± A, i.e. K = 0, the mechanical energy equals the maximum

potential energy, i.e. E = Umax = 1
2 kH A2. At the equilibrium position x = 0 we have

U = 0, and the mechanical energy equals the maximum kinetic energy, i.e. E =
Kmax = 1

2 mv2
max = 1

2 kH A2.

Since the potential energy U is expressed as a function of the position x through

the relation U = 1
2 kH x2, then Eq. 14.19 allows us of to express the kinetic energy as

a function of x as follows:

K = E − U = 1
2 kH A2 − 1

2 kH x2 = 1
2 kH(A2 − x2) (14.20)

Figure 14.7a displays both the kinetic energy K and potential energy U as a

function of time t, while Fig. 14.7b displays the variation of K and U as a function

of position x.

Finally, by using Eq. 14.20 we can find the velocity of the block at any arbitrary

position x as follows:

K = 1
2 mv2 = 1

2 kH(A2 − x2)

v = ±
√

kH

m
(A2 − x2) (14.21)
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(a) (b)
0

t x
-A AT/2 T0

K , U K , Uf = 0
K(t ) + U(t ) K(x) + U(x)

K(t )

U(t )

K(x)

U(x )
H

21
2 Ak

H
21

2 Ak

Fig. 14.7 (a) The kinetic energy K(t) and the potential energy U(t) as a function of time when φ = 0

for a simple harmonic oscillator. Note that K(t) and U(t) peak twice during every period. (b) The kinetic

energy K(x) and the potential energy U(x) as a function of x. For x = 0 the energy is entirely kinetic, and

for x = ±A it is entirely potential

When using Eq. 14.11 to substitute kH/m for ω2, we find:

v = ±ω
√

(A2 − x2) (14.22)

This relation verifies the fact that the speed is a maximum when x = 0 and is zero at

both of the turning points x = ± A.

Example 14.3

A block of mass m = 320 g is fastened to a light spring whose force constant

kH is 72 N/m, see Fig. 14.8a. The block is pulled a distance xi = 50 cm from its

equilibrium position at x = 0 on a horizontal frictionless surface, see Fig. 14.8b,

and released at t = 0. (a) What is the mechanical energy of the oscillating block?

(b) What is the maximum speed of the oscillating block? (c) Find the velocity,

kinetic energy, and potential energy of the block when its position is 30 cm?

x = 0

x

(a) (b)

Equilibrium position

x = 0

x

xi

Fig. 14.8
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Solution: (a) Since A = xi = 50 cm = 0.5 m, then Eq. 14.19 gives:

E = 1
2 kH A2 = 1

2 (72 N/m)(0.5 m)2 = 9 J

(b) At x = 0, we know that U = 0 and E = 1
2 mv2

max; therefore:

1
2 mv2

max = E = 9 J

vmax =
√

2E

m
=

√
2(9 J)

0.32 kg
= 7.5 m/s

(c) We use Eq. 14.21 to find the velocity at x = 30 cm as follows:

v = ±
√

kH

m
(A2 − x2) = ±

√
72 N/m

0.32 kg
[(0.5 m)2 − (0.3 m)2] = ±6 m/s

Now, we can find K and U when x = 30 cm = 0.3 m as follows:

K = 1
2 mv2 = 1

2 (0.32 kg)(±6 m/s)2 = 5.76 J

U = 1
2 kH x2 = 1

2 (72 N/m)(0.3 m)2 = 3.24 J

14.2 ∗ Damped Simple Harmonic Motion

When non-conservative forces, such as friction, oppose the motion of an oscillator,

its mechanical energy diminishes with time, and the motion is said to be damped.

One such system is a block of mass m attached to a spring and immersed in a viscous

liquid, see Fig. 14.9a. Let us assume that the liquid exerts a damping force Fd that is

proportional to the velocity vx of the oscillator. If vx is small, then:

Fd = −bvx (14.23)

where b is a damping constant. The total force acting on the block is:

�Fx = −kH x − bvx (14.24)

If we set vx = dx/dt and substitute with �Fx in Newton’s second law, �Fx =
m d2x/dt2, we find the following differential equation:

m
d2x

dt2 + b
dx

dt
+ kH x = 0 (14.25)
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0φ =

(b/2m)tAe

x

t

A

0

x

m

−

(a) (b)

Fig. 14.9 (a) A damped oscillator consisting of a block immersed in a viscous liquid. (b) Graph of x

versus t for a damped oscillator

This equation has a solution displayed in Fig. 14.9b, and is given by:

x(t) = Ae−bt/2m cos(ωd t + φ) (14.26)

where the angular frequency of the damped oscillator ωd is given by:

ωd =
√

kH

m
− b2

4m2

(
ωd

b�2
√

kHm−−−−−−→
or b→0

√
kH

m
= ω

)
(14.27)

14.3 Sinusoidal Waves

Waves are of three types: mechanical, electromagnetic, and matter waves. This

chapter deals only with mechanical waves. We encounter mechanical waves almost

constantly every day in our lives. For such waves, information and energy move

from one point to another, but matter does not. Common examples of such waves

are sound, water, and seismic waves. These waves require the following:

(1) Some source of disturbance (or vibration),

(2) A medium that can be disturbed,

(3) Some physical mechanism responsible for allowing adjacent portions of the

medium to influence each other.

14.3.1 Transverse and Longitudinal Waves

Figure 14.10 displays a single pulse wave sent from one end of a long stretched

string toward the other fixed end. As the wave passes the point P on the string, the y
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coordinate of this point will increase, reach a maximum, and then decrease to zero.

In the case of an ideal string (that is when no frictional forces within the string cause

the pulse to die out as it travels), the wave pulse in the string moves along the string

with some constant velocity v.

x

y

P

At time t

Fig. 14.10 Sending a single pulse through a long stretched string

Figure 14.11 displays a continuous sinusoidal wave sent from one end of a long

stretched string toward the other fixed end. The wave has a sinusoidal shape at any

time. That is, the wave has the shape of a sine curve (or a cosine curve) at any

location x and time t. As the sinusoidal wave travels along the string with some

constant velocity →
v , the y coordinate of point P on the string will oscillate up and

down continuously.

x

y

P

At time t

Fig. 14.11 Sending a continuous sinusoidal wave through a long stretched string. Any string element

(represented by point P) oscillates perpendicular to the direction of the wave’s velocity

From Figs. 1.10 and 1.11 we find that the displacement of every oscillating element

on the string is perpendicular to the direction of the wave’s velocity. This motion is

called a transverse motion, and the generated wave is called a transverse wave.

Figure 14.12 shows how we can produce a sound wave by using a movable piston

fitted in a long open pipe filled with air. A sound wave can be generated by pushing
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the piston toward the right or toward the left. The rightward motion of the piston

compresses the air in the region next to it, i.e. increasing its pressure. Accordingly,

the compressed air (or the change in pressure) travels as a pulse from one region to

another toward the right along the pipe. If the push and pull of the piston is sinusoidal

as in Fig. 14.12, a sinusoidal wave will travel along the pipe.

x

At time t

P
Air

Compression
Expansion

(rarefaction)

Fig. 14.12 Sending a continuous sinusoidal wave through an air-filled pipe by moving a piston back and

forth in a sinusoidal manner. Any air element (represented by point P) oscillates back and forth parallel

to the direction of the wave’s velocity v

From Fig. 14.12, we find that the displacement of every air element in the pipe is

parallel to the direction of the wave’s velocity. This motion is longitudinal, and the

generated wave is called a longitudinal wave.

Both transverse and longitudinal waves are traveling waves, because they travel

from one point to another.

14.3.2 Wavelength and Frequency

Two physical characteristics are important in describing periodic waves: the wave-

length (denoted by λ) and the frequency (denoted by f ). Both are defined below:

Wavelength λ:

One wavelength λ is the minimum distance between any two points on a wave

where both points behave identically.

Frequency f :

The frequency f of a wave is the rate at which the disturbance repeats itself.
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A third important physical characteristic of waves is the wave velocity (denoted

by v). In fact, mechanical waves travel, or propagate, with a specific velocity that is

determined by the properties of the medium being disturbed.

14.3.3 Harmonic Waves: Simple Harmonic Motion

A harmonic wave that is traveling toward increasing x has a sinusoidal shape like

the transverse wave of the string in Fig. 14.11. The displacement y = y(x, t) of a

harmonic wave can be written in terms of a sine (or a cosine) function of the position

x at time t as follows:

y = A sin(kx − ω t) or y = A cos(kx − ω t) , (14.28)

where A is the magnitude of the maximum displacement, known as the amplitude

of the wave. The quantities k and ω are constants whose meanings will be discussed

shortly. The quantity kx − ω t is called the phase of the wave. From now on, we will

use only the sine form.

Figure 14.13 shows the transverse displacement y as a function of the position x

at t = 0, i.e. the figure is a snapshot of the wave at that instant. With t = 0, the sine

form of Eq. 14.28 becomes:

y = A sin kx (t = 0) (14.29)

x

y

A

At time t = 0

x x+λ

λ

0

Crest

Trough

Fig. 14.13 A snapshot at t = 0 of a harmonic wave traveling to the right with a speed v in a taut string.

A typical wavelength λ is shown, which is the minimum distance between any two points on the wave

where both points behave identically

The wavelength λ of a wave is the distance between two successive crests, or

identically behaving two points on the x axis having the same displacement y and

slope dy/dx. If this occurs in Fig. 14.13 at x and x + λ, then Eq. 14.29 gives:



14.3 Sinusoidal Waves 467

y = A sin k x = A sin k(x + λ) (14.30)

The sine function repeats itself when its angle is increased by 2π rad. Thus,

Eq. 14.30 is satisfied only if kλ = 2π , i.e.:

k = 2π

λ
(Harmonic wave) (14.31)

where k is called the Angular wave number (or simply the wave number) of the

wave and has the SI unit rad/m (Not to be confused with the spring constant kH in

Hooke’s law).

Figure 14.14 shows the transverse displacement y as a function of time t at an

arbitrary location taken to be at x = 0. Thus, when monitoring the string, one would

see point x = 0 moving up and down in a motion given by Eq. 14.28 with x = 0. That

point is said to perform simple harmonic motion. So, Eq. 14.28 becomes:

y = A sin(−ω t) = −A sin(ω t) (x = 0) (14.32)

t

y

A

At position x=0

t t+T

Τ

0

Crest

Trough

Fig. 14.14 A graph showing the displacement of the string at x = 0 as a function of t when the sinusoidal

harmonic wave passes through that point. A typical period T is shown, which is the minimum time between

any two points on the wave when both behave identically

The period T of the wave is the time between two successive points behaving

identically on the t axis having the same displacement y. If this occurs in Fig. 14.14

at t and t + T , then Eq. 14.32 gives:

y = −A sin ω t = −A sin ω (t + T) (14.33)

Again, the sine function repeats itself when its angle is increased by 2π rad. Thus,

Eq. 14.33 is satisfied only if ωT = 2π , i.e.:

ω = 2π

T
(Harmonic wave) (14.34)
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where ω is defined previously in Eq. 14.2 and called the angular frequency of the

wave which has the SI unit rad/s.

The frequency f of a harmonic wave is equal to the number of crests (or troughs),

or any point on the wave, that passes any point in a unit time interval. The following

relation relates the frequency f to the period T and the angular frequency ω:

f = 1

T
= ω

2π
(Harmonic wave) (14.35)

As defined previously, it has the SI unit s−1, or cycle/s, or hertz (Hz).

Figure 14.15 shows a snapshot of the wave at t = 0 and t = �t. The ratio �x/�t

(or, in the differential limit dx/dt) is the wave speed v, i.e. v = dx/dt. As the wave

moves, each point (such as point P) retains its displacement y. For each such point,

although x and t are changing, Eq. 14.28 tells us that the argument of the sine function

must be constant. That is:

k x − ω t = constant (14.36)

Fig. 14.15 Snapshots of a

traveling wave at t = 0 and

t = �t. During this time the

entire curve shifts a distance

�x with a speed v = �x/�t.
x

y

A

At time t = 0 At time t = Δ t

Δ x

P P

0

To find the speed of the wave v, we differentiate Eq. 14.36 with respect to t to get:

k
dx

dt
− ω = 0

Thus: v = dx

dt
= ω

k
(14.37)

Using k = 2π/λ and ω = 2π/T , we can rewrite the speed as:

v = ω

k
= λ

T
or v = λ f (14.38)

Therefore, we can rewrite Eq. 14.28 in different forms such as:
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y = A sin

[
2π

(
x

λ
− t

T

)]
or y = A sin

[
2π

λ
(x − vt)

]
(14.39)

The harmonic wave given by Eq. 14.28 assumes that the displacement y is zero at

x = 0 and t = 0. If the transverse wave is not zero, we generally express the harmonic

wave in the form:

y =

⎧⎪⎪⎨
⎪⎪⎩

A sin(k x − ω t + φ)

or

A cos(k x − ω t + φ)

, (k = 2π/λ, ω = 2π f ) (14.40)

where φ is a constant, called the phase constant, that can be determined from the

wave’s initial conditions.

Example 14.4

A harmonic wave traveling along a string in the direction of increasing x has the

following form y = 0.4 sin(0.2 x − 5 t), where all the numerical constants are in

SI units. (a) Find the amplitude, wave number, angular frequency, and speed of

the wave. (b) Find the wavelength, period, and frequency of the wave.

Solution: (a) Comparing this wave with y = A sin(k x − ω t + φ), we find the

amplitude, wave number, angular frequency, and phase to be:

A = 0.4 m, k = 0.2 rad/m, ω = 5 rad/s, and φ = 0

From Eq. 14.37 we find the speed of the wave to be:

v = ω

k
= 5 rad/s

0.2 rad/m
= 25 m/s

(b) Equation 14.31 gives the wavelength of the wave as follows:

λ = 2π

k
= 2π rad

0.2 rad/m
= 31.4 m

From Eq. 14.34 we can find the period of the wave as follows:

T = 2π

ω
= 2π rad

5 rad/s
= 1.26 s

Equation 14.35 gives the frequency of the wave as follows:

f = 1

T
= 1

1.26 s
= 0.8 s−1 = 0.8 cycle/s = 0.8 Hz

Note that the quantities calculated are independent of the amplitude A.
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14.4 The Speed of Waves on Strings

String waves are the most common examples of transverse waves. Let us consider a

single symmetrical pulse traveling with a speed v in a stretched string that is under

a tensional force of magnitude τ (we use the symbol τ to represent tension, which

avoids confusion with the symbol T used to represent the period of oscillation), see

Fig. 14.16. We assume that the string has a linear mass density μ= m/L, where m is

the mass of the string and L is its length.

Δ s

Δ s
rr

τ

O

r

O

Fig. 14.16 A symmetrical pulse moving to the left on a stretched string with speed v. To find this speed

we apply Newton’s second law on a small segment of length �s located at the top of the pulse.

∗Consider a small segment at the top of the pulse, of length �s, forming an arc of

a circle of radius r, see Fig. 14.16. A force equal in magnitude to the string tension τ

pulls tangentially on this segment at each end. The horizontal components of these

forces cancel, but the vertical components add to form a radial restoring force of

magnitude:

Fr = 2τ sin θ ≈ 2τθ = τ2θ = τ
�s

r
(14.41)

where we have used the approximation sin θ ≈ θ when �s is very small and also

used the relation �s = r × (2θ).

The mass �m of the segment �s is given by:

�m = μ�s (14.42)
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According to Fig. 14.16, the string segment �s is moving radially toward the

center of a circle of radius r with a centripetal acceleration of magnitude given by:

ar = v2

r
(14.43)

When we apply Newton’s second law force = mass × acceleration, i.e. Fr =
�m ar, and also apply Eqs. 14.41–14.43, we get the following relation:

τ
�s

r
= μ�s × v2

r

Solving this equation for the speed v yields:

v =
√

τ

μ
(14.44)

This equation tells us that the speed of a wave along an ideal stretched string depends

only on the characteristics of the string (the magnitude of the tension τ and the mass

per unit length μ) and not on the frequency f of the wave. Actually, the frequency f

is fixed by whatever generates the wave, while the wavelength is fixed by Eq. 14.38,

i.e. by the relation λ = v/ f .

Example 14.5

A uniform string has a linear mass density of 0.2 kg/m. The string passes over a

massless frictionless pulley to a block of mass m = 4 kg, see Fig. 14.17. Find the

speed of a single pulse sent from one end of the string toward the pulley.

At time t

τ

mg

Fig. 14.17

Solution: The magnitude of the tension τ in the string is equal to the magnitude

of the weight of the suspended block. Thus:
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τ = mg = (4 kg) × (9.8 m/s2)

= 39.2 N

Using this result and the linear density μ= 0.2 kg/m in Eq. 14.44, we find the

value of the speed of the wave to be:

v =
√

τ

μ

=
√

39.2 N

0.2 kg/m
= 14 m/s

14.5 Energy Transfer by Sinusoidal Waves on Strings

Waves transport kinetic and potential energy when they propagate through a medium.

This can be easily demonstrated by hanging an object on a stretched string and

then sending a pulse through it, see Fig. 14.18. As the pulse meets the object, the

object will move up and hence acquire kinetic and potential energy.

(a) (b)

Fig. 14.18 (a) A pulse traveling on a stretched string over which an object is hung. (b) Kinetic energy

and potential energy are transferred to the object when the pulse arrives

Consider a string of mass per unit length μ and tension of magnitude τ that

is connected to a source of vibration as shown in Fig. 14.19a. When the source

vibrates, it does work to produce a sinusoidal wave that travels to the right as shown

in Fig. 14.19b. Now, let us focus our attention on an element of the string of mass

�m and length �x located at a particular point x. This element will move up and

down in a simple harmonic motion, see Fig. 14.19b.

Assume the oscillation of this element in the y direction has an amplitude A, wave

number k, and angular frequency ω. Then, according to Eq. 14.28, the transverse

velocity vy (not to be confused with the wave velocity v) at a particular position x

will be:
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vy = dy

dt

∣∣∣∣
x=constant

= ∂y

∂t
= ∂ [A sin(kx − ω t)]

∂t

= −ω A cos(kx − ω t)

(14.45)

Δm

Source of
vibration

x

y

t = 0

(a)

(b)

Δ x
A

time t

x

V

V

Fig. 14.19 (a) A source of vibration connected to a stretched string under tension τ . (b) A snapshot of

a traveling harmonic wave on the string at a time chosen to be at time t

The kinetic energy �K associated with a string element of mass �m = μ�x will

be given by:

�K = 1
2�m v2

y = 1
2μ�x v2

y (14.46)

When allowing �x to approach zero, this relation becomes a differential relationship

and will take the following form:

dK = 1
2μ dx v2

y = 1
2μω2A2 cos2(k x − ω t) dx (14.47)

At a given instant, let us integrate this expression over all the string elements

of a complete wavelength, which will give us the total kinetic energy Kλ in one

wavelength:

Kλ =
�

dK = 1
2μω2A2

λ�
0

cos2(k x − ω t) dx (14.48)

∗If we take a snapshot at time t = 0, then we can evaluate the above integral by

performing the following steps:
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x=λ�
x=0

cos2(k x) dx = 1
k

z=kλ=2π�
z=0

cos2 z dz

= 1
k

2π�
0

1
2 [1 + cos 2z] dz

= 1
2k

[
z + 1

2 sin 2z
]2π

0

= 1
2k

[
(2π + 1

2 sin 4π) − 0
] = λ

4π
2π

= λ

2

(14.49)

where we have used z = kx, cos2 z = (1 + cos 2z)/2 and k = 2π/λ to arrive to the

above result. Of course, we get the same answer if we perform the above steps at any

other time different from zero. When we substitute the above result into Eq. 14.48,

we get:

Kλ = 1
4μω2 A2 λ (14.50)

A similar analysis to the total potential energy Uλ in one wavelength will give exactly

the same result. Thus:

Uλ = 1
4μω2A2λ (14.51)

The total energy in one wavelength of the wave is the sum of the obtained kinetic

and potential energies:

Eλ = Kλ + Uλ = 1
2μω2 A2 λ (14.52)

As the sinusoidal wave travels along the string, that amount of energy (Eλ) will

cross any given point on the string during a time interval equal to one period of the

oscillation. Thus, the rate of energy (or power) transferred by the wave through the

string is:

P = �E

�t
= Eλ

T

Therefore:

P = 1
2μω2 A2 λ

T
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Using the relation v = λ/T given by Eq. 14.38, we finally attain the following form:

P = 1
2μvω2 A2 (14.53)

In this expression the factors μ and v depend on the material and tension of the

string. On the other hand, the factors ω and A depend on the source that generates the

sinusoidal wave. The dependence of the power of a wave on the square of its angular

frequency and on the square of its amplitude is a general result, i.e. true for all wave

types.

Example 14.6

A string that is taut under tension of magnitude τ = 40 N has a linear density μ

of 64 g/m. A wave is traveling along the string with a frequency f of 120 Hz and

amplitude A of 8 mm. (a) Find the speed of the wave. (b) What is the rate of energy

that must be supplied by a generator to produce this wave in the string? (c) If the

string is to transfer energy at a rate of 500 W, what must be the required wave

amplitude when all other parameters remain the same?

Solution: (a) Equation 14.44 gives the speed of the wave as follows:

v =
√

τ

μ
=

√
40 N

0.064 kg/m
= 25 m/s

(b) First we calculate the angular frequency ω as follows:

ω = 2π f = 2 × (3.1416 rad) × (120 s−1)

= 754 rad/s

The power supplied to the string is calculated by using the obtained values and

the given information in Eq. 14.53 as follows:

P = 1
2μvω2 A2

= 1
2 (0.064 kg/m)(25 m/s)(754 rad/s)2(0.008 m)2

= 29.1 W

(c) The ratio between the new power P′ and the old power P is:

P′

P
=

1
2μv ω 2 A′2
1
2μv ω 2 A2

= A′2

A2
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Thus: A′ = A

√
P′

P
= 0.008 m

√
500 W

29.1 W
= 0.033 m = 3.3 cm

14.6 The Linear Wave Equation

In Sect. 14.3.3 we introduced the wave function y = y(x, t) to represent waves travel-

ing on strings. Actually, all these wave functions represent solutions of a differential

equation called the linear wave equation. This equation is basic to many forms of

wave motions, such as waves on strings.

We consider a single symmetrical transverse pulse that is traveling with a speed

v in a stretched ideal string under tensional force of magnitude τ and has a linear

density μ, see Fig. 14.20.

a

o xx

y

Δ x

Δ Δ m = μ x
b

θb

θa

y

τa

τb
At time t 

Δ

Fig. 14.20 A pulse traveling with a speed v in a string under tension τ . The figure shows an element of

length �x at the point (x, y)

In this figure we consider a small element a b of length �x with ends at angles θa

and θb with the x axis. Also, for an ideal string we consider τb cos θb = τa cos θa = τ .

Thus, with the use of this result, the net vertical force acting on the string element

can be written as:

�Fy = τb sin θb − τa sin θa

= τ tan θb − τ tan θa = τ(tan θb − tan θa)
(14.54)

The tangent of an angle is represented by dy/dx when y depends only on x. Since we

are evaluating this tangent at a particular instant of time t, we need to express this

tangent in partial form as ∂y/∂x. Substituting this form of tangents into Eq. 14.54

gives:
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�Fy = τ

[(
∂y

∂x

)
b
−

(
∂y

∂x

)
a

]
(14.55)

When we apply Newton’s second law to the vertical motion of an element of mass

�m = μ � x, we get:

�Fy = �m ay = μ �x

(
∂2y

∂t2

)
(14.56)

Combining Eqs. 14.55 with Eq. 14.56, we get:

μ �x

(
∂2y

∂t2

)
= τ

[(
∂y

∂x

)
b
−

(
∂y

∂x

)
a

]

μ

τ

(
∂2y

∂t2

)
=

(
∂y

∂x

)
b
−

(
∂y

∂x

)
a

�x
=

∂y(x + �x, t)

∂x
− ∂y(x, t)

∂x
�x

(14.57)

From the definition of partial differentiation, we know that:

∂

∂x
f (x, t) = lim

�x→0

f (x + �x, t) − f (x, t)

�x

Thus, if we associate f (x + �x, t) with (∂y/∂x)b and f (x, t) with (∂y/∂x)a, we see

that, in the limit �x → 0, the right-hand side of Eq. 14.57 can be expressed as a

partial derivative as follows:

∂

∂x

(
∂y

∂x

)
= lim

�x→0

(
∂y

∂x

)
b
−

(
∂y

∂x

)
a

�x

Then, with the use of this result and Eq. 14.44, namely v = √
τ/μ, we can write

Eq. 14.57 as a partial differential equation in the following general form:

∂2y

∂x2 − 1

v2

∂2y

∂ t2 = 0 (14.58)

This is the linear wave equation as it applies to waves on strings and generally

applies to various types of traveling waves. We can prove that the sinusoidal wave

y(x, t) = A sin(kx − ω t) satisfies this equation.

14.7 Standing Waves

We consider two identical waves of the same wavelength and amplitude traveling

simultaneously in opposite directions in a stretched string. The resultant wave in
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the string will be the algebraic sum of the two waves. This is one of the examples

of a principle known as the superposition principle. Generally, this principle says

that when several effects occur simultaneously, their net effect is the sum of the

individual effects. The superposition principle will be introduced in more detail in

Chap. 15 when we study the properties of standing sound waves.

To analyze this situation, we assume that the two string waves have the same

frequency f (the same ω = 2π f ), wavelength λ (the same k = 2π/λ), and amplitude

A but travel in opposite directions. Therefore, we can write these two waves in the

following form:

y1 = A sin(k x − ω t),

y2 = A sin(k x + ω t)
(14.59)

where y1 represents a wave traveling in the positive x-direction and y2 represents a

wave traveling in the negative x-direction. The superposition of y1 and y2 gives the

following resultant:

y = y1 + y2 = A [sin(k x − ω t) + sin(k x + ω t)] (14.60)

To simplify this expression, we use the trigonometric identity:

sin(a ± b) = sin a cos b ± cos a sin b (14.61)

If we substitute a = kx and b = ω t in this identity, then the resultant wave y reduces

to:

y = (2 A sin k x) cos ω t (14.62)

The resultant wave y represented by Eq. 14.62 gives a special kind of simple

harmonic motion. Here, every element of the medium oscillates in simple harmonic

motion with the same angular frequency ω (through the factor cos ω t) with an ampli-

tude (given by the factor 2 A sin k x) that varies with position x. This wave is called a

standing wave because there is no motion of the disturbance along the x-direction.

A standing wave is distinguished by stationary positions with zero amplitudes

called nodes (see Fig. 14.21). This happens when x satisfies the condition sin kx = 0,

that is, when:

k x = 0, π, 2π, 3π, . . .
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x

y

o

2 A sin k x

Antinode = A

Node = N
N

A

N N N

A A A

N

λ

... .. . .. .
When ω t = 0

Whenω t = π /2

When ω t = π

Fig. 14.21 The time dependence of the vertical displacement (from equilibrium) of any individual

element in the standing wave y is governed by cos ω t. Each element vibrates within the confines of the

envelope 2 A sin k x. The nodes (N) are points of zero displacement, and the antinodes (A) are points of

maximum displacement

When using k = 2π/λ, these values give x = 0, λ
2 , λ, 3λ

2 , . . ., that is:

x = 0,
λ

2
, λ,

3λ

2
, . . . = n

λ

2
, (n = 0, 1, 2, . . .) (Nodes) (14.63)

Also, a standing wave is distinguished by elements with the greatest possible dis-

placements called antinodes (see Fig. 14.21). This happens when x satisfies the con-

dition sin k x = ±1, that is, when:

k x = π

2
,

3π

2
,

5π

2
, . . .

Also, using k = 2π/λ, these values give x = λ
4 , 3λ

4 , 5λ
4 , . . ., that is:

x = λ

4
,

3λ

4
,

5λ

4
, . . . = (n + 1

2 )
λ

2
, (n = 0, 1, 2, . . .) (Antinodes) (14.64)

Equations 14.63 and 14.64 indicate the following general features of nodes and

antinodes (see Fig. 14.21):

Spotlight

(1) The distance between adjacent nodes is λ/2.

(2) The distance between adjacent antinodes is λ/2.

(3) The distance between a node and adjacent antinode is λ/4.

At t = 0 (ω t = 0), the two oppositely traveling waves are in phase, producing

a wave pattern in which each element of the medium is experiencing its max-

imum displacement from equilibrium, see Fig. 14.22a. At t = T/4, (ω t = π/2),
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the traveling waves have moved one quarter of a wavelength (one to the right and the

other to the left). At this time, each element of the medium is passing through the

equilibrium position in its simple harmonic motion. The result is zero displacement

for each element at all values of x, see Fig. 14.22b. At t = T/2 (ω t = π), the traveling

waves are again in phase, producing a wave pattern that is inverted relative to the

t = 0 pattern, see Fig. 14.22c. The pattern at t = 3T/4 (Fig. 14.22d) resembles that at

t = T/2. Also, the pattern at t = T (Fig. 14.22e) resembles that at t = 0.

x
N

A

N N N

A

AA

N NN N N N
. . . . .

(a) (b) (c) (d)t = 0 t = T / 4

y

y1

y2

y1

y2

y1

y2

. . . . .
.

.

.

.

y1

y2

y
1

y
2

(e)t = 3T / 4 t = T

N

A

N N N

A

AA

N
. . . .

.

.

.

.
.

t = T / 2

NN N N N
. . . . .

N

A

N N N

A

AA

N
. . . . .
.

.

.

.

Fig. 14.22 Standing-wave patterns y at different times for the two oppositely traveling identical waves

y1 and y2. Nodes (N) have no displacements while antinodes (A) have maximum displacements

Example 14.7

A standing wave is produced by two identical sinusoidal waves traveling in oppo-

site directions in a taut string. The two waves are given by:

y1 = (0.02 m) sin(5 x − 10 t)

y2 = (0.02 m) sin(5 x + 10 t)

where x and y are in meters, t is in seconds, and the argument of the sine is in

radians. (a) Find the amplitude of the simple harmonic motion of the element on

the string located at x = 10 cm. (b) Find the positions of the nodes and antinodes

in the string. (c) Find the maximum and minimum y values of the simple harmonic

motion of a string element located at any antinode.

Solution: (a) Equation 14.62 gives the standing wave produced from y1 and y2

with A = 0.02 m, k = 5 rad/m, and ω = 10 rad/s. Thus:

y = (2 A sin k x) cos ω t = [(0.04 m) sin 5 x] cos 10 t
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The coefficient of the cosine at x = 10 cm = 0.1 m will be:

ymax = (0.04 m) sin 5 x|x=0.1 = (0.04 m) sin(0.5 rad) = 0.019 m = 1.9 cm

(b) When k = 5 rad/m = 2π/λ, we find the wavelength to be λ = 0.4π m.

Therefore, from Eq. 14.63 we find the nodes to be located at:

x = n
λ

2
= (0.2πn) m, (n = 0, 1, 2, . . .)

From Eq. 14.64, the antinodes will be located at:

x = (n + 1
2 )

λ

2
= [0.2π(n + 1

2 )] m, (n = 0, 1, 2, . . .)

(c) The maximum and minimum y values of the simple harmonic motion of a

string element located at any antinode are:

ymax/min = 2 A (sin 5 x)|max/min = 2 A (±1)= ± 0.04 m = ± 0.04 m = ± 4 cm

14.7.1 Reflection at a Boundary

A wave moving along a stretched string can be reflected from one of its ends in two

different ways, as shown in Fig. 14.23. The first way is to fix the far end of the string,

and the second way is to allow the far end to move freely up and down.

When the incident pulse in Fig. 14.23a reaches the fixed end, it exerts an upward

force on the wall through the support. By Newton’s third law, the support at the

wall exerts an opposite force on the string. This reaction force generates an inverted

reflected pulse that travels in a direction opposite to the incident pulse. In a reflection

of this kind, there must be no displacement of the string at the right end, which is

referred to as a node at the support, because the string is fixed there.

In Fig. 14.23b, the right end of the string is tied to a weightless ring that is free to

slide without friction along a vertical rod. When the incident pulse reaches the ring,

the ring moves up along the rod. The ring rises as high as the incoming pulse, and then

the downward component of the tension pulls the ring back down. This movement

of the ring produces a non-inverted reflected pulse of the same amplitude as the

incident pulse. In a reflection of this kind, there must be a maximum displacement

of the string at the right end, which is referred to as an antinode, because the string

is not fixed there.



482 14 Oscillations and Wave Motion

Fig. 14.23 (a) An incident

pulse from the left is inversely

reflected when the right side of

the string is fixed to a wall.

(b) The same incident pulse is

reflected unchanged in sign

when the right side of the

string is tied to a ring that can

slide without friction on a

vertical rod

(a) (b)

14.7.2 Standing Waves and Resonance

When one end of a stretched string is oscillating in a sinusoidal fashion while the

other end is fixed, the incident wave and the reflected wave interfere with each other.

For certain frequencies, this interference produces a standing wave with nodes

and antinodes like those shown in Figs. 14.21 and 14.22. Such a standing wave is said

to be produced at resonance, and the string resonates at these resonant frequencies.

If the string is oscillating at some other frequency, a standing wave is not set up.

Generally, an imposed boundary condition on a string sets up a number of natural

patterns of oscillation called normal modes.

Consider a stretched string between two points separated by a distance L, see

Fig. 14.24a. Visualize that the string is somehow made to oscillate at a resonance

frequency to set up a specific standing wave pattern. Since both ends are fixed, then

for this boundary condition there must be at least two nodes and one antinode for

the standing wave pattern. The normal modes of oscillation for the string can be

explained by considering the following three patterns:
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(1) The first normal mode (the first harmonic, or the fundamental):

The simplest pattern that can meet the boundary condition of two fixed ends

is shown in Fig. 14.24b. Note that there are two imposed nodes at both ends

and only one antinode, which is at the center of the string. There is only half a

wavelength in the length L. Thus, for this pattern, λ1/2 = L, i.e. λ1 = 2 L.

(2) The second normal mode (the second harmonic):

The second pattern that can meet the boundary condition of two fixed ends

is shown in Fig. 14.24c. This pattern has three nodes and two antinodes. This

standing wave must have λ2 = L.

(3) The third normal mode (the third harmonic):

The third pattern that can meet the boundary condition of two fixed ends is shown

in Fig. 14.24d. This pattern has four nodes and three antinodes . This standing

wave must have λ3 = 2L/3.

(a)

(b)

(c)

(d)

.. L

..

..

..

n=1

n=2

n=3

λ 1 = 2 L

f 1 = λ 1 = 2 L

λ 2 = L

f 2 = λ 2 = L= 2 f 1

λ 3 = 2 L 3

f 3 = λ 3 = 3 2L= 3 f 1

First
harmonic

Second
harmonic

Third
harmonic

Fig. 14.24 (a) A string of length L that is fixed at both ends. The normal modes of vibration are shown

for; (b) the first harmonic (or the fundamental), (c) the second harmonic, and (d) the third harmonic

In general, the relation between the wavelength λ of the various normal modes

for a string of length L fixed at both ends is given by:

λn = 2L

n
, (n = 1, 2, 3, . . .) (String, fixed ends) (14.65)
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where the index n refers to the nth normal mode of the possible oscillation of the

string (or the number of loops in the string).

The resonance frequencies associated with these modes are obtained from the

relation f = v/λ, where the speed of the wave is the same for all the frequencies.

Using Eq. 14.65, we find the resonance frequencies fn of the normal modes to be

(see Fig. 14.24):

fn = v

λn
= n

v

2L
, (n = 1, 2, 3, . . .) (String, fixed ends) (14.66)

According to Eq. 14.44, the speed of the wave v is related to the tension in the string

τ and the linear mass density μ by the relation v =√
τ/μ. Substituting with this

relation into Eq. 14.66 we get:

fn = n

2L

√
τ

μ
, (n = 1, 2, 3, . . .) (String, fixed ends) (14.67)

The lowest resonance frequency f1, which corresponds to n = 1, is called the funda-

mental frequency and is given by:

f1 = 1

2L

√
τ

μ
(String, fixed ends) (14.68)

The resonance frequencies of the remaining normal modes are integer multiples of

the fundamental frequency (Fig. 14.24), that is:

fn = n f1, (n = 1, 2, 3, . . .) (String, fixed ends) (14.69)

Example 14.8

The middle-C key on a piano (key No. 40) has a fundamental frequency of 262

Hz, and the A key above the middle C in frequency has a fundamental frequency

of 440 Hz, see Fig. 14.25. (a) Find the frequencies of the next two harmonics of

the C string. (b) The strings of the keys A and C have the same linear mass density

but the length LA of the string A is 65% of the length LC of string C. What will

be the ratio of the tensions τA/τC in the two strings?

Solution: (a) Equation 14.69 gives the higher harmonics in terms of the funda-

mental frequency. Thus, for f1 = 262 Hz we get:
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f2 = 2 f1 = 2 × 262 Hz = 524 Hz

f3 = 3 f1 = 3 × 262 Hz = 786 Hz

F
33

G
35

A
37

B
39

C
40

D
42

E
44

F
45

G
47

A
49

B
51

F#
34

G#
36

A#
38

D#
43

C#
41

F#
46

A#
50

G#
48

Brand

Middle C
key

A above
middle C

Piano keyboard

Fig. 14.25

(b) When the two strings vibrate at their fundamental frequencies, we can use

Eq. 14.68 to write down the following relations:

f1A = 1

2LA

√
τA

μ
and f1C = 1

2LC

√
τC

μ

Thus, the ratio of the two frequencies is f1A/f1C = (LC/LA)
√

τA/τC. When we

square this relation, we get the ratio of the magnitude of the two tensions as

follows:

τA

τC
=

(
LA

LC

)2 (
f1A

f1C

)2

=
(

65

100

)2 (
440 Hz

262 Hz

)2

= 1.19

Example 14.9

The one end A of a string is attached to a vibrator of frequency 100 Hz, while the

other end passes over a pulley at point B to a block of mass m, see Fig. 14.26. The

separation L between A and B is 1.5 m and the linear mass density of the string

is 1.5 g/m. (a) Find the mass m needed to allow the vibrator to set up the third

harmonic on the string. (b) What standing-wave mode is set up if m = 0.5 kg?

Solution: (a) The tension τ in the string must equal to the weight of the mass

m, i.e. τ = mg. Substitution with this tension into Eq. 14.67 gives the resonance

frequencies in a general form as follows:
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fn = n

2L

√
mg

μ
, (n = 1, 2, 3, . . .)

We need to set the tension in the string (by the mass m) so that the vibrator

frequency is equal to the frequency of the third harmonic, i.e.:

f3 = 3

2L

√
mg

μ
Thus:

m = 4L2μf 2
3

9 g
= 4 × (1.5 m)2(1.5 × 10−3 kg/m)(100 Hz)2

9 × (9.8 m/s2)
= 1.5306 kg

(b) If we insert m = 0.5 kg and fn = 100 Hz into the first equation, we get:

n = 2Lfn

√
μ

mg
= 2 × (1.5 m)(100 Hz)

√
1.5 × 10−3 kg/m

(0.5 kg)(9.8 m/s2)
= 5.25

With m = 0.5 kg, we get n = 5.25. Because n has to be an integer, then this vibrator

cannot set up a standing wave on the string.

A

m

L=3 λ 3 /2

B
Vibrator

Fig. 14.26

14.8 Exercises

Section 14.1 Simple Harmonic Motion

(1) Some clocks use a pendulum to keep time, see Fig. 14.27. The bob of a clock

requires 1 s for a single small-amplitude swing. (a) What is the period of the

pendulum? (b) What is frequency of the pendulum? (c) What is the angular

frequency of the pendulum’s oscillations?
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Fig. 14.27 See Exercise (1)

(2) A particle executes a simple harmonic motion along the x-axis with amplitude

A. The particle returns to its starting position every T = 0.25 s, see Fig. 14.28.

(a) Find the period, frequency, and angular frequency of this motion. (b) Find

the particle’s displacement as a function of time.

Fig. 14.28 See Exercise (2)

t = 0

A-A o x

t = T/4

t = T/2

t = 3T/4

t = T

(3) A particle oscillates with a simple harmonic motion along the x axis. Its

displacement from the origin varies with time according to the equation

x = (1.5 m) cos(2π t+φ), where φ = −π/4 rad, t is in seconds and the argument

of the cosine is in radians, see the blue curve of Fig. 14.29. (a) Find the value of

the amplitude, frequency, and period of the motion. (b) Find the velocity and

acceleration of the particle as a function of time. (c) Find both the maximum

speed and acceleration of the particle. (d) Find the displacement of the particle

between t = 0 and t = 1 s.

(4) When the mechanical energy of one oscillation of a spring-block system is

doubled, what is the ratio of their amplitudes?

(5) A block of mass m = 0.8 kg oscillates freely with period T = 0.9 s when

attached to a linear spring that obeys Hooke’s law, see Fig. 14.30. An unknown

mass M attached to the same spring is observed to have a period of oscillation



488 14 Oscillations and Wave Motion

of 1.2 s. (a) Find the spring constant kH of the spring. (b) Find the value of the

unknown mass M.

Fig. 14.29 See Exercise (3)

t

x

Τ

0

A

φ = - π/4φ = 0

Fig. 14.30 See Exercise (5)

m

Hk

(6) A block of mass m = 0.5 kg rests on a horizontal frictionless surface and is

connected to a spring, as shown in Fig. 14.31. When the system is set into

motion with amplitude A = 0.35 m, it repeats its motion every 0.5 s. (a) Find the

block’s period, frequency, and angular frequency. (b) Find the spring constant,

the maximum speed of the block, and the maximum force exerted by the spring

on the block.

x

A

xx

A
x = 0 x = 0 x = 0

t = 0t = T/4
t = T/2 t = 3T/4 t = T

Fig. 14.31 See Exercise (6)

(7) Two springs 1 and 2 have the same un-stretched length but different force

constants kH1 ≡ k1 and kH2 ≡ k2, respectively. The springs are connected to a
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block of mass m that rests on a horizontal frictionless surface as shown in

Fig. 14.32. Calculate the effective force constant keff in each of the three cases

(a), (b), and (c) of the figure.

k1
k1 k1k2 k2

(a) (b) (c)

k2

Fig. 14.32 See Exercise (7)

(8) When k1 = k2 = k in Exercise 7, find the frequency of oscillation of the block

in each of the three cases (a), (b), and (c).

(9) When a group of four persons, each of mass 60 kg, steps into a small car of mass

936 kg, the four springs of the car are compressed by 4 cm. Take g = 10 m/s2.

(a) What is the effective spring constant kH of the springs? (b) Find the period

and frequency of the car after hitting a road bump that causes the car to oscillate

up and down, assuming the oscillations of the four springs are in phase.

(10) In Exercise 7, show that the frequencies f of oscillation of the block in the two

cases (b) and (c) are given respectively by:

f =
√

f 2
1 + f 2

2 , f =
√

f 2
1 f 2

2 /(f 2
1 + f 2

2 )

where f1 and f2 are the frequencies when the block is connected to only spring

1 or spring 2, respectively.

(11) The velocity of a 0.5 kg mass attached to the end of a spring is represented by

v = − (4 m/s) sin(2 t). Find the total energy E.

(12) A block of mass m = 0.2 kg is fastened to a light spring whose spring constant

kH is 5 N/m, see part (a) of Fig. 14.33. The block is pulled a distance xi = 5 cm

from its equilibrium position at x = 0 on a horizontal frictionless surface, see

part (b) of Fig. 14.33, and then released at t = 0. (a) What is the mechanical

energy of the oscillator? (b) What is the maximum speed of the oscillator?

(c) Find the speed, kinetic energy, and potential energy of the block when its

position is 2 cm.

(13) Assume that the mass in Exercise 12 is 0.025 kg, the force constant kH is

0.4 N/m, and that the motion starts by imparting to the block at xi = 0.1m a

velocity toward the right of 0.4 m/s. (a) Find the period T, frequency f, and

angular frequency ω of the oscillator. (b) Find the total energy E, amplitude A,
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the phase angle φ, the maximum speed vmax, and the maximum acceleration

amax. (c) Write down the position, velocity, and acceleration in terms of time

t, then substitute with t = π/8 s and find their values.

x = 0

x

(a) (b)

Equilibrium position

x = 0

x

xi

Fig. 14.33 See Exercise (12)

(14) A bullet of mass m = 10 g is fired horizontally with a speed v into a stationary

wooden block of mass M = 4 kg. The block is resting on a horizontal smooth

surface and attached to a massless spring with spring constant kH = 150 N/m,

where the other end of the spring is fixed through a wall, as shown in Fig. 14.34a.

In a very short time, the bullet penetrates the block and remains embedded

before compressing the spring, as shown in Fig. 14.34b. The maximum distance

that the block compresses the spring is 8 cm, as shown in Fig. 14.34c. (a) What

is the speed of the bullet? (b) Find the period T and frequency f of the oscillating

system.

vm
M

V
M+m

M+m

8cm

Before collision

Just after collision

At maximum
compression

St
ag

e 
1

St
ag

e 
2

(a)

(b)

(c)

Fig. 14.34 See Exercise (14)
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Section 14.2 Damped Simple Harmonic Motion

(15) An object of mass m = 0.25kg oscillates in a fluid at the end of a vertical

spring of spring constant kH = 85 N/m, see Fig. 14.35. The effect of the fluid

resistance is governed by the damping constant b = 0.07kg/s. (a) Find the period

of the damped oscillation. (b) By what percentage does the amplitude of the

oscillation decrease in each cycle? (c) How long does it take for the amplitude

of the damped oscillation to drop to half of its initial value?

Fig. 14.35 See Exercise (15)

Hk

m

(16) A simple pendulum has a length L and a mass m. Let the arc length s and

the angle θ measure the position of m at any time t, see Fig. 14.36. (a) When

a damped force Fd =−bvs exists, show that the equation of motion of the

pendulum is given for small angles by:

m
d2θ

dt2 + b
dθ

dt
+ mg

L
θ = 0

(b) By comparison with Eq. 14.25, show that the above differential equation

has a solution given by:

θ = θ◦ e−bt/2m cos(ωd t), ωd =
√

g

L
− b2

4m2

where θ◦ is initial angular amplitude at t = 0 and ωd = 2π fd is damped angular

frequency, see Fig. 14.9b. (c) When the pendulum has L = 1 m, m = 0.1 kg,

and the angular amplitude θ becomes 0.5 θ◦ after 1 minute, find the damping

constant b and the ratio (f − fd)/f , where f is the undamped frequency.
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Fig. 14.36 See Exercise (16)

θ
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Section 14.3 Sinusoidal Waves

(17) Given a sinusoidal wave represented by y = (0.2 m) sin(k x − ω t), where

k = 4 rad/m, and ω = 8 rad/s, determine the amplitude, wavelength, frequency,

and speed of this wave.

(18) A harmonic wave traveling along a string has the form y = (0.25 m) sin(3 x −
40 t), where x is in meters and t is in seconds. (a) Find the amplitude, wave

number, angular frequency, and speed of this wave. (b) Find the wavelength,

period, and frequency of this wave?

Section 14.4 The Speed of Waves on Strings

(19) A uniform string has a mass per unit length of 5 × 10−3 kg/m. The string

passes over a massless, frictionless pulley to a block of mass m = 135 kg, see

Fig. 14.37, and take g = 10 m/s2. Find the speed of a pulse that is sent from one

end of the string toward the pulley. Does the value of the speed change when

the pulse is replaced by a sinusoidal wave?

Fig. 14.37 See Exercise (19) At time t

τ

mg
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(20) Assume a transverse wave traveling on a uniform taut string of mass per unit

length μ= 4 × 10−3 kg/m. The wave has an amplitude of 5 cm, frequency of

50 Hz, and speed of 20 m/s. (a) Write an equation in SI units of the form

y = A sin(kx − ω t) for this wave. (b) Find the magnitude of the tension in the

string.

Section 14.5 Energy Transfer by Sinusoidal Waves on Strings

(21) A sinusoidal wave of amplitude 0.05 m is transmitted along a string that has a

linear density of 40 g/m and is under 100 N of tension. If the wave source has

a maximum power of 300 W, what is the highest frequency at which the source

can operate?

(22) A long string has a mass per unit length μ of 125 g/m and is taut under tension

τ of 32 N. A wave is supplied by a generator as shown in Fig. 14.38. This wave

travels along the string with a frequency f of 100 Hz and amplitude A of 2

cm. (a) Find the speed and the angular frequency of the wave. (b) What is the

rate of energy that must be supplied by a generator to produce this wave in the

string? (c) If the string is to transfer energy at a rate of 100 W, what must be

the required wave amplitude when all other parameters remain the same?

Fig. 14.38 See Exercise (22)

x

y
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(23) A sinusoidal wave is traveling along a string of linear mass density μ= 75 g/m

and is described by the equation:

y = (0.25 m) sin(2 x − 40 t)

where x is in meters and t in seconds. (a) Find the speed, wavelength, and

frequency of the wave. (b) Find the power transmitted by the wave.
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Section 14.6 The Linear Wave Equation

(24) A one-dimensional wave traveling with velocity v is found to satisfy the partial

differential equation [see Eq. 14.58]:

∂2y

∂x2 − 1

v2

∂2y

∂ t2 = 0

Show that the following functions are the solutions to this linear wave equation:

(a) y = A sin(k x −ω t). (b) y = A cos(k x −ω t). (c) y = exp[b(x − v t)], where

b is a constant. (d) y = ln[b(x − v t)], where b is a constant. (e) Any function

y having the form y = f (x − v t).

(25) If the linear wave functions y1 = f1(x, t) and y2 = f2(x, t) satisfy the wave Eq.

14.58, then show that the combination y = C1 f1(x, t)+C2 f2(x, t) also satisfies

the same equation, where C1 and C2 are constants.

Section 14.7 Standing Waves

(26) A standing wave having a frequency of 20 Hz is established on a rope 1.5 m

long that has fixed ends. Its wavelength is observed to be twice the rope’s length.

Determine the wave’s speed.

(27) A stretched string of length 0.6 m and mass 30 g is observed to vibrate with a

fundamental frequency of 30 Hz. The amplitude of any antinodes in the standing

wave is 0.04 m. (a) What is the amplitude of a transverse wave in the string?

(b) What is the speed of a transverse wave in the string? (c) Find the magnitude

of the tension in the string.

(28) A student wants to establish a standing wave with a speed 200 m/s on a string

that is fixed at both ends and is 2.5 m long. (a) What is the minimum frequency

that should be applied? (b) Find the next three frequencies that cause standing

wave patterns on the string.

(29) Two identical waves traveling in opposite directions in a string interfere to

produce a standing wave of the form:

y = [(2 m) sin(2 x)] cos(20 t)

where x is in centimeters, t is in seconds, and the arguments of the sine and

cosine are in radians. Find the amplitude, wavelength, frequency, and speed of

the interfering waves.
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(30) A standing wave is produced by two identical sinusoidal waves traveling in

opposite directions in a taut string. The two waves are given by:

y1 = (2 cm) sin(2.3 x − 4 t) and y2 = (2 cm) sin(2.3 x + 4 t)

where x and y are in centimeters, t is in seconds, and the argument of the

sine is in radians. (a) Find the amplitude of the simple harmonic motion of an

element on the string located at x = 3 cm. (b) Find the position of the nodes

and antinodes on the string. (c) Find the maximum and minimum y values of

the simple harmonic motion of a string element located at any antinode.

(31) A guitar string has a length L = 64 cm and fundamental frequency

f1 = 330 Hz, see part (a) of Fig. 14.39. By pressing down with your finger on the

string, it is found that the string is shortened in a way so that it plays an F note

with a fundamental frequency f ′
1 = 350 Hz, see part (b) of Fig. 14.39. [Assume

the speed of the wave remains constant before and after pressing] How far is

your finger from the near end of the string?

(a) (b)
1f 1f ′

1/2L λ=
1/2L λ=′

1n =1n =

′

Fig. 14.39 See Exercise (31)

(32) A violin string oscillates at a fundamental frequency of 262 Hz when unfin-

gered. At what frequency will it vibrate if it is fingered two-fifths of the length

from its end?

(33) A string that has a length L = 1 m, mass per unit length μ= 0.1 kg/m, and

tension τ = 250 N is vibrating at its fundamental frequency. What effect on

the fundamental frequency occurs when only: (a) The length of the spring is

doubled. (b) The mass per unit length of the spring is doubled. (c) The tension

of the spring is doubled.

(34) Show that the resonance frequency fn of standing waves on a string of length L

and linear density μ, which is under a tensional force of magnitude τ , is given

by fn = n
√

τ/μ/2L, where n is an integer.
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(35) Show by direct substitution that the standing wave given by Eq. 14.62,

y = (2 A sin k x) cos ω t

is a solution of the general linear wave Eq. 14.58:

∂2y

∂x2 − 1

v2

∂2y

∂ t2 = 0

(36) End A of a string is attached to a vibrator that vibrates with a constant frequency

f, while the other end B passes over a pulley to a block of mass m, see Fig. 14.40.

The separation L between points A and B is 2.5 m and the linear mass density

of the string is 0.1 kg/m. When the mass m of the block is either 16 or 25 kg,

standing waves are observed; however, standing waves are not observed for

masses between these two values. Take g = 10 m/s2. (Hint: The greater the

tension in the string, the smaller the number of nodes in the standing wave)

(a) What is the frequency of the vibrator? (b) Find the largest m at which a

standing wave could be observed.

L

m

BAVibrator

Fig. 14.40 See Exercise (36)

(37) Two identical sinusoidal waves traveling in opposite directions on a string of

length L = 3 m interfere to produce a standing wave pattern of the form:

y = [(0.2 m) sin(2πx)] cos(20π t)

where x is in meters, t in seconds, and the arguments of the sine and cosine

are in radians. (a) How many loops are there in this pattern? (b) What is the

fundamental frequency of vibration of the string?

(38) Two strings 1 and 2, each of length L = 0.5 m, but different mass densities

μ1 and μ2, are joined together with a knot and then stretched between two
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fixed walls as shown in Fig. 14.41. For a particular frequency, a standing wave

is established with a node at the knot, as shown in the figure. (a) What is

the relation between the two mass densities? (b) Answer part (a) when the

frequency is changed so that the next harmonic in each string is established.

Srting 1 Srting 2

Knotμ
1

μ
2

Fig. 14.41 See Exercise (38)

(39) The strings 1 and 2 of exercise 38 have L1 = 0.64 m, μ1 = 1.8 g/m, L2 = 0.8 m,

and μ2 = 7.2 g/m, respectively, and both are held at a uniform tension τ =
115.2 N. Find the smallest number of loops in each string and the corresponding

standing wave frequency.

(40) In the case of the smallest number of loops in exercise 39, determine the total

number of nodes and the position of the nodes measured from the left end of

string 1.



Sound Waves 15

Sound waves are the most common examples of longitudinal waves. The speed of

sound waves in a particular medium depends on the properties of that medium and

the temperature. As discussed in Chap. 14, sound waves travel through air when air

elements vibrate to produce changes in density and pressure along the direction of

the wave’s motion.

Sound waves can be classified into three frequency ranges:

(1) Audible waves: within the range of human ear sensitivity and can be generated

by a variety of ways such as human vocal cords, etc.

(2) Infrasonic waves: below the audible range but perhaps within the range of

elephant-ear sensitivity.

(3) Ultrasonic waves: above the audible range and lie partly within the range of

dog-ear sensitivity.

15.1 Speed of Sound Waves

The motion of a one-dimensional, longitudinal pulse through a long tube containing

undisturbed gas is shown in Fig. 15.1. When the piston is suddenly pushed to the

right, the compressed gas (or the change in pressure) travels as a pulse from one

region to another toward the right along the pipe with a speed v.

The speed of sound waves depends on the compressibility and density of the

medium. We can apply equation v = √
τ/μ, which gives the speed of a transverse

wave along a stretched string, to the speed of longitudinal sound waves in fluids or

H. A. Radi and J. O. Rasmussen, Principles of Physics, 499
Undergraduate Lecture Notes in Physics, DOI: 10.1007/978-3-642-23026-4_15,
© Springer-Verlag Berlin Heidelberg 2013
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Fig. 15.1 Motion of a

longitudinal sound pulse in a

gas-filled tube

Undisturbed gas

Compressed gas

Compressed gas

Compressed gas

rods. In fluids we replace τ with the bulk modulus B, and in rods we replace τ with

Young’s modulus Y. In both, we replace μ with the density ρ. Then:

v =
√

elastic property
medium property

=
⎧⎨
⎩

√
B/ρ (In fluids)

√
Y/ρ (In solid rods)

(15.1)

Table 15.1 depicts the speed of sound in several different materials.

Table 15.1 The speed of sound in different materials

Medium v(m/s) Medium v(m/s)

Gases Solids

Oxygen (0 ◦C) 317 Rubber 1,600

Air (0 ◦C) 331 Lead 1,960

Air (20 ◦C) 343 Lucite 2,680

Helium (0 ◦C) 972 Gold 3,240

Hydrogen (0 ◦C) 1,286 Brass 4,700

Liquids at (25 ◦C) Copper 5,010

Kerosene 1,324 Pyrex 5,640

Mercury 1,450 Iron 5,950

Water 1,493 Granite 6,000

Sea water 1,533 Aluminum 6,420

For sound traveling through air, the relation between the speed and the temperature

of the medium is given by the following relation:
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v = (331 m/s)

√
1 + TC

273 ◦C
(15.2)

where 331 m/s is the speed of sound at 0 ◦C, and TC is the temperature of the medium

in degrees Celsius.

Example 15.1

Water at 20 ◦C has an approximate bulk modulus B of 2.1 × 109 N/m2 and density

ρ of 103 kg/m3. (a) Find the speed of sound in water. (b) Dolphins use sound waves

to locate distant food targets by estimating the time �t between the moment of

emitting a sound pulse toward the food and the moment of receiving its reflection,

see Fig. 15.2. Calculate such a �t when the food is 100 m away from the dolphin.

100 m

Sound pulse

Fig. 15.2

Solution: (a) Using Eq. 15.1, we find that:

v =
√

B

ρ
=

√
2.1 × 109 N/m2

103 kg/m3 = 1,449 m/s

(b) The total distance traveled by the sound pulse from the dolphin to the food

and back to the dolphin is �x = 2 × 100 m = 200 m. Thus:

�t = �x

v
= 200 m

1,449 m/s
= 0.138 s
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15.2 Periodic Sound Waves

As a result of continuous push and pull of a piston in a gas tube, continuous

regions of compressions and expansions (or called rarefactions) are generated,

see Fig. 15.3a. The darker-colored areas in the figure represent regions where the gas

is compressed, and thus the pressure and density are above their equilibrium values.

The lighter-colored areas in the same figure represent regions of expansions, where

the pressure and density are below their equilibrium values.

At time t
Compression Expansion

x

smaxsmax

Δ x

s Oscillating
element

Equilibrium
position

(a)

Cross
sectional
area A

Oscillating piston

with frequency f

x + Δ xx

λ

(b)

Fig. 15.3 (a) A longitudinal, sinusoidal sound wave is traveling through a long gas-filled tube with a

speed v. The wave consists of a moving pattern of compressions and expansions. The wave is shown

at an arbitrary time t. (b) An element of thickness �x is displaced at a distance s to the right from its

equilibrium position. Its maximum displacement, either right or left, is smax, where smax � λ

Consider a thin element of air of thickness �x located at a position x along the

tube. As the wave passes through the tube, this element oscillates back and forth in

simple harmonic motion about its equilibrium position, see Fig. 15.3b. To describe

this element from its equilibrium position, we can use either a sine function or a

cosine function. In this book, we use a cosine function of the form:

s(x, t) = smax cos(kx − ω t) (15.3)

where smax is the maximum displacement of the air element to either side of the

equilibrium position, see Fig. 15.3b, and is called the displacement amplitude of the
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wave. For this longitudinal sound wave, the wave number k, wavelength λ, angular

frequency ω, frequency f, speed v, and period T are all defined and interrelated

exactly as for the transverse waves on strings in Sect. 14.3, except that λ is now along

the direction of the wave.

For the sinusoidal longitudinal sound wave shown in Fig. 15.4a, the displacement

s(x, t) of Eq. 15.3 at t = 0 is displayed in Fig. 15.4b. Accordingly, the variation in the

gas pressure �P about the equilibrium value must also be periodic, see Fig. 15.4c,

and based on Eq. 15.3 it must be in the form:

�P = �Pmax sin(kx − ω t) (15.4)

where �Pmax is the maximum change in pressure from the equilibrium value and is

called the pressure-variation amplitude, as shown in Fig. 15.4c.

x

P

Pmax

x

s
smax

At t = 0Oscillating piston
with frequency f

(a)

(b)

(c)

Δ
Δ

λ

Fig. 15.4 (a) A snapshot at t = 0 of a longitudinal sinusoidal sound wave traveling through a long

gas-filled tube with a speed v. The variation of both: (b) the displacement amplitude s and (c) the pressure

difference �P as a function of position

∗ To find �Pmax in Eq. 15.4, we start with the definition of bulk modulus B, given

by Eq. 10.14, and express the change in pressure at any time t as follows:

�P = −B
�V

V
(15.5)
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The quantity V is the volume element, given by:

V = A �x (15.6)

The quantity �V is the change in volume that arises from the difference �s between

the displacements of the two faces of the element in Fig. 15.3. That is, �s = s(x +
�x, t) − s(x, t). Thus:

�V = A�s (15.7)

Substituting Eqs. 15.6 and 15.7 into Eq. 15.5 we get:

�P = −B
�s

�x

Allowing for the differential limit, �x → 0 at any time t, we get:

�P = −B
∂s

∂x
(15.8)

The partial derivative ∂s/∂x indicates how s changes with x at any time t. Using

Eq. 15.3, and treating t as a constant, we find:

∂s

∂x
= ∂

∂x
[smax cos(kx − ω t)] = −ksmax sin(kx − ω t) (15.9)

Thus: �P = B k smax sin(kx − ω t) (15.10)

Comparing the two Eqs. 15.4 and 15.10, we find that:

�Pmax = B k smax (15.11)

Using Eq. 15.1 allows us to eliminate the bulk modulus B and get the following

relation:

�Pmax = ρv2k smax (15.12)

Also, we can eliminate k by using v = ω/k, Eq. 14.38, to find:

�Pmax = ρvω smax (15.13)
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Example 15.2

The human ear can tolerate the loudest sound which has a pressure-variation

amplitude �Pmax = 28 Pa (the threshold of pain), and can detect the faintest

sound which has �Pmax = 2.8 × 10−5 Pa (the threshold of hearing). For a sound

of frequency 1,000 Hz traveling with a speed v = 343 m/s in air of density

ρ = 1.21 kg/m3, calculate the displacement amplitude smax for the loudest and

the faintest sounds.

Solution: From Eq. 15.13, we can find the displacement amplitude smax for the

loudest sound wave as follows:

smax = �Pmax

ρvω
= �Pmax

ρv(2π f )

= 28 Pa

(1.21 kg/m3)(343 m/s)(2π × 1,000 Hz)

= 1.1 × 10−5 m � 11 µm (Loudest; threshold of pain)

The displacement amplitude for the loudest sound that can be tolerated by the

human ear is about one-tenth the thickness of this page.

Also, from Eq. 15.13, we find the following for the faintest sound wave:

smax = �Pmax

ρvω
= �Pmax

ρv(2π f )

= 2.8 × 10−5 Pa

(1.21 kg/m3)(343 m/s)(2π × 1,000 Hz)

= 1.1 × 10−11 m (Faintest; threshold of hearing)

This is a remarkably small number! This displacement amplitude is about one-

tenth the size of a typical atom (diameter ≈10−10 m). Indeed, the ear is an

extremely sensitive detector for sound waves. On the other hand, the ear can

detect a sound-wave pulse whose total energy is about the same as the total energy

required to remove an outer electron from a single atom.

15.3 Energy, Power, and Intensity of Sound Waves

In Sect. 14.5, we showed that waves transport kinetic and potential energy when they

propagate through a medium. The same concept applies to sound waves. Consider

an element of air of mass �m and length �x in front of a piston oscillating with a

frequency f in one dimension, as shown in Fig. 15.5.
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Δx

Area A 

Δm

Oscillating piston
with frequency f 

Fig. 15.5 A piston oscillates with frequency f in an air-filled tube. The piston transfers energy to an

adjacent air element that has a mass �m and length �x, causing it to oscillate with an amplitude smax

The piston transfers energy to this element and hence the energy is propagated

away through the tube by the sound wave. As the sound wave propagates away, the

displacement of this element with respect to its equilibrium position will be given

by Eq. 15.3, i.e.:

s(x, t)= smax cos(k x − ω t) (15.14)

The speed of this element can be found by taking the partial time derivative of s as

follows:

v(x, t)= ∂

∂t
s(x, t)= ∂

∂t
[smax cos(k x − ω t)] = + ω smax sin(k x − ω t) (15.15)

∗ The kinetic energy �K associated with the air element of mass �m = ρA�x,

where ρ is the air density, will be given by:

�K = 1
2�m v2 = 1

2ρ A�x ω2s2
max sin2(k x − ω t) (15.16)

When we allow �x to approach zero, this relation becomes a differential relationship

and will take the following form:

dK = 1
2ρ A ω2s2

max sin2(k x − ω t)dx (15.17)

At a given instant, let us integrate this expression over all the elements in a

complete sound wavelength, which will give us the total kinetic energy Kλ in one

wavelength:

Kλ =
�

dK = 1
2ρ A ω2s2

max

λ�
0

sin2(k x − ω t)dx (15.18)
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If we take a snapshot at time t = 0, then we can evaluate the above integral by

performing the following steps:

x = λ�
x = 0

sin2(k x)dx = 1
k

z = kλ= 2π�
z = 0

sin2 z dz

= 1
k

2π�
0

1
2 [1 − cos 2z]dz = 1

2k

[
z − 1

2 sin 2z
]2π

0

= 1
2k

[
(2π − 1

2 sin 4π) − 0
] = λ

4π
2π = λ

2 (15.19)

where we have used z = k x, sin2 z = (1 − cos 2z)/2 and k = 2π/λ to arrive to the

above result. Of course, we get the same answer if we perform the above steps at any

other time different from zero. When we substitute the above result into Eq. 15.18,

we get:

Kλ = 1
4ρ Aω2s2

maxλ (15.20)

A similar analysis to the total potential energy Uλ in one wavelength will give exactly

the same result. Thus:

Uλ = 1
4ρ A ω2s2

max λ (15.21)

The total energy in one wavelength of the sound wave (Eλ) is the sum of the obtained

kinetic and potential energies. Thus:

Eλ = Kλ + Uλ = 1
2ρ A ω2s2

max λ (15.22)

As the sinusoidal sound wave travels along the tube, this amount of energy (Eλ) will

cross any given point in the tube during a time interval equal to one period of the

oscillation. Thus, the rate of energy (power) transferred by the sound wave through

the air is:

P= �E

�t
= Eλ

T

where we used the symbol P for the power in this section to avoid confusion with

the symbol P for pressure. Therefore:

P= 1
2ρ A ω2s2

max
λ

T
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Using the relation v = λ/T , given by Eq. 14.38, we finally reach the following

power form:

P= 1
2ρ A v ω2s2

max (15.23)

Thus, the power of a periodic sound wave is proportional to the square of the angular

frequency and the square of the displacement amplitude (as in the case of periodic

string waves).

For a wave crossing a particular surface, we define its intensity I as the power

per unit area, or the rate of energy transfer (power P) of the wave through a unit area

perpendicular to the direction of the propagation of the wave, i.e. I =P/A. Therefore:

I = P
A

⇒ I = 1
2ρvω2s2

max (15.24)

By using Eq. 15.13, �Pmax = ρvω smax, the last relation can be written in terms

of the pressure amplitude �Pmax as:

I = �P2
max

2ρv
(15.25)

On the other hand, we can express the pressure amplitude �Pmax in terms of the

measurable quantities ρ, v, and I as follows:

�Pmax = √
2ρvI (15.26)

In three dimensions, we consider a point source S emitting sound waves uniformly

in all directions as spherical waves, see Fig. 15.6. When we construct an imaginary

sphere of radius r centered at the sound source, the power emitted by this source

must be distributed uniformly over this spherical surface, which has an area 4πr2.

From the definition of the intensity, I =P/A, given by Eq. 15.24, the intensity I

at any point on the spherical surface will be given by:

I = P
4πr2 (15.27)

This equation is known as the inverse square law and tells us that the intensity of

sound waves emitted from an isotropic point source decreases with the square of the

distance r from the source, i.e. the intensity is inversely proportional to the square of

the distance r.
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λ
r

r

Point source S

S

r

(a) Three dimensional view (b) Cross sectional view

λ
λ

Fig. 15.6 (a) A point source S emitting sound waves uniformly in all directions with the waves passing

through an imaginary sphere of radius r. (b) A cross-sectional view showing the wavelength λ between

consecutive crests of the sound waves

Example 15.3

At a frequency of 1,000 Hz, the human ear can detect the loudest and faintest

sounds with intensities of about 1.0 W/m2 and 1.0 × 10−12 W/m2, respectively.

For sound waves traveling with a speed of v = 343 m/s, find the pressure ampli-

tude �Pmax for the faintest and the loudest sound waves, assuming the air’s density

is ρ = 1.21 kg/m3.

Solution: From Eq. 15.26, we can find the pressure amplitude �Pmax for the

loudest sound waves as follows:

�Pmax = √
2ρvI =

√
2(1.21 kg/m3)(343 m/s)(1 W/m2)

= 28.8 N/m2 = 28.8 Pa (Loudest; threshold of pain)

Also, from Eq. 15.26, we find the pressure amplitude �Pmax for the faintest

sound waves as follows:

�Pmax = √
2ρvI =

√
2(1.21 kg/m3)(343 m/s)(1 × 10−12 W/m2)

= 2.88 × 10−5 N/m2

= 2.88 × 10−5 Pa (Faintest; threshold of hearing)
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Example 15.4

A point source emits sound waves with a power of 50 W. (a) Find the intensity

of the sound waves 2 m away from the source. ( b) Find the distance at which the

intensity of the sound is 10−6 W/m2.

Solution: (a) The point source S shown in Fig. 15.7. emits energy in the form of

spherical sound waves centered at the source. Thus, when using Eq. 15.27 we find

that:

I = P
4πr2 = 50 W

4π(2 m)2 = 0.995 W/m2

which is close to the intensity of the threshold of pain, see Example 15.3.

(b) Expressing r in Eq. 15.27 in terms of P and I, we obtain:

r =
√
P

4π I
=

√
50 W

4π(10−6 W/m2)
= 1,995 m � 2 km

Fig. 15.7 I I

II

S(50W)

r = 2m

15.4 The Decibel Scale

According to Example 15.2, the displacement amplitude smax for the human ear

ranges from about 10−5 m for the loudest tolerable sound to about 10−11 m for

faintest detectable sound, a ratio of 106. From Eq. 15.24, we see that the intensity

I varies as the square of smax, so the ratio of intensities at these two limits of the

human audibility is 1012. This goes to show that the human ear can accommodate

an enormous range of intensities.

We can better represent large ranges of I by using logarithms. Now, consider the

following logarithmic relation of the base 10:
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y = log x

It is usual to suppress explicit references to the base 10 (such as log10 x) and instead

write log x. If x in this equation is multiplied by 10, then y increases by 1, i.e.:

y′ = log10 x = log 10 + log x = 1 + log x = 1 + y

Similarly, if we multiply x by 1012, y increases only by 12.

Consequently, instead of speaking of intensity I of a sound wave, it is much more

convenient to speak of its sound level β (Greek beta), defined by:

β = (10 dB)log
I

I◦
(15.28)

Here dB is the abbreviation for decibel, the unit of sound level, a name chosen to

recognize the work of Alexander Graham Bell. The constant I◦ in Eq. 15.28 is the ref-

erence intensity, taken to be near the threshold of hearing, i.e. I◦ = 1.0 × 10−12 W/m2.

The intensity I in the same equation is measured in watts per square meter.

On this scale, the threshold of hearing (I = 1.0 × 10−12 W/m2) corresponds to a

sound level of:

β = (10 dB)log
I

I◦
= (10 dB)log

1.0 × 10−12 W/m2

1.0 × 10−12 W/m2

= (10 dB)log1

= 0 dB (Threshold of hearing)

So our threshold of hearing level corresponds to zero decibel. Also, the threshold of

pain (I = 1.0 W/m2) corresponds to a sound level of:

β = (10 dB)log
I

I◦
= (10 dB)log

1.0 W/m2

1.0 × 10−12 W/m2

= (10 dB)log1012 = (10 dB)× 12

= 120 dB (Threshold of pain)

In general, β = 10 × n dB corresponds to an intensity that is 10n times the reference

intensity, i.e. corresponds to I = 10n I◦ = 10n−12 W/m2. Table 15.2 lists some sound-

level values for some environments.
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Table 15.2 Approximate sound levels (dB) for several sources

Source of sound β(dB) I(W/m2)

Threshold of hearing in human auditory system 0 10−12

Quiet rustling leaves, calm human breathing 10 10−11

Very calm room 20 10−10

Whispering 30 10−9

Mosquito buzzing 40 10−8

Normal talking (1 m distant) 50 10−7

TV set—typical home level, 1 m distant 60 10−6

Vacuum cleaner 70 10−5

Traffic noise for a main road, 10 m distant 80 10−4

Machine gun 90 10−3

Jack hammer, 1 m distant 100 10−2

Jet engine, 100 m distant 110 10−1

Threshold of pain in human auditory system 120 1

Example 15.5

(a) Find the sound level in decibels for a sound wave of intensity 1.59 × 10−5 W/m2.

(b) Find the sound intensity of a source rated at a 35 dB sound level.

Solution: (a) From Eq. 15.28, we find that:

β = (10 dB)log
I

I◦

= (10 dB)log
1.59 × 10−5 W/m2

1.0 × 10−12 W/m2

= (10 dB)log1.59 × 107

= 72 dB

(b) Substituting in Eq. 15.28 with β = 35 dB, dividing both sides by 10, and

taking the antilog of both sides, we can find I by performing the following steps:

β = (10 dB)log
I

I◦

35 dB = (10 dB)log
I

I◦

3.5 = log
I

I◦
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antilog(3.5)= antilog

(
log

I

I◦

)

103.5 = I

I◦

I = 103.5 × I◦

Thus, with the reference intensity I◦ = 1.0 × 10−12 W/m2, we find that:

I = 103.5 × 1.0 × 10−12 W/m2

= 3.16 × 10−9 W/m2

Example 15.6

Two identical point sources, S1 and S2, have the same power and driven by one

oscillator. The positions of the two sources relative to an observer is depicted in

Fig. 15.8. The sound intensity at the observer’s location from S2 is found to be

I2 = 3.0 × 10−6 W/m2. (a) Find the total intensity of the combined sound waves

that is received by the observer from the two sources. (b) Find the difference

in sound level when the two sources operate simultaneously and when only the

second source operates.

S1 S2

1
r 

2r 1= 2 r

Fig. 15.8

Solution: (a) If I1 and I2 are the intensities received by the observer from the point

sources S1 and S2, respectively, then their ratio will be:
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I1

I2
=

[
P

4πr2
1

] / [
P

4πr2
2

]
= r2

2

r2
1

= (2r1)
2

r2
1

= 4 ⇒ I1 = 4 I2

This means that the intensity I1 from S1 is four times the intensity I2 from S2.

Thus, the total intensity becomes:

Itot = I1 + I2 = 4I2 + I2 = 5I2 = 5(3.0 × 10−6 W/m2)= 1.5 × 10−5 W/m2

(b) If β2 is the sound level when only the second source operates and βtot is

the sound level when both sources operate together, then:

β2 = (10 dB)log
I2

I◦
and βtot = (10 dB)log

Itot

I◦
= (10 dB)log

5I2

I◦

Then: �β = βtot − β2 = (10 dB)log
5I2

I◦
− (10 dB)log

I2

I◦
= (10 dB)log

5I2

I2
= 7 dB

15.5 Hearing Response to Intensity and Frequency

The threshold of hearing in the human auditory system depends on the intensity of

the sound (or the sound level in dB) and its frequency. We learned in the previous

section that the threshold of hearing at 1,000 Hz requires an intensity of 10−12 W/m2

and corresponds to a sound level of 0 dB. Conversely, at 100 Hz sound must have an

intensity level of about 30 dB to be barely audible.

Figure 15.9 maps the sound regions that humans can respond to for a range of

sound levels β (or intensity I) and sound frequencies f. Tentatively, the figure also

overlays some sample sources. The lower blue curve of the white area shows the

dependence of the threshold of hearing β on the frequency. This curve indicates

that humans are sensitive to frequencies ranging from about 20 to 20,000 Hz. The

upper bound to the white area is the threshold of pain, and does not depend much on

frequency. The lower left region of the white area shows that our ears are particularly

insensitive to low frequencies and low intensity levels.

15.6 The Doppler Effect

We move to a different phenomenon that applies to all kinds of waves, not only sound

waves. You most probably have noticed that when a car moves toward you with a

high speed and horns, you hear the horn with a higher frequency than when the car



15.6 The Doppler Effect 515

is at rest. Contrary wise, when the car moves away, you hear the horn with a lower

frequency. This phenomenon is called the Doppler effect.
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Fig. 15.9 The dependence of the sound level β on the frequency f for normal human hearing (the white

area) and various sources

Let us now examine this phenomenon quantitatively. First, we consider a point

source that emits sound waves radially in all directions in a uniform medium. It is

useful to represent the emitted waves using a series of concentric spheres with the

source located at their centers. Each sphere represents a wave crest, and it moves

away from the source with the speed of sound. We call such a sphere of constant

phase a wave front. Therefore, the distance between any two successive wave fronts

equals the wavelength λ of the sound wave and has a frequency f and speed v. In

our analyses that follow, we restrict ourselves to the motion of a sound source S and

observer O along the line joining them.

Moving Observer and Stationary Source

Figure 15.10 shows an observer O (represented by an ear) moving with a speed vo

toward a stationary source S that emits spherical sound waves of speed v(v > vo),

wavelength λ, and frequency f. The frequency detected by the observer O is the rate

at which O intercepts successive wave fronts (or wavelengths).
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Fig. 15.10 A stationary

sound source S emits spherical

wave fronts (each is one

wavelength λ from the next)

with a speed v. An observer O

(represented by an ear) moves

with a speed vo towards the

source

λ

S

λ

O

oλ
o<Wave

fronts

If the observer O were stationary, the interception rate of wave fronts would be f.

But if the observer O is moving toward the source S, then the interception rate f ′ is

greater than f.

When the observer O moves with a speed vo toward a stationary source S, the

speed of the wave fronts relative to O is not v, but v′ = v + vo, while the wavelength

λ is unchanged. When we apply the general relation v = λ f to this case, i.e. v′ = λ f ′,
we find that the frequency f heard by the observer has the following relation:

f ′ = v′

λ
= v + vo

λ
= v + vo

v/f
(15.29)

This relation can be rewritten as:

f ′ =
(

1 + vo

v

)
f (O is moving towards S) (15.30)

When the observer O moves with a speed vo away from a stationary source S, the

speed of the wave fronts relative to O is not v, but v′ = v − vo, while the wavelength

λ is unchanged. Steps similar to those above lead to the frequency heard by the

observer as:

f ′ =
(

1 − vo

v

)
f (O is moving away from S) (15.31)

Generally, for an observer O moving with a speed vo relative to a stationary source

S, a positive sign is used when O moves toward S and a negative sign is used when

O moves away from S. Thus:

f ′ =
(

1 ± vo

v

)
f

{
+ when O is moving towards S

− when O is moving away from S

}
(15.32)
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Moving Source and Stationary Observer

Figure 15.11 shows a source S moving with a speed vS toward an observer O while

emitting spherical sound waves of speed v,wavelength λ, and frequency f. The figure

indicates that the wave fronts detected by the observer O are closer together than they

would be if the source S was not moving. Thus, the wavelength λ′ measured by the

observer O is shorter than the wavelength λ of the source S.

Fig. 15.11 A moving sound

source S emits spherical wave

fronts with a speed v and

wavelength λ, while moving

with a speed vS < v towards a

stationary observer O. The

wave front W1 that arises from

the source when it was at point

S1. . ., etc is shown

S1
O

s

S2 S3

λ'W1 W2 W3

S

During a period T, the source S emits a wave front that moves a distance λ with a

speed v, while the source itself moves a distance vS T before emitting the next wave

front. Thus, the wavelength λ is shortened by vS T . Then, the observed wavelength

λ′ will be:

λ′ = λ − vS T = v

f
− vS

f
(15.33)

Using v = λ f in this case, i.e. v = λ′f ′, we find that the frequency f ′ that is heard by

the observer O is related to f as follows:

v

f ′ = v

f
− vS

f
= 1

f
(v − vS) (15.34)

This relation can be rewritten as:

f ′ =
(

1

1 − vS/v

)
f (S is moving towards O) (15.35)

When the source S is moving with a speed vS away from a stationary observer O,

the wavelength λ is increased by vS T . Therefore, the observed wavelength λ′ will

be given by:
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λ′ = λ + vS T = v

f
+ vS

f
(15.36)

With similar steps to those of Eqs. 15.33–15.35, we get:

f ′ =
(

1

1 + vS/v

)
f (S is moving away from O) (15.37)

Generally, for a source S moving with a speed vS relative to a stationary observer

O, a negative sign is used when S moves toward O and a positive sign is used when

S moves away from O. Thus:

f ′ =
(

1

1 ∓ vS/v

)
f

{
− when S is moving towards O

+ when S is moving away from O

}
(15.38)

One can find a generalized relation that includes all collinear motion of a source

with speed vS and an observer with speed vo to be:

f ′ =
(

1 ± vo/v

1 ∓ vS/v

)
f (General Doppler effect) (15.39)

The upper signs in the numerator and denominator (+vo/v and −vS/v) refer to

motion of one toward the other, while the lower signs (−vo/v and +vS/v) refer to

motion of one away from the other.

Spotlight

You can determine the signs in Eq. 15.39 by remembering that: the word toward

is associated with an increase in observed frequency, while the word away from

is associated with a decrease in observed frequency.

Example 15.7

A car moves on a straight road with a speed of 20 m/s. Its siren emits a sound

with a frequency of 500 Hz. Find the frequencies heard by a stationary person on

the sidewalk when the car approaches him (Fig. 15.12a) and then when it recedes

from him (Fig. 15.12b). Assume collinear motion of the source and observer.

Solution: When the car approaches the observer, we use the upper signs in the

numerator and denominator of the general formula of Doppler effect given by

Eq. 15.39. In this formula, we take vo = 0 for the stationary observer, vS = 20 m/s
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for the speed of the car, v = 343 m/s for the speed of sound in air, and f = 500 Hz

for the siren frequency. Thus, the frequency f ′ heard by the observer will be:

f ′ =
(

1 + vo/v

1 − vS/v

)
f =

(
1 + 0

1 − (20 m/s)/(343 m/s)

)
× 500 Hz

= 531 Hz

f
f

f
f

s s

(a) (b)

Fig. 15.12

When the car recedes from the observer, we use the lower signs in the numerator

and denominator of Eq. 15.39. Thus:

f ′′ =
(

1 − vo/v

1 + vS/v

)
f =

(
1 − 0

1 + (20 m/s)/(343 m/s)

)
× 500 Hz

= 473 Hz

The change in frequency detected by the stationary observer is:

�f = f ′ − f ′′ = 531 Hz − 473 Hz = 58 Hz

This is about 8.6% of the actual frequency emitted from the siren.

Example 15.8

Submarines use sound propagation under water to navigate, communicate, or

detect other objects; this technique is known as sonar (SOund NAvigation and

Ranging). A submarine 1 (sub 1) moves with a speed v1 = 10 m/s and emits a

sonar wave of frequency f = 1,500 Hz. A second submarine 2 (sub 2) moves

directly towards the first one with a speed v2 = 8 m/s. See Fig. 15.13, and take

the speed of sound in water to be 1,533 m/s. (a) Find the frequency detected by

an observer in sub 2. (b) Find the reflected frequency detected by an observer

in sub 1. (c) Find the frequency detected by an observer in sub 2 when the two

submarines miss each other and pass.
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1 2

f f ′

Emitted waves

Reflected waves

1 2

Fig. 15.13

Solution: (a) When the submarines move toward each other, we use the upper

signs in the numerator and denominator of Eq. 15.39. Then we take:

vo = v2 = 8 m/s for observer (sub 2)

vS = v1 = 10 m/s for the speed of the source (sub 1)

v = 1,533 m/s for the speed of sound in water,

f = 1,500 Hz for the emitted frequency from the source (sub 1)

Thus, the frequency f ′ received by an observer in sub 2 will be:

f ′ =
(

1 + vo/v

1 − vS/v

)
f

=
(

1 + (8 m/s)/(1,533 m/s)

1 − (10 m/s)/(1,533 m/s)

)
× 1,500 Hz = 1,518 Hz

(b) The frequency calculated in part (a) will be reflected from sub 2 (which

acts as a moving source) and then be detected by sub 1 (the moving observer). In

this case we take:

vo = v1 = 10 m/s for observer (sub 1)

vS = v2 = 8 m/s for the speed of the source (sub 2)

v = 1,533 m/s for the speed of sound in water,

f ′ = 1,518 Hz for the emitted frequency from the source (sub 2)

Thus, the frequency f ′′ received by an observer in sub 1 will be:

f ′′ =
(

1 + vo/v

1 − vS/v

)
f ′ =

(
1 + (10 m/s)/(1,533 m/s)

1 − (8 m/s)/(1,533 m/s)

)
× 1,518 Hz = 1,536 Hz

(c) When the submarines move away from each other, we use the lower signs

in the numerator and denominator of Eq. 15.39. All the parameters used in this
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equation will be identical to the one in part (a). Thus, the frequency f ′ received

by an observer in sub 2 will be:

f ′ =
(

1 − vo/v

1 + vS/v

)
f =

(
1 − (8 m/s)/(1,533 m/s)

1 + (10 m/s)/(1,533 m/s)

)
× 1,500 Hz = 1,483 Hz

15.7 Supersonic Speeds and Shock Waves

When a source moves toward a stationary object with a speed equal to the speed

of sound, i.e. when vo = 0 and vS = v, Eq. 15.39 predicts that f ′ = (1 + 0)/(1 −
1)f = ∞, which means that f ′ will be infinitely great. This also means that the source

is moving as fast as its generated spherical wave fronts, as suggested by Fig. 15.14.

Then the gas molecules pile up at what is called the shock front.

Fig. 15.14 A source of sound

that moves at the speed of

sound

Now what happens when vS exceeds v? For such supersonic speeds, Eq. 15.39

predicts a negative f ′ and hence no longer applies. In such case, the speed of the

source is faster than the speed of the wave fronts as shown in Fig. 15.15 for various

source positions.

At t = 0, the source is at point S0 and at a later time t, the source is at point St, see

Fig. 15.15. At that instant, the radius of the wave front W0 which originated when

the source was at point S0 is vt. In the same time interval, the source travels a greater

distance vS t to the point St . The radius of any wave front is v multiplied by the

elapsed time since the source emitted the wave front. The tangent line drawn from

point St to the wave front centered at point S0 is the tangent of all other wave fronts

generated at intermediate times. The envelope to all of these wave fronts is a cone

called the Mach cone. This conical wave front is known as a shock wave because it is

the accumulation of all wave fronts and hence is causing an abrupt increase followed
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by a decrease of air pressure and then back to normal. The loud sound produced by

this shock wave is known as a sonic boom.

S0

s

W0

St

t

s t

s >

Conical shock front

θ

Conical shock front

Mack cone

shock

shock

Fig. 15.15 A source of sound that moves with a speed vS greater than the speed of sound v. All the

spherical wave fronts expand at the speed of sound v and assemble along the surface of a cone called the

Mach cone, forming a shock wave

The Mach cone has an apex half-angle θ (called the Mach angle):

sin θ = vt

vS t
= v

vS
(Mach cone half-angle) (15.40)

The ratio vS/v is called the Mach number. When you hear that a jet plane has flown

at Mach 3, it means that its speed vS was 3 times the speed of sound (v = 343 m/s).

With this supersonic speed, the jet plane generates a shock wave which produces a

loud sound (sonic boom).

Example 15.9

A supersonic jet travels horizontally at Mach 2.5. At time t = 0, the jet is over a

person’s head at an altitude h = 10 km. (a) Where will the jet be before the ground

observer hears the boom of the shock wave? (b) How long will the person wait

before hearing that boom?

Solution: Figure 15.16 shows a sketch of the Mach cone at time t = 0, when the

jet is just above the person’s head. In addition, the figure shows the instant at time

t when the person hears the sonic boom.
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shock wave 

Fig. 15.16

(a) The half-angle of the shock wave cone can be obtained as follows:

sin θ = v

vS
= 1

2.5
= 0.4 ⇒ θ = sin−1 0.4 � 23.6◦

From the figure’s geometry, we can find the distance x as follows:

tan θ = h

x
⇒ x = h

tan θ
= 10,000 m

tan 23.6 ◦ = 22,889 m = 22.9 km

(b) The time the person will wait before hearing the sonic boom is:

t = x

vS
= x

2.5v
= 22,889 m

2.5 × (343 m/s)
= 26.7 s

15.8 Exercises

Section 15.1 Speed of Sound Waves

(1) Find the speed of sound in air when the temperature is 35 ◦C.

(2) The bulk modulus B and density ρ of mercury at 40 ◦C are 2.4 × 109 Pa and

13.45 × 103 kg/m3, respectively. Calculate the speed of sound in mercury at

this temperature.

(3) Find the speed of sound in a steel rod that has a Yang’s modulus Y = 2 ×
1011 N/m2 and density ρ = 7.8 × 103 kg/m3.

(4) A steel rod that has a Yang’s modulus Y = 2 × 1011 N/m2, density ρ = 7.8 ×
103 kg/m3, and length L = 100 m is struck at one end. A person at the other

end hears two sounds as a result of the propagation of two longitudinal waves,

one that traveled through the rod and the other that traveled through the air at

20 ◦C. What is the time interval between the two sounds?

(5) The speed of a longitudinal wave in an adiabatic process is written as

v = √
Bad/ρ, where Bad = −V dP/dV as given by Eq. 10.14. In the case of
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an ideal gas, the relation between the pressure P and volume V during an adi-

abatic process is given by PV γ = constant, where γ is the ratio of the heat

capacity at constant pressure to the heat capacity at constant volume. (a) Show

that Bad = γ P for an ideal gas. (b) Show that the speed of a longitudinal wave

in the adiabatic process of an ideal gas is given by v =√
γ RT/M, where R is

the universal gas constant, T is the Kelvin temperature, and M is the molecular

mass of the gas.

(6) Hydrogen is a diatomic gas with molecular mass M = 2 kg/kmol and γ = 1.41.

Find the speed of sound in hydrogen gas at 27 ◦C.

(7) The auto-focusing mechanism of old cameras used to depend on the camera

sending a high frequency ultrasonic sound pulse toward the object being pho-

tographed. The camera would calculate the time that the pulse would take from

the moment it left the camera to the moment it was detected by the camera’s

sensor. Based on the travel time of such a pulse, the camera would adjust its

lens automatically. If the speed of sound in air is 343 m/s, find the travel time

of a pulse for an object: (a) 1.5 m away, and (b) 5 m away.

(8) A fishing boat emits an ultrasonic pulse vertically toward the sea bed. Then

pulse is received 1.5 s after being reflected from the ocean floor. If the speed

of sound in sea water is 1,560 m/s, how far down is the ocean floor from the

boat’s location?

(9) On a warm summer day (32.3 ◦C), a boy drops a stone from the top of a cliff.

Using his stopwatch, he finds that it took 20.9 s from the moment he dropped

that stone until the moment he hears the sound of the splash that the stone

makes with the surface of the water below. Take g = 9.8 m/s2. How high is the

cliff?

Section 15.2 Periodic Sound Waves

(10) The pressure variation in a periodic sound wave is given by:

�P = (2 Pa) sin π [(2 m−1)x − (686 s−1)t]

(a) Find the pressure-variation amplitude. (b) Find the wavelength and fre-

quency of the pressure wave. (c) Find the speed of the pressure wave.

(11) A sinusoidal sound wave has the following displacement:

s(x, t)= (4 µm) cos[(20 m−1)x − (6860 s−1)t]
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(a) Find the displacement amplitude, wavelength, frequency, and speed of the

wave. (b) Find the value of the displacement of an element of air at the position

x = 2 mm at time t = 2 ms. (c) Find the maximum speed of this oscillating

element.

(12) In homogenous air of density ρ = 1.21 kg/m3 a sinusoidal periodic sound

wave has a wavelength λ = 0.2 m, speed v = 343 m/s, and pressure-variation

amplitude �Pmax = 0.5 Pa. (a) Show that the function that describes the

pressure-variation depends on position x and time t according to the following

expression:

�P = (0.5 Pa) sin π [(10 m−1)x − (3,430 s−1)t]

(b) Show that the function that describes the displacement of an element of air

is governed in position and time by the following expression:

s(x, t)= (0.112 µm) cos π [(10 m−1)x − (3,430 s−1)t]

(13) To generate a sound wave of speed v = 343 m/s and displacement amplitude

smax = 5.5 µm in air of density ρ = 1.2 kg/m3, one finds that the pressure-

variation amplitude �Pmax has to be limited to a maximum value of 0.84 Pa.

What is the minimum wavelength that the sound wave can have?

Section 15.3 Energy, Power, and Intensity of Sound Waves

(14) Figure 15.17 depicts a very long open tube of area A = 5 × 10−3 m2 that was

filled at normal atmospheric pressure with air that has a density ρ = 1.2 kg/m3.

When the piston is driven at a frequency of 500 Hz and amplitude of 0.15 cm,

a sinusoidal sound wave with a speed v = 343 m/s is maintained in the tube.

What power must be supplied by the piston to produce this sound wave?

Compression Expansion
Cross
sectional
area A

Oscillating piston
with frequency f

λ

Fig. 15.17 See Exercise (14)

(15) A sound source vibrates at 1 kHz and produces sound waves of intensity

0.5 W/m2 at a fixed point in space. (a) Find the intensity at this point if



526 15 Sound Waves

the frequency is doubled while the displacement amplitude is kept constant.

(b) Find the intensity at this point if the frequency is halved while the displace-

ment amplitude is tripled.

(16) A loudspeaker emits a sound intensity of 100 µW/m2 in a circular tube of radius

r = 7.5 cm. How much power is being radiated as sound by the loudspeaker?

(17) Sound waves propagate with the same intensity I and angular frequency ω in:

(1) air of density ρa = 1.29 kg/m3 with a speed va = 331 m/s and, (2) water of

density ρw = 1,000 kg/m3 with a speed vw = 1,493 m/s. Find the following for

the two media: (a) the ratio of the values of the wavelength, (b) the ratio of

the values of the displacement amplitude, and (c) the ratio of the values of the

pressure-variation amplitude. (d) When I = 10−6 W/m2 and ω = 2,000π rad/s,

evaluate the wavelength, displacement amplitude, and the pressure variation

amplitude in each medium.

(18) The area of human eardrum is about A = 5 × 10−5 m2. The intensity of sound

at the threshold of hearing is I = 10−12 W/m2 and at the threshold of pain is

I = 1 W/m2. Find the sound power incident on the eardrum at both thresholds.

Section 15.4 The Decibel Scale

(19) When the human auditory system experiences a sound intensity of 1.2 W/m2

it results in pain. Represent this amount in decibels.

(20) When a person speaks loudly, the sound level produced is 70 dB. When that

person speaks normally, the sound level generated is at 40 dB. Find the ratio

of the intensities of the two sounds.

(21) Two students argue loudly at sound levels of 80 dB and 78 dB. (a) Find the

sound intensities for the individual students. (b) Find the combined sound level

when the students argue simultaneously.

(22) (a) Show that doubling the intensity of sound will increase its level by 3 dB.

(b) Show that halving the intensity of sound will decrease its level by 3 dB.

(23) One stereo amplifier is rated at 80 W and another is rated at 120 W. If the

intensity of the sound produced at the maximum level of the first amplifier is

taken as a reference, how much louder in dB will the second amplifier be at the

maximum level?

(24) An engineer standing in front of an airplane with its four engines running

experiences a sound level of 135 dB. What sound level would the engineer
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experience if the pilot shut down: (a) only one engine, and (b) only two engines,

and (c) only three engines?

(25) The amplitude of a sound wave is increased by a factor of 2.25. (a) By what

factor will the intensity increase? (b) By how many dB will the sound level

increase?

(26) Two identical point sources, S1 and S2, are located from an observer as shown

in Fig. 15.18. They are emitting sound waves with the same power from the

same oscillator. The sound intensity at the observer’s location from S2 is

I2 = 4.0 × 10−6 W/m2. (a) Find the total intensity of sound waves that is

received by the observer from the two sources. (b) Find βtot − β2, which

is the difference in the sound level when the two sources operate together

and when the second source operates by itself. (c) Show that β1 − β2 =
(20 dB)log(r2/r1)= 9.54 dB.

S1 S2

2r 1= 3 r1r 

Fig. 15.18 See Exercise (26)

Section 15.5 Hearing Response to Intensity and Frequency

(27) What is the ratio of highest to lowest intensity that our auditory system can

accommodate at: (a) 100 Hz, and (b) 1,000 Hz? (Use Fig. 15.9)

(28) What are the lowest and highest frequencies that our auditory system can detect

if the sound level for normal talking is 50 dB? (Use Fig. 15.9)

Section 15.6 The Doppler Effect

(29) A source emits a 2.5 kHz sound wave. If this source moves toward you at 20 m/s

while you stay still, will the observed frequency be the same as if you moved

toward the source at 20 m/s while it stays still?
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(30) While at rest, a bat sends out ultrasonic sound at 45 kHz. What is the bat’s

received sound frequency if that sound wave strikes a mouse running away

with a speed of 20 m/s?

(31) While a bat is flying toward a wall at a speed of 5 m/s, it emits an ultrasonic

sound of 35 kHz. What frequency does the bat receive from the reflected wave?

(32) A man holding an oscillating tuning fork with a frequency f = 200 Hz, runs

toward a wall with a speed vm = 5 m/s, see Fig. 15.19. The speed of sound in air

is 343 m/s. (a) What frequency difference does he observe between the tuning

fork and its echo? (b) How fast must he run away from the wall to observe a

difference in frequency equal to 5 Hz?

Fig. 15.19 See Exercise (32)

f

m

Wall

(33) An observer hears a frequency of 530 Hz from the siren of an approaching train;

see part (a) of Fig. 15.20. After the train passes, the observer nearly in the path

of the train hears a frequency of 470 Hz, see part (b) of Fig. 15.20. The speed

of sound is 343 m/s. Find the train’s speed.

Fig. 15.20 See Exercise (33)

(34) A school bus moving with a speed vb = 15 m/s generates a whistling sound at a

frequency fb = 300 Hz, see Fig. 15.21. A truck approaches the bus with a speed

vt = 30 m/s while its engine rumbles at a frequency ft = 500 Hz. The speed of

sound in air is 343 m/s. Assume approximately collinear paths. (a) What is

the frequency detected by the driver in the truck? (b) What is the frequency

detected by an observer in the bus? (c) After the truck passes the bus, what is

the frequency detected by an observer in the bus?



15.8 Exercises 529

(35) Two trams, A and B have identical sirens of frequency 500 Hz. Tram A is

stationary and Tram B is moving towards the right, away from A at a speed

of vB = 35 m/s. An observer between the two sirens moves towards the right

with a speed vo = 20 m/s, see Fig. 15.22. Assume the speed of sound in air to

be 340 m/s. (a) With what frequency does the observer hear the siren emitted

from tram A? (b) With what frequency does the observer hear the siren emitted

from tram B? (c) What is the difference in frequency heard by the observer?

t

b

f
b

f
t

Fig. 15.21 See Exercise (34)

o
Bf f

BA

Fig. 15.22 See Exercise (35)

(36) A siren on the top of a stationary fire engine emits sound in all directions at a

frequency f = 900 Hz. Assume that the speed of sound in calm air is 343 m/s

and that a steady wind is blowing towards the East with a speed of 15 m/s. (a)

Find the wavelength of the sound East of the siren. (b) Find the wavelength of

the sound West of the siren. (c) Find the frequency of the sound heard when a

firefighter approaches the siren with a speed of 15 m/s while walking against the

wind. (d) Find the frequency of the sound heard when a firefighter approaches

the siren with a speed of 15 m/s while walking with the wind.

Section 15.7 Supersonic Speeds and Shock Waves

(37) The Concorde could fly at Mach 1.5. The speed of sound is 340 m/s. (a) What

does Mach 1.5 means? (b) What is the angle between the direction of the

propagation of the shock wave front and the direction of the plane’s velocity?
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(38) A supersonic jet is traveling horizontally at Mach 3. At t = 0, the jet is over

a person’s head at an altitude h = 15 km, see the left part of the sketch in

Fig. 15.23. (a) Where will the jet be before the person hears the boom of the

shock wave, see the right part of the sketch in Fig. 15.23? (b) How long will

the person wait before hearing that boom?

s

shock wave

θ

shock

h

t = 0
x

s

θ

shock 

h

At time t

shock wave

Fig. 15.23 See Exercise (38)

(39) A jet plane travels at Mach 2.5. The speed of sound is 320 m/s. (a) Find the

angle of the shock wave compared to the direction of the jet’s motion. (b) If the

jet is flying h = 6 km vertically above a person on the ground, how long will it

take for that person to hear the shock wave?

(40) A supersonic rocket travels at a constant speed of 1,190 m/s in a direction

making an angle φ with the horizontal, see the sketch in Fig. 15.24. As the

rocket gains altitude, an observer on the ground hears for the first time the

boom of the shock wave when the rocket is directly above him. Assume the

speed of sound in air to be 340 m/s. (a) Find the angle φ. (b) If the rocket is

above the person at an altitude h = 10 km, find the time of flight. (c) Find the

horizontal displacement of the rocket.

s

shock wave
front 

vshock shock wave 
front

shock 

φ

Fig. 15.24 See Exercise (40)
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In this chapter, we explore the phenomenon that occurs when combining two or more

waves at one point in the same medium. This phenomenon is known as interference.

We first combine waves having the same frequencies. Then we combine waves that

have slightly different frequencies. In both cases we only consider waves with small

amplitudes so that we can use the superposition principle.

16.1 Superposition and Interference

To analyze complex combinations of traveling waves where each wave has a small

amplitude, we use the superposition principle:

The Superposition Principle

If y1 and y2 are two traveling waves produced separately by two sources, then

the resultant wave y at any point is the algebraic sum y1 + y2 when the two

sources act together.

This principle is extremely important in all types of wave motion and applies not

only to sound waves, but to string waves, light waves, and, in fact, to wave motion

of any sort.

The general term interference is applied to the effect produced by two (or more)

traveling waves when they are simultaneously passing through a given region. When

the resultant wave has larger amplitude than that of either individual wave, we refer

to their superposition as constructive interference. However, when the resultant

H. A. Radi and J. O. Rasmussen, Principles of Physics, 531
Undergraduate Lecture Notes in Physics, DOI: 10.1007/978-3-642-23026-4_16,
© Springer-Verlag Berlin Heidelberg 2013
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wave has smaller amplitude than that of either individual wave, we refer to their

superposition as destructive interference.

Superposition of Sinusoidal Waves

Let us apply the principle of superposition to two sinusoidal waves traveling to

the right in a homogeneous medium and having a different phase φ but the same

frequency f, wavelength λ, and amplitude A. Accordingly, we write their individual

waves as follows:

y1 = A sin(kx − ω t),

y2 = A sin(kx − ω t + φ)
(16.1)

where, as usual, k = 2π/λ, ω = 2π f , and φ is the phase constant. The superposition

of y1 and y2 gives the following resultant:

y = y1 + y2 = A [sin(kx − ω t) + sin(kx − ω t + φ)] (16.2)

To simplify the previous expression, we use the trigonometric identity:

sin a + sin b = 2 cos

(
a − b

2

)
sin

(
a +b

2

)
(16.3)

If we substitute in this identity with a = kx−ω t and b = kx−ω t+φ, then a−b = −φ

and a + b = 2kx − 2ω t + φ. Accordingly, we will find that the resultant wave y is

reduced to:

y = 2A cos

(
φ

2

)
sin

(
kx − ω t + φ

2

)
(16.4)

The resultant wave y has the following important characteristics:

(1) It is a sinusoidal wave and has the same frequency f and wavelength λ as any

one of the contributing waves y1 and y2,

(2) It has an amplitude of 2A cos(φ/2),

(3) It has a phase of φ/2.

Now, let us consider the following three cases:

(a) If φ = 0, then cos(φ/2)= +1 and the amplitude of y is +2 A, i.e. twice the

amplitude of either one of the individual waves. In this case, the waves are

said to be in phase and thus interfere constructively, see Fig. 16.1a. In general,
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constructive interference occurs if the phase φ is an even multiple of π, i.e.

φ = 0, 2π, 4π, . . . rad, then cos(φ/2)= ±1.

(b) If φ is an odd multiple of π, i.e. φ = π, 3π, 5π, . . . rad, then cos(φ/2)= 0,

and the crests of one wave occur at the same positions as the troughs of the

second wave to produce a resultant amplitude of zero. In this case, the waves

are canceling each other out and are said to be out of phase and thus interfere

destructively, see Fig. 16.1b.

(c) If φ has an arbitrary value other than an odd or even multiple of π, then the

resultant wave has an amplitude between 0 and 2 A, see Fig. 16.1c.

and  are identical

(b)(a)

(c)

1y 2yyy
y1y 2y

180φ = °0φ = °

60φ = °

y

1y 2y

y

y

x

xx

0

00

Fig. 16.1 Two identical waves, y1 (blue) and y2 (green), traveling in the same direction are added to

each other at time t = 0 to give a resultant wave y (red). (a) When y1 and y2 are in phase (φ = 0), they

undergo constructive interference with a resultant wave y = y1 + y2 that has double the amplitude of

either one of y1 or y2. (b) When y1 and y2 are out of phase (φ = π rad = 180◦), they undergo destructive

interference with a resultant wave y = y1 + y2 = 0, i.e. they cancel each other out. (c) When the phase

is different from 0 or π rad, the resultant wave y falls somewhere between part (a) and part (b)

16.2 Spatial Interference of Sound Waves

Figure 16.2 depicts an acoustic interferometer device used to demonstrate sound

interference. Sound energy from the source S is divided into two equal parts at the
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T-shaped junction of the tube. This means that the sound wave that reached the

receiver R traveled along either path A or path B. The distance along any path is

called the path length L. The upper path length LA is adjusted by a U-shaped tube,

while the lower path length LB is kept fixed.

Path A

Path B

Sliding
 tube

S R

BL

AL

Fig. 16.2 A device used to demonstrate the interference of sound waves. Sound energy from the speaker

(S) is divided into two parts at the T-shaped junction of the tube. Before reaching the receiver (R), half of

the wave energy propagates through path A of length LA, while the other half propagates through path B

of length LB. The upper path length LA can be varied by sliding the U-tube up or down

Constructive interference occurs when the difference in the path length

�L = |LA − LB| is given by:

�L = |LA − LB| = (2n)
λ

2
, n = 0, 1, 2, . . .

{
Constructive

interference

}
(16.5)

Therefore, the two waves reaching the receiver at any time are in phase (φ = 0,

2π, 4π, . . . rad), as shown in Fig. 16.1a, and hence a maximum sound intensity is

detected at the receiver R.

Destructive interference occurs when the difference in the path length

�L = |LA − LB| is given by:

�L = |LA − LB| = (2n + 1)
λ

2
, n = 0, 1, 2, . . .

{
Destructive

interference

}
(16.6)

Therefore, the two waves reaching the receiver at any time are completely out of phase

(φ = π, 3π, 5π, . . . rad), as shown in Fig. 16.1b, and hence no sound is detected at

the receiver R.
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Because a path difference of a complete wave length λ corresponds to a phase

angle of 2π rad, one can relate path difference �L to the phase angle φ by the

relation:

�L = φ

2π
λ (16.7)

Example 16.1

Two identical speakers, S1 and S2, are placed horizontally at a distance d = 2 m

apart. Each emits sound waves of wavelength λ = 80 cm driven by the same oscil-

lator, see Fig. 16.3. A listener is originally located at point O, which is midway

between the two speakers. The listener walks to point P, which is a distance x

from O, and reaches the first minimum in sound intensity. Find x.

O
. .x

P
S2 S1

d / 2 d / 2

Fig. 16.3

Solution: If L1 and L2 are the distances from S1 and S2 to point P, respectively,

then according to Fig. 16.3 we have:

L1 = d

2
− x, L2 = d

2
+ x

From these two relations and Eq. 16.6, the condition for the first destructive inter-

ference at point P leads to the following:

|L2−L1| = λ

2
⇒

∣∣∣∣
[

d

2
+ x

]
−

[
d

2
− x

]∣∣∣∣ = λ

2
⇒ x = λ

4
= 80 cm

4
= 20 cm

Example 16.2

Two identical speakers, S1 and S2, are placed vertically at a distance d = 2 m apart

and emit sound waves driven by the same oscillator, see Fig. 16.4. A listener is
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originally located at point O, which is a distance R = 5 m from the center of the

line connecting the two speakers. The listener walks to point P, which is a distance

y = 0.5 m above O, and thus reaches the first minimum in sound intensity. Find

the wavelength λ of the sound wave.

R

O

.

.L1

L2

y

Pd / 2 - y

d / 2 + y
d / 2

d / 2

S1

S2

Fig. 16.4

Solution: The first minimum in sound intensity occurs when the two waves reach-

ing the listener at point P are 180◦ out of phase. In other words, when their path

difference equals λ/2. As per Fig. 16.4, we first calculate the path lengths L1 and

L2 as follows:

L1 =
√

R2 + (d/2 − y)2 =
√

(5 m)2 + [(2 m)/2 − 0.5 m]2 = 5.0249 m

and

L2 =
√

R2 + (d/2 + y)2 =
√

(5 m)2 + [(2 m)/2 + 0.5 m]2 = 5.2202 m

Thus, from Eq. 16.6, the first destructive interference at point P leads to the fol-

lowing:

|L2 − L1| = λ

2
⇒ |5.2202 m − 5.0249 m| = λ/2 ⇒ 0.1953 m = λ/2

Therefore:

λ = 0.3906 m = 39.06 cm
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16.3 Standing Sound Waves

Assume we have two identical sound sources that face each other as shown in Fig. 16.5

and driven by the same oscillator. In this case, they produce two identical traveling

waves each with a speed v. These waves would be moving in opposite directions in the

same medium. Of course, these two waves combine according to the superposition

principle.

Fig. 16.5 Two identical sound sources emitting traveling waves towards each other, each with a

speed v. When the two waves overlap, they produce standing waves (not shown in the figure)

To analyze this situation, we assume that the two sound sources generate sound

waves that have the same frequency f, wavelength λ, and amplitude A but differ

by traveling in opposite directions. Therefore, we can write these two waves in the

following form:

y1 = A sin(kx − ω t),

y2 = A sin(kx + ω t)
(16.8)

where y1 represents a wave traveling in the positive x-direction and y2 represents a

wave traveling in the negative x-direction. The superposition of y1 and y2 gives the

following resultant:

y = y1 + y2 = A [sin(kx − ω t) + sin(kx + ω t)] (16.9)

To simplify this expression, we use the trigonometric identity:

sin(a ± b) = sin a cos b ± cos a sin b (16.10)

If we substitute in this identity with a = k x and b = ω t, then the resultant wave y

reduces to:

y = (2 A sin kx) cos ω t (16.11)
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The resultant y represented by Eq. 16.11 gives a special kind of simple harmonic

motion in which every element of the medium oscillates in simple harmonic motion

with the same angular frequency ω (through the factor cos ω t) and an amplitude

(given by the factor 2 A sin kx) that varies with position x. This wave is called a

standing wave because there is no motion of the disturbance along the x-direction.

A standing wave is distinguished by stationary positions with zero amplitudes

called nodes (see Fig. 16.6). This happens when x satisfies the condition sin kx = 0,

that is, when:

kx = 0, π, 2π, 3π, . . .

When using k = 2π/λ, these values give x = 0,
λ

2
, λ,

3λ

2
, . . . , that is:

x = 0,
λ

2
, λ,

3λ

2
, . . . = n

λ

2
, (n = 0, 1, 2, . . .) (Nodes) (16.12)

In addition, a standing wave is distinguished by elements with greatest possible

displacements called antinodes (see Fig. 16.6). This happens when x satisfies the

condition sin kx =±1, that is, when:

kx = π

2
,

3π

2
,

5π

2
, . . .

Also, using k = 2π/λ, these values give x = λ

4
,

3λ

4
,

5λ

4
, . . . , that is:

x = λ

4
,

3λ

4
,

5λ

4
, . . . = (n + 1

2 )
λ

2
, (n = 0, 1, 2, . . .) (Antinodes) (16.13)

Equations 16.12 and 16.13 indicate the following general features of nodes and

antinodes (see Fig. 16.6):

Soptlight

(1) The distance between adjacent nodes is λ/2.

(2) The distance between adjacent antinodes is λ/2.

(3) The distance between a node and an adjacent antinode is λ/4.
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x

y

o

2 A sin k x

Antinode=A

Node=N
N

A

N N N

A A A

... .. . .. .
When t= 0

When t= p/2

When t= p N

λ

Fig. 16.6 The time dependence of the vertical displacement (from equilibrium) of any individual element

in a standing wave y is governed by cos ω t. Each element vibrates within the confines of the envelope

2 A sin kx. The nodes (N) are points of zero displacement, and the antinodes (A) are points of maximum

displacement

In Fig. 16.7a, at t = 0 (ω t = 0), the two oppositely traveling waves are in phase,

producing a wave pattern in which each element of the medium is experiencing its

maximum displacement from equilibrium. In Fig. 16.7b, at t = T/4 (ω t = π/2), the

traveling waves have moved one quarter of a wavelength (one to the right and the

other to the left). At this time, each element of the medium is passing through the

equilibrium position in its simple harmonic motion. The result is zero displacement

for each element at all values of x. In Fig. 16.7c, at t = T/2 (ω t = π), the traveling

waves are again in phase, producing a wave pattern that is inverted relative to the

t = 0 pattern. The patterns at t = 3T/4 and t = T are similar to t = T/4 and t = 0,

respectively.

x
N

A

N N N

A

AA

N
x

NN N N N
. . . . . x

N
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N N N

A

AA

N

(a) t = 0 (b) t = T / 4 (c) t = T / 2
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Fig. 16.7 Standing-wave patterns resulting from two oppositely traveling identical waves y1 and y2 at

different phases. The displacement is zero for each node (N), and is maximum for each antinode (A)
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Example 16.3

Two opposing speakers are shown in Fig. 16.8. A standing wave is produced

from two sound waves traveling in opposite directions; each can be described as

follows:

y1 = (5 cm) sin(4x − 2 t),

y2 = (5 cm) sin(4x + 2 t).

where x and y, are in centimeters and t is in seconds. (a) What is the amplitude of

the simple harmonic motion of a medium element lying between the two speakers

at x = 2.5 cm? (b) Find the amplitude of the nodes and antinodes. (c) What is the

maximum amplitude of an element at an antinode?

Fig. 16.8 Standing wave SpeakerSpeaker

x0

Solution: (a) Using the general form of a standing wave given by Eq. 16.11, we

find A = 5 cm, k = 4 rad/cm, and ω = 2 rad/s. Thus:

y = (2 A sin kx) cos ω t = [(10 cm) sin(4x)] cos(2t)

The amplitude of the simple harmonic motion of an element lying between the two

speakers at x = 2.5 cm is the absolute value of the coefficient of cos(2t) evaluated

at this point. Thus:

Amplitude = |(10 cm) sin(4x)|x = 2.5|
= |(10 cm) sin(10 rad)| = |−5.4 cm| = 5.4 cm

(b) With k = 2π/λ = 4 rad/cm, we have λ = π/2 cm. Then, from Eq. 16.12 we

find that the nodes are located at:

x = n
λ

2
= n

π

4
cm, (n = 0, 1, 2, . . .)

From Eq. 16.13, we find that the antinodes are located at:

x = (n + 1
2 )

λ

2
= (n + 1

2 )
π

4
, (n = 0, 1, 2, . . .)

(c) The maximum amplitude of antinodes will be 2 A = 10 cm



16.3 Standing Sound Waves 541

Example 16.4

Two sinusoidal sound waves, equal in amplitude and traveling in opposite direc-

tions along the x-axis, are superimposed on each other. The resultant wave is of

the form:

y = (2 m) sin
(π

L
x
)

cos
(π

T
t
)

where x is in meters and t in seconds and the arguments of the sine and cosine func-

tions are in radians. (a) What are the mathematical formulas of the two sinusoidal

sound waves that are superimposed to give this resultant? (b) Find the values of

the wavelength and the frequency of the two sinusoidal waves when L = 2 m and

T = 1 s. (c) What are the velocities of the two sinusoidal waves?

Solution: (a) Using the general form of the standing waves given by Eq. 16.11,

we find A = 1 m, k = π/L rad/m, and ω = π/T rad/s. Using Eq. 16.8, we find the

two sinusoidal waves as follows:

y1 = (1 m) sin
(π

L
x − π

T
t
)
,

y2 = (1 m) sin
(π

L
x + π

T
t
)

(b) Using k = 2π/λ, and ω = 2π f when L = 2 m and T = 1 s, we have:

k = 2π

λ
= π

L
= π

2 m
⇒ λ = 4 m

ω = 2π f = π

T
= π

1 s
⇒ f = 0.5 s−1 = 0.5 Hz

(c) Using v = ω/k, we find the speed of each of the sinusoidal waves as follows:

v = ω

k
= 2π f

2π/λ
= λf = (4 m)(0.5 s−1) = 2 m/s

The velocity of y1 is v1 = +2 m/s (in the direction of increasing x) and the velocity

of y2 is v2 = −2 m/s (in the direction of decreasing x).

16.4 Standing Sound Waves in Air Columns

In Chap. 14, we saw how a standing wave can be generated either on a stretched string

with fixed ends or when one end is fixed and the other is left free to move. We learned
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that this happens when the wavelengths of the waves suitably match the length of the

string, in which case the superposition of the traveling and reflecting waves produce a

standing wave pattern. For such a match, the wavelength corresponds to the resonant

frequency of the string.

We can set up standing sound waves in air-filled pipes in a way similar to that for

strings. Here is how we can compare the two:

1. The closed end of a pipe is similar to the fixed end of a string in that it must

be a displacement node. This is because the pipe’s wall at this end does not

allow longitudinal motion of the air and acts like a pressure antinode (point of

maximum pressure variation).

2. The open end of a pipe acts like the end of a string that is free to move, so there

must be a displacement antinode there1. This is because the pipe’s open end

allows longitudinal motion of the air and acts like a pressure node (point of no

pressure variation, since the end must remain at atmospheric pressure).

It is interesting to know how sound waves reflect from the open end of a pipe.

To get insight into this, we start with the fact that sound waves are in fact pressure

waves. Next, we know that any compression region must be contained inside the pipe

(between its two ends). Furthermore, any compression region that exists at an open

end is free to expand into the atmosphere. This change in behavior of the air inside

and outside the pipe is sufficient to allow some reflection.

With the boundary conditions of nodes and antinodes at the ends of air columns,

we must set the normal modes of oscillations as we did in the case of stretched

strings.

Air Columns of Two Open Ends

First, we consider a pipe of length L that is open at both ends. By representing the

horizontal displacement of air elements on the vertical axis and applying the boundary

condition that meets the case of two open ends, see Fig. 16.9, the normal modes of

oscillations can be explained by considering the following first three patterns:

(1) The first normal mode (the first harmonic, or the fundamental):

The simplest pattern is shown in Fig. 16.9a. There are two imposed antinodes

1 The antinode of an open end of a pipe is located slightly beyond the end because sound com-
pression reaching an open end does not reflect until it passes the end. Therefore, the effective length
of the air column is little greater than the true length L of the pipe.
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at the two ends and only one node in the middle of the pipe. Also, there is only

half a wavelength in the length L. Thus, this standing wave pattern has:

λ1 = 2L and f1 = v

λ1
= v

2L
.

(2) The second normal mode (the second harmonic):

The second pattern is shown in Fig. 16.9b. This pattern has three antinodes and

two nodes. This standing wave pattern has:

λ2 = L and f2 = v

λ2
= v

L
= 2 f1

(3) The third normal mode (the third harmonic):

The third pattern is shown in Fig. 16.9c. This pattern has four antinodes and

three nodes. This standing wave pattern has:

λ3 = 2L/3 and f3 = v

λ3
= 3v

2L
= 3 f1

(a)

(b)

(c)

n=1

n=2

n=3

L
λ 1 = 2 L

f 1 = λ 1 = 2 L

λ 2 = L

f 2 = λ 2 = L= 2 f 1

λ 3 = 2 L 3

f 3 = λ 3 = 3 2L= 3 f 1

First
harmonic

Second
harmonic

Third
harmonic

A

A

A

A

A

AA

A

A

N

N N

N N N

Fig. 16.9 The first three standing wave patterns (a), (b), and (c) of a longitudinal sound wave established

in an organ pipe that is open to the atmosphere at both ends. The horizontal motion of air elements in

the pipe is displayed vertically by using a red color. The difference between successive harmonics is the

fundamental frequency f1, and each harmonic is an integer multiple of the fundamental frequency f1

Generally, the relation between the wavelength λn of the various normal modes

and the length L of a pipe of two open ends is:

λn = 2L

n
, (n = 1, 2, 3, . . .) (Pipe, two open ends) (16.14)
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Also, according to the relation f = v/λ, where the speed v of the sound wave

is the same for all frequencies, the resonance frequencies fn associated with these

modes are (see Fig. 16.9):

fn = v

λn
= n

v

2L
, (n = 1, 2, 3, . . .) (Pipe, two open ends) (16.15)

The expressions of λn and fn are the same as for the string, except that v is the speed of

waves on the strings as in Eq. 14.66, whereasv in Eq. 16.15 is the speed of sound in air.

The relation between the resonance frequencies and the fundamental frequency is:

fn = n f1, (n = 1, 2, 3, . . .) (Pipe, two open ends) (16.16)

Air Columns of One Closed End

Second, we consider a pipe of length L that is open at one end and closed at the

other. By applying the boundary condition that meets this case, the normal modes of

oscillations can be explained by considering the following first three patterns:

(1) The first normal mode (the first harmonic, or the fundamental):

Fig. 16.10a shows the simplest pattern. The standing wave extends from an

antinode at the open end to the adjacent node at the closed end. The funda-

mental standing wave pattern has:

λ1 = 4 L and f1 = v

λ1
= v

4L
.

(2) The third normal mode (the third harmonic):

The next pattern is shown in Fig. 16.10b. This pattern has two antinodes and two

nodes. Thus, this standing wave pattern has:

λ3 = 4L/3 and f3 = v

λ3
= 3v

4L
= 3 f1

(3) The fifth normal mode (the fifth harmonic):

The next pattern is shown in Fig. 16.10c. This pattern has four antinodes and

four nodes. Thus:

λ5 = 4L/5 and f5 = v

λ5
= 5v

4L
= 5 f1
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(a)

(b)

(c)

n=1

n=3

n=5

L
λ 1 = 4 L

f 1 = λ 1 = 4 L

λ 3 = 4 L / 3

f 3 = λ 3 = 3 4 L= 3 f 1

λ 5 = 4 L 5

f 5 = λ 5 = 5 4 L= 5 f 1

First
harmonic

Third
harmonic

Fifth
harmonic

A

A

A A

A

A

N

N N

N N N

Fig. 16.10 The first three standing wave patterns (a), (b), and (c) of a longitudinal sound wave established

in an organ pipe that is open to the atmosphere at only one end. The horizontal motion of air elements

in the pipe is displayed vertically by using a red color. The harmonic frequencies are the odd-integer

multiples of f1, and the successive difference is 2 f1

Generally, λn and fn of the various normal modes for a pipe of length L with only

one end open are given as (see Fig. 16.10):

λn = 4L

n
, (n = 1, 3, 5, . . .) (Pipe, one open end) (16.17)

fn = v

λn
= n

v

4L
, (n = 1, 3, 5, . . .) (Pipe, one open end) (16.18)

fn = nf1, (n = 1, 3, 5, . . .) (Pipe, one open end) (16.19)

Figure 16.11 shows a simple apparatus for demonstrating the resonance of sound

waves in air columns. A tube that is open from both ends is immersed into a container

filled with water, and a tuning fork of unknown frequency f and wavelength λ is placed

at its top. The sound waves generated by the fork are reinforced when the length L

corresponds to one of the resonance frequencies of the tube. Thus:

λ = 4Ln

n
, f = v

λ
= n

v

4Ln
, (n = 1, 3, 5, . . .) (16.20)



546 16 Superposition of Sound Waves

n=1 n=3 n=5

L
l   4

3l    4 5l  4

First harmonic Third harmonic Fifth harmonic

f = ?

Fig. 16.11 An apparatus used to demonstrate the resonance of sound waves in a tube closed at one end.

At resonance, L and λ are related

Example 16.5

When wind blows through a cylindrical drainage culvert of 2.5 m length, see

Fig. 16.12, a howling noise is established. Take v = 343 m/s as the speed of sound

in air. (a) Find the frequencies of the first three harmonics if the pipe is open at

both ends. (b) How many of the harmonics fall within the normal human hearing

range (from about 20 Hz → 20,000 Hz). (c) Answer part (a) if the pipe is blocked

at the other end.

Fig. 16.12

Solution: (a) When the pipe is open at both ends, we use Eq. 16.15 with n = 1 to

find the fundamental frequency as follows:

f1 = 1 × v

2L
= 343 m/s

2 × 2.5 m
= 68.6 Hz

Also, all harmonics are available for a pipe open at both ends; thus:

f2 = 2f1 = 137.2 Hz and f3 = 3 f1 = 205.8 Hz



16.4 Standing Sound Waves in Air Columns 547

(b) We can express the frequency of the highest harmonic heard as fn = n f1,

where fn = 20,000 Hz and n is the number of harmonics that can be heard. There-

fore:

n = fn
f1

= 20,000 Hz

68.6 Hz
= 292

Although we get n = 292, practically, only the first few harmonics have amplitudes

that are sufficient to be heard.

(c) Using Eq. 16.18 and substituting with n = 1, the fundamental frequency of

a pipe closed at one end will be given by:

f1 = 1 × v

4L
= 343 m/s

4 × 2.5 m
= 34.3 Hz

In this case, only the odd harmonics can exist. Thus:

f3 = 3 f1 = 102.9 Hz and f5 = 5 f1 = 171.5 Hz

Example 16.6

A background noise in a hall sets up a fundamental standing wave frequency in a

tube of length L = 0.7 m. What is the value of this fundamental frequency if your

ear blocks one end of the tube (see Fig. 16.13a) and when your ear is far from the

tube (see Fig. 16.13b)? Take v = 343 m/s as the speed of sound in air.

(a) (b)Ear

Noise

Ear

L
Noise

L

Fig. 16.13

Solution: When the tube is blocked by your ear (see Fig. 16.13a) the fundamental

frequency is given by Eq. 16.18 with n = 1:

f1 = 1 × v

4L
= 343 m/s

4 × 0.7 m
= 122.5 Hz

In addition, you can hear frequencies that are odd integer multiples of 122.5 Hz

provided that the standing waves are formed with sufficient amplitudes.
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When you move your head away enough (see Fig. 16.13b) the pipe becomes

open at both ends and the fundamental frequency will be given by Eq. 16.15 with

n = 1:

f1 = 1 × v

2L
= 343 m/s

2 × 0.7 m
= 245 Hz

In addition, you can hear frequencies that are multiples of 245 Hz if the standing

waves are formed with sufficient amplitudes.

Example 16.7

Resonance can occur in Fig. 16.14 when the smallest length of the air column is

L = 9.8 cm. Take v = 343 m/s as the speed of sound in air. (a) What is the frequency

f of the tuning fork? (b) What is the value of L for the next two resonances?

Fig. 16.14

L = 9.8 cm

First resonancen=1

Solution: (a) When the tube is blocked by the water’s surface, it acts as if the

tube is closed at one end. Thus, for the smallest air column L1, the fundamental

frequency is given by Eq. 16.20 with n = 1:

f = 1 × v

4L1
= 343 m/s

4 × (0.098 m)
= 875 Hz

{
First resonance

First harmonic

}

This frequency must be equal to the frequency f of the tuning fork.

(b) We know from Fig. 16.14 and Eq. 16.20 that the wavelength of the funda-

mental mode is four times the length of the air column. Thus:

λ = 4L1

1
= 4(0.098 m) = 0.392 m
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Because the frequency of the tuning fork is constant, then according to Fig. 16.11,

the values of L for the next two normal modes are:

L3 = 3 λ

4
= 3 × (0.392 m)

4
= 0.294 m = 29.4 cm

{
Second resonance

Third harmonic

}

L5 = 5 λ

4
= 5 × (0.392 m)

4
= 0.49 m = 49 cm

{
Third resonance

Fifth harmonic

}

16.5 Temporal Interference of Sound Waves: Beats

Previously, we discussed the spatial interference of waves of same frequencies,

where at fixed time the amplitude of the oscillating elements varies with the position

in space. The standing waves in strings and air columns are good examples of this

kind of interference.

Now, we consider another type of interference of waves having a slight difference

in their frequencies, where at fixed position, the amplitude of the oscillating elements

varies periodically with time. The standing wave produced by two tuning forks having

a slight difference in their frequencies is a good example of this kind of interference.

We refer to this interference in time by temporal interference, and this phenomenon

is called beating:

Beating

Beating is defined as the periodic variation in amplitude at a fixed position due

to the variation in the constructive and destructive interference between waves

having slightly different frequencies.

Consider the time-dependent variations of the displacements of two sound waves

of equal amplitude and slightly different frequencies f1 and f2 (angular frequencies

ω1 = 2π f1 and ω2 = 2π f2) such that:

y1 = A cos(k1 x − ω1 t),

y2 = A cos(k2 x − ω2 t)
(16.21)
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At the fixed point x = 0 (chosen for convenience), the two wave functions become

(see Fig. 16.15a):

y1 = A cos ω1 t,

y2 = A cos ω2 t
(16.22)

t

y
1

y
2

y

t

(a)

(b)

1 2 1 2 1 2[2 cos cos( ) ] ( )y y y A f f t f f tπ π= + = − +

beat 1 21/T f f= −1 2[ 2 cos ( ) ]A f f tπ± −

Oscillates with an average frequency f av = ( f 1+f 2 ) /2

1 1 1cos2 , 11 Hzy A f t fπ= = 2 2 2cos2 , 9 Hzy A f t fπ= =

Fig. 16.15 (a) Formation of beats by combining two waves of slightly different frequencies f1 and f2

(f1 = 11 Hz and f1 = 9 Hz). (b) The slowly varying amplitude envelope ±2 A cos π(f1 − f2) t limits the

amplitude of the rapid sinusoidal function cos π(f1 + f2) t, which proceeds with an average frequency

fav = (f1 + f2)/2

The superposition of y1 and y2 gives the following resultant:

y = y1 + y2 = A [cos ω1 t + cos ω2 t] (16.23)

To simplify this expression, we use the trigonometric identity:

cos a + cos b = 2 cos 1
2 (a − b) cos 1

2 (a + b) (16.24)
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If we substitute a = ω1t and b = ω2 t in this identity, then the resultant wave

y reduces to:

y = [2 A cos 1
2 (ω1 − ω2) t] cos 1

2 (ω1 + ω2) t (16.25)

When the difference in angular frequencies is small compared to the sum of angular

frequencies, i.e.:

|ω1 − ω2| � ω1 + ω2 or |f1 − f2| � f1 + f2 (16.26)

Then the time behavior of the factor cos 1
2 (ω1 + ω2) t, is a rapidly varying sinusoidal

oscillation, see Fig. 16.15b, with the average angular frequency 1
2 (ω1 + ω2). Thus,

the y equation indicates that the resultant sound wave at any given location has an

effective angular frequency equal to the average angular frequency:

ωav = ω1 + ω2

2
or fav = f1 + f2

2
(16.27)

In addition, the oscillation is not precisely sinusoidal because the resultant amplitude

varies with time according to the expression:

Ares = 2 A cos 1
2 (ω1 − ω2) t (16.28)

This resultant amplitude is a slowly varying envelope in time, see Fig. 16.15b, that

modulates the rapidly oscillating factor cos 1
2 (ω1 + ω2) t. Moreover, this resultant

amplitude Ares confirms the existence of a constructive interference when cos 1
2 (ω1 −

ω2) t = ±1. That is when:

1

2
|ω1 − ω2| t = 0, π, 2π, . . . (Constructive interference) (16.29)

Also, the resultant amplitude Ares confirms the existence of a destructive interference

when cos 1
2 (ω1 − ω2) t = 0. That is when:

1

2
|ω1 − ω2| t = 1

2
π,

3

2
π,

5

2
π, . . . (Destructive interference) (16.30)

The time between successive moments of constructive (or destructive) interferences

is called the beat period, Tbeat. During this time, the phase difference increases by

π, i.e. 1
2 |ω1 − ω2| Tbeat = π. Thus:

Tbeat = 2π

|ω1 − ω2| = 1

|f1 − f2| (16.31)
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Hence, the number of beats per second, or the beat frequency fbeat, will be given by:

fbeat = |f1 − f2| (16.32)

Musicians can use the beat phenomenon in tuning their instruments. If an instru-

ment sounds different from how it is supposed to, it can be tuned by using a standard

frequency until the beat disappears.

Example 16.8

Two identical violin A strings (see the left part of Fig. 16.16) of the same length

and tension are tuned exactly to 440 Hz. The tension in one of them is increased

by 2% (see the right part of Fig. 16.16). When both strings are struck, what will

be the beat frequency between their fundamental frequencies?

.. L

..

String 1

String 2

A

D
G

E 1 , mt

L

2, mt

L

Fig. 16.16

Solution: The frequency of a string that is fixed at both ends is given by

Eq. 14.68 as f = √
τ/μ/(2L), where L, τ, and μ are the length, tension, and

mass per unit length of the string, respectively. Thus, the ratio of frequencies of

the two strings after being struck is:

f2
f1

= 1

2L

√
τ2

μ

/
1

2L

√
τ1

μ
=

√
τ2

τ1

When tension τ2 is 2% more than τ1, we can find the frequency f2 of string 2 as

follows:

f2
f1

=
√

1.02τ1

τ1
= √

1.02 = 1.01 ⇒ f2 = 1.01 f1 = 1.01 × (440 Hz)= 444 Hz
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With the use of Eq. 16.32, the beat frequency will be:

fbeat = |f1 − f2| = |440 Hz − 444 Hz| = 4 Hz = 4 beat/s

Example 16.9

A musician wants to tune the A2 key (key No. 25) of a piano that has a proper fun-

damental frequency of 110 Hz, see Fig. 16.17. Assume he uses a fork of frequency

f1 = 220 Hz and was able to tune the A2 key after observing a beat frequency of

8 Hz. Explain the process of tuning and find the mistuned frequency.

F
21

G
23

A
25

B
27

C
28

D
30

E
32

F
33

G
35

A
37

B
39

F#
22

G#
24

A#
26

D#
31

C#
29

F#
34

A#
38

G#
36

Brand

110 Hz 220 HzPiano keyboard

Fig. 16.17

Solution: Equation 16.25 leads to the beat phenomenon when the frequencies are

close to each other, which is not the case for 110 and 220 Hz. However, based on

Eq. 14.69 of fixed strings, the proper second harmonic of the string of the A2 key

should be:

f2 = 2 × (110 Hz) = 220 Hz (Proper second harmonic)

By listening to the beats of 8 Hz between the fundamental frequency f1 = 220 Hz

of the tuning fork and the unknown mistuned second harmonic frequency f2 of

the A2 key, he can adjust the tension in the string until the beat note disappears.

From the beats Eq. 16.32, he can find the mistuned frequency of the A2 key as

follows:

fbeat = |f1 − f2|
8 Hz = |220 Hz − f2|
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Hence,

f2 =

⎧⎪⎪⎨
⎪⎪⎩

228 Hz

or

212 Hz

Accordingly, the musician cannot tell whether the mistuned fundamental fre-

quency of the string was 114 Hz or 106 Hz, because both frequencies produce the

same beat frequency.

16.6 Exercises

Sections 16.1 and 16.2 Superposition and Interference and Spatial
Interference of Sound Waves

(1) Two traveling waves are defined by the following relations:

y1 = (2 cm) sin(kx − ω t),

y2 = (2 cm) sin(kx − ω t + φ)

Find the amplitude of the resultant wave y = y1 + y2 when φ =π/2 and φ = π.

(2) Two traveling waves are defined by the following relations:

y1 = (1.5 m) sin(10x − 16t),

y2 = (1.5 m) sin(14x − 20t)

where x is in meters, t is in seconds, and the arguments of the sine waves are in

radians. (a) What is the phase difference between the two waves when x = 4 m

and t = 2 s? (b) At t = 4 s, apply the condition of destructive interference (phase

difference = (2n + 1)π, n = 0, 1, 2, . . .) to find the closest positive value of x

to the origin.

(3) The two identical speakers shown in Fig. 16.18 are driven by one oscillator that

has a frequency of 3,400 Hz. Take the speed of sound to be 343 m/s. (a) What

are the values of x that correspond to a minimum sound intensity at point

P? (b) What are the values of x that correspond to a maximum sound intensity

at point P?

(4) A small speaker is placed in a circular pipe of radius r = 1.35 m, as shown

in Fig. 16.19. Take the speed of sound to be 343 m/s and assume propagation
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of one-dimensional waves for such a big radius. What are the three smallest

frequencies that produce a maximum sound intensity in the tube?

Fig. 16.18 See Exercise (3)

L

L-x

P

Fig. 16.19 See Exercise (4)

r

(5) Two identical speakers, S1 and S2, are placed vertically at a distance d apart.

They emit sound waves driven by the same oscillator whose frequency is f.

A listener at a distance R from the lower speaker walks straight towards it as

shown in Fig. 16.20. If the speed of sound is v, show that the listener will hear

a minimum sound when R satisfies the following relation:

R2 = d2 − (2n + 1)2(v/2f )2

2(2n + 1)(v/2f )
, (n = 0, 1, 2, . . .)

{
Destructive

interference

}

(6) In the previous example, assume that d = 3 m, f = 350 Hz, and v = 343 m/s.

How many times will the listener hear a minimum in sound intensity while

walking from a very far point to the nearest possible point in front of the lower

speaker?

Section 16.3 Standing Sound Waves

(7) Two waves are traveling in opposite directions and are described by the fol-

lowing relations:

y1 = A sin(kx − ω t),

y2 = 1
2 A sin(kx + ω t)
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Show that the resultant of these two waves can be written as a combination of

a traveling wave and a standing wave of the following form:

y = y1 + y2 = 1
2 A sin(kx − ω t) + (A sin kx) cos ω t

R

L
S1

d   

S2

Fig. 16.20 See Exercise (5)

(8) Two identical speakers facing each other as shown in Fig. 16.21, establish a

standing wave as a result of the production of the following two oppositely

traveling sound waves:

y1 = (2 cm) sin(2.5x − 5t),

y2 = (2 cm) sin(2.5x + 5t).

where x and y are in centimeters and t is in seconds. (a) What is the amplitude of

the simple harmonic motion of an element of the medium located at x = 4 cm?

(b) Find the position of the nodes and antinodes. (c) What is the maximum

amplitude of an element at an antinode?

(9) The two sources shown in the evacuated vessel of Fig. 16.22, are 1.2 m apart,

and send sound waves of speed v = 2 m/s. Source S1 vibrates according to

the equation (0.04 m) sin 10π t while source S2 vibrates according to the

equation (0.01 m) sin 10π t. (a) Show that S1 sends sound in the positive x

direction as:

y1 = (0.04 m) sin(5πx1 − 10π t)

where x1 is measured from an origin located at S1. (b) Show that S2 emits sound

in the negative x-direction as:
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y2 = (0.01 m) sin(5πx2 + 10π t)

where x2 is measured from an origin located at S2. (c) Show that the equation

of motion of a particle at 0.8 m from S1 and 0.4 m from S2 is given by:

y = y1 + y2 = (−0.03 m) sin 10π t.

Standing wave SpeakerSpeaker

x
0

Fig. 16.21 See Exercise (8)

P
S2

1.2 m

0.8 m 0.4 mS1

Fig. 16.22 See Exercise (9)

(10) Using direct substitution, show that the standing wave function:

y = 2 A cos

(
φ

2

)
sin

(
kx − ω t + φ

2

)

is a solution of the general partial linear differential equation [see Eq. 14.58]:

∂2y

∂x2 − 1

v2

∂2y

∂t2 = 0

Section 16.4 Standing Sound Waves in Air columns

Note: Unless otherwise specified, use the speed of sound in this section to be 343 m/s.

(11) An organ pipe of length 30 cm is open at both ends. What are the frequencies

of the fundamental and the next two harmonics?

(12) If the organ pipe in the previous exercise has one end closed, what are the

frequencies of the fundamental and the next two harmonics?
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(13) The fundamental frequency of a pipe is found to be 110 Hz when the speed of

sound is 330 m/s. (a) Find the pipe’s length when it is closed at one end. (b) Find

the pipe’s length when it is open at both ends.

(14) The two adjacent harmonic frequencies of an organ pipe (with both ends open)

are determined to be 540 Hz and 420 Hz. (a) Find the fundamental frequency of

the pipe. (b) Find the pipe’s length.

(15) Estimate the fundamental frequency that you would experience when blowing

across the top of an empty cylindrical soft drink bottle that has a height of

10 cm. Assume that the bottle behaves like a tube with one end closed. Take the

speed of sound to be 340 m/s. How would this frequency change if the bottle

was only three quarters empty?

(16) What would be the range of an adjustable pipe length that has two open ends

if its fundamental frequency spans the human hearing rang (form 20 Hz to

20 kHz)? Take the speed of sound to be 340 m/s.

(17) A tuning fork vibrating at a frequency of 384 Hz is held over the top end of a

vertical tube while the other end is partially inserted in a water tank as shown

in Fig. 16.23. The water level in the tube is lowered by opening a valve in the

tank so that the length L of the air column slowly increases from an initial value

of 30 cm. Determine the next two values of L that correspond to resonance.

Fig. 16.23 See Exercise (17)

L

(18) Assume that the speed of waves on a guitar string does not change when the

string is fingered. If an unfingered string has a length L = 0.75 m and is tuned

to play an F note (at 349 Hz). (a) How far from the end of this string must your

finger be placed to play an A note (at 440 Hz). (b) What is the wavelength

of the standing wave when this fingered string resonates at its fundamental

frequency? (c) Find the frequency and wavelength of the sound waves that are

produced by this string at that fundamental frequency.
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(19) At a temperature of 25 ◦C, an open organ pipe produces the middle C note

(262 Hz) with a fundamental standing wave. (a) What is the length of the

pipe? (b) Find the frequency and wavelength of the fundamental standing wave

in the pipe. (c) Find the frequency and wavelength of the sound produced in the

air outside the pipe.

(20) An open organ pipe is tuned in a room where the temperature was set to 20 ◦C.

If the temperature drops to 10 ◦C, what would be the percentage change in

frequency generated by the pipe?

(21) In an air-filled tube closed at both ends, the distance between several nodes

is 25 cm. When another gas replaces the air, the distance between that same

number of nodes is 35 cm. If the speed of sound in air is 340 m/s, what is the

speed in the gas?

(22) An organ pipe can resonate at the successive harmonics of frequencies 210,

350, and 490 Hz. (a) Is this pipe open at both ends or closed at one of its

ends? Explain why. (b) What is the fundamental frequency of this pipe?

(23) A tube is open at both ends and has a length L = 2 m. It resonates at two suc-

cessive harmonics of frequencies 355 and 440 Hz. (a) What is the fundamental

frequency of this pipe? (b) What is the speed of sound in the air inside the tube?

(24) A tube has a length L = 2.5 m. How many harmonics are present in this tube

within the human hearing range (from 20 Hz to 20 kHz) if: (a) the tube is open

at both ends, and (b) is closed at one end?

(25) A pipe is open at one end and closed by a movable piston at the other end.

A tuning fork of frequency 348 Hz is held at the open end. On a hot day a

resonance occurs when the piston is at 0.25 m from the open end and again

when it is at 0.75 m, see Fig. 16.24. (a) What is the speed of sound in the air

inside the pipe? (b) How far from the open end will the piston be when the next

resonance is experienced?

Fig. 16.24 See Exercise (25) 25cm

75cm

PistonFirst resonance

Second resonance
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Section 16.5 Temporal Interference of Sound Waves: Beats

(26) Determine the beat frequency resulting from the superposition of the two sound

waves given by:

y1 = (1.5 cm) sin(3.5x − 1376π t),

y2 = (1.5 cm) sin(3.5x − 1364π t).

where x and y are in centimeters and t is in seconds.

(27) Two identical violin strings have the same length L, tension τ, and exact fun-

damental frequency of 600 Hz. How much should we increase the tension of

one of these strings to generate a sound beat of 6 Hz (see Fig. 16.25 for a new

tension τ1)?

Fig. 16.25 See Exercise (27) L

L

String 1

String 2

, mt

, mt1

(28) A standard tuning fork of frequency 512 Hz makes a beat frequency of 4 Hz

with another fork of unknown frequency. The beat frequency disappears when

the prongs of the second fork are waxed. What is the frequency of the unknown

fork?

(29) A mistuned Middle C string in a piano (corresponds to key No. 40) has a proper

fundamental frequency of 262 Hz, see Fig. 16.17. During the tuning trials, a

musician hears 3 beats per second between the piano string and a standard

oscillator of 262 Hz. (a) What are the possible frequencies of the string? (b)

When the musician tightens the string slightly, he hears 4 beats per second.

What is the frequency of the string now? (Hint: use the fact that tightening

the string raises the wave speed and frequency) (c) By what percentage should

the musician change the tension in the string to tune it?

(30) At a temperature of 30 ◦C, a source generates sound waves that propagate in the

air with wavelengths λ1 = 1.62 m and λ2 = 1.70 m. (a) What beat frequency is

heard? (b) How far in space is the distance between the maximum intensities?

(Hint: see Fig. 16.15b)
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Since ancient times, the nature and properties of light have been intensively inves-

tigated in an attempt to address many of our needs for a better life on Earth. Today,

scientists view the behavior of light as waves (electromagnetic waves) in some situa-

tions and particles (photons) in other situations. In this chapter, we briefly introduce

aspects of light that are understood best when using wave models, as applied to

geometrical and physical optics. First, we study the reflection and refraction of

light at the boundary between two media. Then we study formation of images when

using the two types of mirrors and lenses.

17.1 Light Rays

It is useful to represent light waves with imaginary surfaces representing the crests

of the electric field of the electromagnetic waves. These surfaces are called wave

fronts, and the distance between any two successive wave fronts is referred to as

the wavelength λ. While propagating in vacuum, light waves have a constant speed

c = λ f, where c = 2.9979 × 108 m/s � 3 × 108 m/s and f is the light’s frequency.

When we study light reflection from mirrors, refraction from a surface between

two media, and propagation through lenses, we approximate light propagation by

defining rays that travel in straight lines perpendicular to the wave fronts. This ray

approximation technique is referred to as geometrical optics. On the other hand,

when we study interference, diffraction, and polarization of light and need to get

satisfactory descriptions of these phenomena, we treat light as waves. Such a study

is referred to as physical optics.

H. A. Radi and J. O. Rasmussen, Principles of Physics, 561
Undergraduate Lecture Notes in Physics, DOI: 10.1007/978-3-642-23026-4_17,
© Springer-Verlag Berlin Heidelberg 2013
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In geometrical optics we first consider a point source S emitting light waves

isotropically in all directions in a uniform medium. The emitted waves are a series

of concentric spherical wave fronts with the source located at their common centers,

and these waves can be approximated by straight-line rays perpendicular to the wave

fronts, see Fig. 17.1a. Next, we consider the case when the source is very far and study

the propagation of plane wave fronts. In this case, light rays propagate as straight

lines perpendicular to the wave fronts in a given direction, see Fig. 17.1b.

λλ

S

(a)

λ

c

λ

c

cc

Ray

Ray

Ray

Ray

λ λ λ

Rays

Wave Fronts

Wave Fronts

(b)

c

c

c

c
c

c

Fig. 17.1 Light waves of wavelength λ propagating with a speed c as: (a) spherical wave fronts and

(b) plane wave fronts

Spotlight

We observe the following effects when plane wave fronts meet a barrier with

a circular opening of diameter a:

• If λ � a, the rays of the wave continue to move away from the opening in

straight lines, see Fig. 17.2a.

• If λ ≈ a, the rays of the wave spread out from the opening in all directions,

see Fig. 17.2b. This effect is called diffraction.

• If λ > a (or λ � a) the rays of the wave spread out more (diffracted more)

in a way as if the opening is a point source, see Fig. 17.2c.



17.1 Light Rays 563

(a)

Ray
Ray

Ray

(b) (c)

λ

c c

c

aλ aλ ≈ aλ

a

Wave Fronts

Sharp
shadow

a a

Diffracted
Rays

More
Diffraction

Fig. 17.2 A plane wave of light of wavelength λ is incident on a barrier that has a circular opening

of diameter a. (a) When λ � a, the rays continue in a straight line and the ray approximation is valid.

(b) When λ ≈ a, the rays spread out from the opening in all directions. (c) When λ > a (or λ � a) the

circular opening behaves like a point source

17.2 Reflection and Refraction of Light

Figure 17.3 shows a beam of light of wavelength λ1 and speed v1 represented by a

light ray traveling in a straight line in medium 1. The beam encounters the smooth

boundary surface (or interface) of the transparent medium 2, which is more dense

than medium 1. Part of the incident light is reflected by the surface and another part

penetrates medium 2 with wavelength λ2 and speed v2. Unless the incident beam is

perpendicular to the surface, the ray that enters medium 2 is bent at the boundary

and is said to be refracted.

Incident ray Reflected ray

Refracted ray

Medium 1 

Medium 2 

Normal

1θ

2θ

1

2

1 Interface

1 1θ θ=′

Fig. 17.3 An incident ray in medium 1 is reflected from the interface and maintains the same speed v1,

while the refracted ray is bent toward the normal and propagates in medium 2 with a speed v2 < v1
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In Fig. 17.3, the incident, reflected, and refracted rays are all in a plane perpendic-

ular to the boundary surface. In addition, the incident, reflected, and refracted rays

make angles θ1, θ ′
1, and θ2, respectively, with the normal to the boundary surface.

Moreover, v1 and v2 are the speeds of the light rays in media 1 and 2, respectively.

Experiments and theory prove the following two laws:

Spotlight

• θ1 = θ ′
1 (Law of reflection) (17.1)

• v2 sin θ1 = v1 sin θ2 (Law of refraction) (17.2)

The speed of light v in any material is less than its speed in vacuum c. It is found

that the value of v slightly depends on the wavelength λ. Also, it is convenient to

define a dimensionless quantity known as the index of refraction n of a material as

follows:

n = c

v
(17.3)

Since v is always less than c, then n > 1 for any material and n = 1 for vacuum.

Table 17.1 lists the indices of refraction for various materials.

As light crosses an interface between two media, its speed v and wavelength λ

change, but its frequency f remains the same. This can be understood by considering

a normal incidence of light and treating light as photons, each with energy E = h f .

If f changes, then energy will pile up at the interface, which is a mechanism that cannot

take place under the laws of Physics. Since the relation v = λ f must be satisfied in

both media of Fig. 17.3, and since the frequency f of the incident and refracted rays

must be the same, then:

v1 = λ1 f and v2 = λ2 f (17.4)

If the media 1 and 2 have indices of refraction n1 and n2, respectively, then Eq. 17.3

leads to:

n1 = c/v1 and n2 = c/v2 (17.5)
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Table 17.1 Some indices of refractiona

Medium Index of refraction n

Vacuum Exactly 1

Airb 1.000 29

Carbon dioxideb 1.000 45

Water 1.333

Acetone 1.360

Ethyl alcohol 1.361

Sugar solution (30%) 1.38

Glycerin 1.473

Sugar solution (80%) 1.49

Benzene 1.501

Ice 1.309

Fused quartz 1.46

Polystyrene 1.49

Crown glass 1.52

Sodium chloride 1.544

Flint glass 1.66

Heaviest flint glass 1.89

Cubic zirconium 2.20

Diamond 2.419

Gallium 3.50
a For light with a wavelength of 589 nm traveling in a vacuum. b At 0 ◦C and 1 atm

Using Eq. 17.4 with Eq. 17.5 will give:

λ1

λ2
= v1

v2
= c/n1

c/n2
= n2

n1
(17.6)

This gives: n1 λ1 = n2 λ2 (17.7)

If medium 1 is vacuum (or air), then n1 = 1 and λ1 ≡ λ. In addition, if n is the index

of refraction of medium 2, and λn is its refracted wavelength, then we find that:

n = λ

λn
= Wavelength of the incident light in vacuum

Wavelength of refracted light in the medium
(17.8)

Since Eq. 17.3 leads to the ratio v1/v2 = n2/n1, then the law of refraction given by

Eq. 17.2 can be written as:
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n1 sin θ1 = n2 sin θ2 (Snell’s Law) (17.9)

This form of the law of refraction is known as Snell’s law of refraction, and we will

use this form in tackling most of our examples.

To compare the refractive angle θ2 with the incident angle θ1 and the relative ratio

n1/n2 for a light beam propagating from medium 1 to medium 2, we present the

following results:

• If n2 = n1, then θ2 = θ1. In other words, the light beam will not be deflected

(refracted) as it changes media, as in Fig. 17.4a.

• If n2 > n1, then θ2 < θ1. In other words, the light beam will refract and bend toward

the normal as in Fig. 17.4b.

• If n2 < n1, then θ2 > θ1. In other words, the light beam will refract and bend away

from the normal as in Fig. 17.4c.

Normal

1θ

2θ

1θ

1n

2n

2 1n n>

Normal

1θ

2θ

1θ

1n

2n

Normal

1θ

2θ

1θ

1n

2n

2 1n n=
2  1n  n<

(a) (b) (c)

Fig. 17.4 Light propagating from a medium of index of refraction n1 into a medium of index of refraction

n2. (a) When n2 = n1, the beam does not bend. (b) When n2 > n1, the beam bends toward the normal.

(c) When n2 < n1, the beam bends away from the normal

Example 17.1

The wavelength of yellow light in vacuum is 600 nm. (a) What is the speed of this

light in vacuum and water? (b) What is the frequency of this light in vacuum and

water? (c) What is the wavelength of this light in water?

Solution: (a) The speed of the yellow light in vacuum (n = 1) and water (n = 1.333)

can be obtained by using Eq. 17.3 as follows:

c = 3 × 108 m/s and v = c

n
= 3 × 108 m/s

1.333
= 2.25 × 108 m/s
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(b) We use the equation v = λ f to prove that the frequency of the yellow light

in vacuum and water is the same, as follows:

f = c

λ
= 3 × 108 m/s

600 × 10−9 m
= 5 × 1014 Hz

fn = v

λn
= c/n

λ/n
= c

λ
= 5 × 1014 Hz

(c) By using Eq. 17.8, we can calculate the wavelength of the yellow light in

water as follows:

λn = λ

n
= 600 × 10−9 m

1.333
= 4.501 × 10−7 m = 450.1 nm

Example 17.2

A beam of monochromatic light traveling through air strikes a slab of glass at an

angle θ1 = 60◦ to the normal, see Fig. 17.5. The glass has a thickness t = 1 cm and

refractive index n = 1.52. (a) Find the angle of refraction θ2. (b) Show that the

emerging beam is parallel to the incident beam. (c) At what distance d does the

beam shift from the original?

Fig. 17.5
1θ

2θ

1θ

1n

2n

Air

Glass

Air

2θ

3θ

d

3 1n n=

a

b

t

Solution: (a) We apply Snell’s law at point a on the upper surface:

(1) n1 sin θ1 = n2 sin θ2

sin θ2 = n1

n2
sin θ1 = 1

1.52
sin 60◦ = 0.5698 ⇒ θ2 = 34.7◦

(b) Applying Snell’s law again at point b on the lower surface gives:
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(2) n2 sin θ2 = n3 sin θ3 = n1 sin θ3

Substituting n2 sin θ2 from Eq. (1) into (2) gives:

sin θ1 = sin θ3

Therefore, θ3 = θ1

Thus, the slab does not alter the direction of the emerging beam, it only shifts the

beam laterally by an offset distance of magnitude d.

(c) From the geometry of the figure, we find that:

d = ab sin(θ1 − θ2) and cos θ2 = t/ab

Thus: d = sin(θ1 − θ2)

cos θ2
t

Therefore, for a given incident angle θ1, the refracted angle θ2 is solely deter-

mined by n2, and the shift d is directly proportional to the thickness of the

slab, t.

Substituting the values of θ1, θ2, and t, into the above relation gives:

d = sin(60◦ − 34.7◦)
cos 34.7◦ × 1 cm = 0.52 cm

17.3 Total Internal Reflection and Optical Fibers

When light is directed from a medium having a higher index of refraction n1 toward

one having a lower index n2, i.e. n1 > n2, the refracted ray is bent away from the nor-

mal. At some particular angle of incidence θc, called the critical angle, see Fig. 17.6,

the refracted ray 4 moves parallel to the boundary, i.e. θ2 = 90◦. In addition, all the

incident light energy will be associated with the reflected ray 4′.
All rays having angles of incidence θ1 greater than θc are entirely reflected at the

boundary, see ray 5 in Fig. 17.6. For those rays, the angle of incidence must be equal

to the angle of reflection.

To find θc, we use Snell’s law given by Eq. 17.9 and then substitute θ1 = θc and

θ2 = 90◦, to find that:

n1 sin θc = n2 sin 90◦ = n2 (17.10)
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Fig. 17.6 When n1 > n2, the

angle of refraction θ2 will be

greater than the angle of

incidence θ1. As θ1 increases,

θ2 will increase until

θ2 = 90◦. For θ1 > θc, all rays

will be reflected without any

refraction
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This gives:

sin θc = n2

n1
(n1 > n2) (17.11)

When n1 � n2, Eq. 17.11 produces small values of θc.

Diamonds and Cubic zirconium crystals are good examples of media that have

a high index of refraction. The critical angle for a diamond crystal in air is

θc = sin−1(1/2.419)= 24.4◦. Any light ray inside the crystal that strikes its sur-

faces at an angle greater than the critical angle will be completely reflected back

into the crystal. This ray might undergo repeated total internal reflections within the

crystal, and this causes the crystal to sparkle.

Another important feature of internal reflection is the use of a thin flexible pipe

made of glass or transparent plastic as a light transmitter. This kind of flexible

light pipe is called an optical fiber. As shown in Fig. 17.7a, b, light is confined to

travel within a thin curved fiber pipe because of successive total internal reflections.

A bundle of fibers can be used to form an optical fiber cable, as in Fig. 17.7c. This

cable can transmit light, images, and even telephone calls from one point to another

with little loss. This technique is used extensively in modern industry and is known

as fiber optics. A physician can explore or even perform surgery by inserting a

bundle of optical fibers into the human body, avoiding the need to make large inci-

sions. Optical fibers are also commonly used in fiber-optic communications, which

permits data, voice, and video transmission over longer distances than other forms

of communication media.
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(a) (b) (c)

Light ray
This image is licensed under the Creative Commons Attribution Share Alike 3.0 License and GNU Free Documentation License, Version 1.2

Fig. 17.7 (a) A ray of light traveling in a curved transparent pipe by multiple total internal reflections.

(b) A bundle of optical fibers. (c) An illuminated fiber optic audio cable

Example 17.3

Part of a fish tank made of glass is shown in Fig. 17.8. A ray starting from the

left passes through the glass and is totally internally reflected at the water-air

interface. Take the index of refraction for the glass and water to be 1.5 and 1.33,

respectively. (a) Find the critical angle θc for the total internal reflection at the

water-air boundary. (b) Find the angle θ2 between the light ray and the normal

inside the glass wall. (c) Find the incident angle θ1 between the light ray and the

normal to the glass.

1θ
2θ2θ

cθ

Air Air

Glass

Water

1n 2n

3θ

3n

1n

cθ

Fig. 17.8

Solution: (a) To find θc, we apply Snell’s law at the water-air interface of the

figure as follows:

n3 sin θc = n1 sin 90◦
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Thus : θc = sin−1 n1

n3
= sin−1 1

1.33
= sin−1 0.752 = 48.8◦

(b) From the right-angle triangle at the glass-water interface we can find the

refracted angle θ3 in water to be:

θ3 = 90◦ − θc = 41.2◦

Using Snell’s law again at the glass-water interface, we have:

n2 sin θ2 = n3 sin θ3

Thus: sin θ2 = n3 sin θ3

n2
= 1.33 × sin 41.2◦

1.5
= 0.584

θ2 = sin−1 0.585 = 35.7◦

(c) Since the sides of the glass-walled fish tank are parallel, we can again apply

Snell’s law at the air-glass interface to calculate θ1 as follows:

n1 sin θ1 = n2 sin θ2

Thus: sin θ1 = n2 sin θ2

n1
= 1.5 × sin 35.7◦

1
= 0.875

θ1 = sin−1 0.875 = 61◦

17.4 Chromatic Dispersion and Prisms

Except in vacuum, the index of refraction depends on the light’s wavelength, i.e. its

color, see Sect. 27.7. Therefore if a beam of light consists of rays of different wave-

lengths (as in the case of white light), each ray will refract by a different angle from

a surface. This spread of light is called chromatic dispersion, or simply dispersion.

Generally, the index of refraction n decreases with increasing wavelengths. This

means that the violet light (with wavelength λ � 425 nm and index n = 1.3435) bends

more than the red light (with wavelength λ � 700 nm and index n = 1.3318) when

passing through the interface between two materials. Figure 17.9a shows this for a

glass block, and Fig. 17.9b shows this for a glass prism.

The prism of Fig. 17.9b is more commonly used to observe color separation of

white light because the dispersion at the first surface is enhanced at the second
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interface. Thus, the violet ray in the white light of Fig. 17.9b will emerge from the

right surface with an angle of deviation δV which is greater than the angle of deviation

δR of the red ray. The difference δV − δR is known as the angular dispersion, while

δY is the mean deviation of the yellow rays.

(a) (b)

Air

Glass Glass

White light

White light
VδRδ

A

R

V

R

V

Fig. 17.9 A schematic representation of the dispersion of white light. The violet color is bent more than

the red color. (a) Dispersion in a glass block. (b) Dispersion in a prism

The general expression of δ for any color turns out to be rather complicated.

However, as the angle of incidence decreases from a large value, the angle of deviation

δ is found to decrease at first and then increase. The angle of minimum deviation δm

is found when the ray passes through the prism symmetrically. This angle is related

to the angle of the prism A, and its index of refraction n by the relation:

n = sin[(A + δm)/2]
sin(A/2)

−−−−−−−−−−→
When A is small

n = A + δm

A
(17.12)

The most charming example of color dispersion is that of a rainbow. To understand

the formation of a rainbow we consider a horizontal overhead white sunlight that

is intercepted by spherical raindrops. Figure 17.10 shows refractions and reflection

in two raindrops that explain how light rays from the Sun reach an observer’s eye.

The first refraction separates the sunlight into its color components. Each color is

then reflected at the raindrop’s inner surface. Finally, a second refraction increases

the separation between colors, and these color rays finally make it to the observer’s

eye. Using Snell’s law and geometry, we find that the maximum deviation angles of

red and violet are about 42 and 40◦, respectively. The rainbow that you can see is a

personal one because different observers receive light from different raindrops.



17.4 Chromatic Dispersion and Prisms 573
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Fig. 17.10 A sketch of a rainbow formed by horizontal sunlight rays. Only two enlarged raindrops are

used to explain the rainbow’s formation for the case of the red and violet colors only

Example 17.4

A monochromatic light ray is incident from air (with index n1 = 1) onto an equi-

lateral glass prism (with index n2 = 1.5) and is refracted parallel to one of its faces

(i.e. we have a symmetric ray), see Fig. 17.11. (a) What is the angle of incidence

θ1 at the first face? (b) What is the subsequent angle of incidence at the second

face? (c) Is the light ray totally reflected at the second face? If not, find the angle

of minimum deviation of the light ray. Then check that Eq. 17.12 holds.

Fig. 17.11
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Solution: (a) The path of a symmetric light ray going through the prism (of apex

angle 60◦) and back out again into the air is shown.

Using elementary geometry, this figure shows that the angle of refraction θ2

can be found as follows:

θ2 + 60◦ = 90◦

Thus: θ2 = 30◦
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Therefore, using Snell’s law:

n1 sin θ1 = n2 sin θ2

We get: θ1 = sin−1
(

n2 sin θ2

n1

)

= sin−1
(

1.5 × sin 30◦

1

)

= sin−1(0.75) = 48.59◦

(b) Again, by simple geometry the horizontal light ray inside the prism must

be incident on the second face with an angle θ ′
1 = θ2 = 30◦.

(c) We know that if the incident angle is greater than the critical angle, then

total internal reflection must occur. Therefore, we first calculate the critical angle

as follows:

θc = sin−1 n1

n2

= sin−1 1

1.5

= sin−1 0.666

= 41.8◦

Since θ ′
1 < θc, then the light ray refracts at the second face, and total internal

reflection will not occur.

Using the geometry shown in the figure, we can find for this special case that

the angle of minimum deviation is given by the following relation:

δm = 2(θ1 − θ2)

= 2(48.59◦ − 30◦)

= 37.18◦

Substituting A = 60◦ and δm = 37.18◦ in Eq. 17.12 gives:

n2 = sin[(A + δm)/2]
sin(A/2)

= sin[(60◦ + 37.18◦)/2]
sin(60◦/2)

= 0.75

0.5
= 1.5
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This value of n2 obtained from Eq. 17.12 satisfies the given value of index of

refraction of the prism.

17.5 Formation of Images by Reflection

Mirrors gather and redirect light rays to form images of objects by reflection.

To explain this, we will use the ray approximation model in terms of geometric

optics, in which light travels in straight lines.

17.5.1 Plane Mirrors

A plane mirror is a plane surface that can reflect a beam of light in one direction

instead of either scattering it in many directions or absorbing it.

Figure 17.12a shows how a plane mirror can form an image of a point object O

located at a distance p from the mirror. In this figure, we consider two diverging rays

leaving O and strike the mirror and then are reflected to the eye of an observer. The

rays appear to diverge from point I behind the mirror. Thus, point I is the image of

point O. The geometry of the figure indicates that the image I is opposite to object

O and is located at a distance as far behind the mirror as the object is in front of the

mirror.

(b) 

Mirror

p
IO

i
q q

q
q

Mirror

I
i

h′h

qq

q

q

O
p

(a) 
Front side Back side Front side Back side

Fig. 17.12 A geometric sketch that is used to depict an image of an object placed in front of a plane

mirror. (a) An image formed for a point object. (b) An image formed by an extended object, where the

object is an upright arrow of height h
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Figure 17.12b shows how a plane mirror can form an image of an extended object

O. The object in this figure is an upright arrow of height h placed at a distance p from

the mirror. The full image can be inferred by locating the images of selected points

on the object. One of the two rays at the tip of the arrow follows a horizontal path

to the mirror and reflects back on itself. The second ray follows an oblique path and

reflects according to the laws of reflection, as shown in the figure. Using geometry

we find that the image I is upright, opposite to the object, and located behind the

mirror at a distance equal to the object’s distance in front of the mirror. In addition,

the height of the object and its image are equal. Also, the geometry of Fig. 17.12b

indicates that h′/h = i/p.

The image I in both parts of Fig. 17.12 is called a virtual image because no light

rays pass through it. In addition, the value of i is considered to be negative since the

image is behind the mirror and the value of h′ is considered to be positive since the

image is upright.

We define the lateral magnification M of a horizontal overhead image as follows:

M = Image height

Object height
= h′

h
(17.13)

We can use the relation h′/h = i/p and the sign convention to write the lateral mag-

nification M as follows:

M = h′

h
= − i

p
(17.14)

For plane mirrors, M = 1, since h′ is positive and equal to h, or i is negative and has

a magnitude equal to p. The image formed by a plane mirror is upright but reversed.

The reversal of right and left is the reason why the word AMBULANCE is printed

as “ ” across the front of ambulance vehicles. People driving in front

of such an ambulance can see the word “AMBULANCE” immediately evident when

looking in their rear-view mirrors and make way.

17.5.2 Spherical Mirrors

A spherical mirror is simply a mirror in the shape of a small section of the surface of

a sphere that has a center C and radius R. When light is reflected from the concave
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surface of the mirror, the mirror is called a concave mirror. However, when light is

reflected from the convex surface of the mirror, the mirror is called a convex mirror.

Focal Point of a Spherical Mirror

The principal axis (or the symmetry axis) of a spherical mirror is defined as the

axis that passes through its center of curvature C and the center of the mirror c, see

Fig. 17.13. We consider the reflection of light coming from an infinitely far object

O located on the principal axis of a concave or convex spherical mirror. Because of

the great distance between the object and the mirror, the light rays reach the mirror

parallel to its principal axis.

(a) (b) 

cC F

R
f

CF

R
f

Concave mirror

c

Real focal point Virtual focal point

Front side Back side Front side Back side

Principal
 axis

Principal
 axis

Convex mirror

Fig. 17.13 (a) Two parallel light rays will meet at a real focal point after reflecting from a concave

mirror. (b) The same rays will diverge from a convex mirror and appear to come from a virtual focal point

When parallel rays reach the surface of the concave mirror of Fig. 17.13a, they

will reflect and pass through a common point F. If we place a card at F, a point image

would appear at F. Therefore, this point is called the real focal point. However, in

the case of the convex mirror of Fig. 17.13b, the parallel rays reflect from the mirror

and appear to diverge from a common point F behind the mirror. If we could place

a card at F, no image would appear on the card. Therefore, this point is called the

virtual focal point. The distance f from the center of the mirror to the focal point

(real or virtual) is called the focal length of the mirror.

For concave and convex mirrors, the following relation relates the focal length f

to the radius of curvature R:

f = R

2
(Spherical mirror) (17.15)
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17.5.2.1 Concave Mirrors

Sharp and Blurred Images

Rays that diverge from any point on an object and make small angles with the principal

axis (called paraxial rays) will reflect from the spherical concave mirror and intersect

at one image point. See Fig. 17.14a for a point object on the principal axis. On the

other hand, rays that diverge from the same point and make large angles with the

principal axis will reflect and intersect at different image points, see Fig. 17.14b. This

condition is called spherical aberration.

(a) (b)

c

Small angles incidence

I
O

c

O

I2I1

Large angles incidence

Sharp image blurred image

Fig. 17.14 (a) When rays diverge from point object O at small angles with the principal axis, they all

reflect from the spherical concave mirror and meet at the same point image I. (b) When rays diverge

from O at large angles with the principal axis, they reflect from the spherical concave mirror and meet at

different points I1, I2, . . .

The Mirror Equation

The relationship between an object’s distance p, its image distance i, and the focal

length f of a concave mirror can be found when light rays make small angles with

the principal axis (paraxial rays). Figure 17.15a shows two rays (leaving an object O

of height h) reflected to form an image I of height h′. The first ray strikes the mirror

at its center c and is reflected. The second ray passes through the focal point F and

reflects parallel to the principal axis.

From the purple triangles of Fig. 17.15a, we see that:

tan θ = h

p
= h′

i
⇒ h′

h
= i

p
(17.16)

From the yellow triangles of Fig. 17.15b, we see that:

tan α = h

p − f
= h′

f
⇒ h′

h
= f

p − f
(17.17)
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(b)
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a

(a)

Front Front

h

Fig. 17.15 (a) Intersection of two rays produced by a spherical concave mirror to form an image of the

tip of an arrow. (b) Demonstration of the geometry produced by only the second ray

By comparing Eqs. 17.16 and 17.17, we find that:

i

p
= f

p − f
⇒ ip − if = pf (17.18)

Dividing both sides of this equation by pif, we get:

1

p
+ 1

i
= 1

f
(17.19)

Equation 17.19 is known as the mirror equation for spherical mirrors, and this

expression holds when we interchange p and i, i.e. when we can replace the object

O by the image I and vice versa. For a given value of f, we notice the following for

concave mirrors:

• When p > f , the image distance i is positive. A positive value of i means that the

image is real and inverted. See Fig. 17.16a,b for images smaller or larger than the

object.

• When p < f , the mirror equation is satisfied by a negative value of the image dis-

tance i. The negative image distance means that the image is virtual. When we

extend two rays from the object we find that the virtual image is upright and

enlarged, see Fig. 17.16d.

If we use this sign convention in the lateral magnification Eq. 17.13, then we can also

write M as follows:

M = h′

h
= − i

p
(17.20)

We get an upright image for positive values of M and an inverted image for negative

values of M as shown in Fig. 17.16.
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(d)
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I

(i = +∞)

Real image

Real image

I

Fig. 17.16 (a) An object O outside the center of curvature C. (b) The object between the focal point F

and C. (c) The object at F. (d) The object inside the focal point F and its virtual upright image I

17.5.2.2 Convex Mirrors

Convex mirrors like those shown in Fig. 17.17 are called diverging mirrors. The

images formed by these types of mirrors are virtual because the reflected rays appear

to originate from an image behind the mirror. Furthermore, the images are always

upright and smaller than the object. Because of this feature, these types of mirrors

are often used in stores to prevent shoplifting.

CF

R

Virtual focal point

Front side Back side

Principal
axisO

Virtual
image

I

Convex mirror

f

c

Fig. 17.17 When the object O is in front of a convex mirror, the image is virtual, upright, and smaller

than the object
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We can use Eqs. 17.19 and 17.20 for either concave or convex spherical mirrors

if we stick to the sign conventions presented in Table 17.2. This table gives the sign

conventions for the quantities f, i, h′, and M.

Table 17.2 Sign conventions for spherical mirrorsa

Quantity Symbol Positive values when Negative values when

Focal length f The mirror is concave The mirror is convex

Image location i The image is in front of The image is in behind the

mirror (real image) mirror (virtual image)

Image height h′ The Image is upright The Image is inverted

Magnification M The Image is upright The Image is inverted
a The object location p and its height h are both positive

Example 17.5

A concave mirror has a focal length of 10 cm. Locate and describe the image

formed by an object having distances: (a) p = 25 cm, (b) p = 15 cm, (c) p = 10 cm,

and (d) p = 5 cm.

Solution: Concave mirrors have a positive focal length, i.e. f = +10 cm. (a) To

find the image distance, we use Eq. 17.19 as follows:

1

p
+ 1

i
= 1

f
⇒ 1

25 cm
+ 1

i
= 1

10 cm
⇒ 1

i
= 1

10 cm
− 1

25 cm
1

i
= 25 cm − 10 cm

250 cm2 ⇒ 1

i
= 15

250 cm
⇒ i = 50

3
cm

The positive sign of i indicates that the image is real and located on the front

side of the mirror. The magnification of the image can be determined using

Eq. 17.20 as:

M = − i

p
= −50/3 cm

25 cm
⇒ M = −2

3

The negative sign of M indicates that the image is inverted. In addition, the image

is reduced (66.7% of the size of the object) because the absolute value of M is

less than unity, see Fig. 17.16a.

(b) When p = 15 cm, the mirror and magnification equations give:

1

15 cm
+ 1

i
= 1

10 cm
⇒ 1

i
= 1

10 cm
− 1

15 cm
⇒ i = 30 cm
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M = − i

p
= −30 cm

15 cm
⇒ M = −2

The image is real when i is positive, inverted when M is negative, and enlarged

when |M| > 1, see Fig. 17.16b.

(c) When p = 10 cm, the mirror equation gives:

1

10 cm
+ 1

i
= 1

10 cm
⇒ i = ∞

This means that the reflected rays are parallel to one another and formed at an

infinite distance from the mirror, see Fig. 17.16c.

(d) When p = 5 cm, the mirror and magnification equations give:

1

5 cm
+ 1

i
= 1

10 cm
⇒ 1

i
= 1

10 cm
− 1

5 cm
⇒ i = −10 cm

M = − i

p
= − (−10 cm)

5 cm
⇒ M = +2

The image is virtual (or behind the mirror) because i is negative, upright because

M is positive, and enlarged (twice as large) because M is greater than unity, see

Fig. 17.16d.

Example 17.6

An anti-shoplifter convex spherical mirror has a radius of curvature of 0.4 m.

Locate and describe the image formed by a man standing 3.8 m away from the

mirror.

Solution: The focal length of a mirror is half of its radius of curvature, but for a

convex mirror, the focal length that must be used in the mirror equation is:

f = −R/2 = −0.2 m

When f = −0.2 m and p = 3.8 m, the mirror and magnification equations give:

1

p
+ 1

i
= 1

f
⇒ 1

3.8 m
+ 1

i
= − 1

0.2 m

1

i
= − 1

0.2 m
− 1

3.8 m
⇒ i = −0.19 m
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M = − i

p
= − (−0.19 m)

3.8 m
⇒ M = +0.05

The image is virtual (or behind the mirror) because i is negative, upright because

M is positive, and reduced (5% of the man’s size) because M is less than unity.

17.6 Formation of Images by Refraction

Lenses gather and redirect light rays to form images of objects by refraction. Again,

we will use the ray-approximation model of geometric optics in which light travels

in straight lines to form images.

17.6.1 Spherical Refracting Surfaces

Consider two transparent media having indices of refraction n1 and n2 and the bound-

ary between them is a spherical surface of radius R, see Fig. 17.18. Assume a point

object O exists in the medium with an index of refraction n1. In addition, assume that

all rays make small angles with the principal axis (paraxial rays) when they leave O

and focus at point I after being refracted at the spherical surface.

Fig. 17.18 Geometry used to

derive Eq. 17.26 for n1 < n2

R
IO C

1q 2θ
1n 2n

a b g

A

p i

1          2n      n<

Front Back

Applying Snell’s law on the single ray of Fig. 17.18 gives:

n1 sin θ1 = n2 sin θ2 (17.21)

Because θ1 and θ2 are assumed to be small angles, we use the small-angle approxi-

mation sin θ ≈ θ , where θ is measured in radians, to have:

n1 θ1 = n2 θ2 (17.22)
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Next, we use the rule that an exterior angle of any triangle equals the sum of the two

opposite interior angles. Applying this rule to triangles OAC and AIC of Fig. 17.18,

we get:

θ1 = α + β and β = θ2 + γ (17.23)

where α, β, and γ are also small angles. Eliminating θ1 and θ2 from the last two

equations gives:

n1 α + n2 γ = (n2 − n1)β (17.24)

From the figure we find that the following holds true for paraxial rays:

tan α ≈ α ≈ �

p
tan β ≈ β ≈ �

R
tan γ ≈ γ ≈ �

i
(17.25)

When substituting these expressions into Eq. 17.24 and eliminating h from the result,

we get the following relation:

n1

p
+ n2

i
= n2 − n1

R
(17.26)

which is valid regardless of which index of refraction is greater. We notice that for

a fixed object distance p, the image distance i is independent of the small angle that

the paraxial ray makes with the axis. Therefore, we conclude that all paraxial rays

from point O focus at the same point I. The magnification is given by:

M = h′

h
= − n1 i

n2 p
(17.27)

Again, we must use a sign convention if we want to apply Eq. 17.26 to a variety of

cases; see Table 17.3. We define the side of the surface in which light rays originate

as the front side. The other side is called the back side and is the side in which real

images are formed.

17.6.2 Flat Refracting Surfaces

When the refracting surface is flat, its radius of curvature R is infinite (i.e. R = ∞)

and Eq. 17.26 reduces to:

i = −n2

n1
p (17.28)
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where the sign of i is opposite that of p. Thus, according to Table 17.3, the image

formed by a flat refracting surface is on the same side of the surface as the object,

see Fig. 17.19.

Table 17.3 Sign conventions for refracting surfacesa

Quantity Symbol Positive values when Negative values when

Radius R The center of curvature is
behind the surface

The center of curvature is in
front of the surface

Image location i The image is in behind the
surface (real image)

The image is in front of the
surface (virtual image)

Image height h′ The image is upright The image is inverted

Magnification M The image is upright The image is inverted
a When the object is in front of the surface, the object location p and its height h are positive.

Fig. 17.19 A virtual image

formed by a flat refracting

surface when n1 > n2. All rays

are assumed to be paraxial I
O

1n

p i

Front Back

1 2n n>

2n

Example 17.7

A small fish is at a distance p below the water surface, see Fig. 17.20. The index

of refraction of water and air are n1 = 1.33 and n2 = 1, respectively. What is the

apparent depth of the fish as viewed by an observer directly above the water?

Fig. 17.20

p

i

1 1.33n =

2 1n =
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Solution: For flat refracting surfaces, we use Eq. 17.28 to find the location of the

image. Thus:

i = −n2

n1
p = − 1

1.33
p = −0.752 p

The image of the fish is virtual because i is negative (both the object and image are

in front of the flat surface in water). The apparent depth of the fish is approximately

3/4 of the actual depth.

17.6.3 Thin Lenses

A lens is a transparent object with two refracting surfaces of different radii of curva-

ture R1 and R2 but with a common principal axis, and when light rays bend across

these surfaces we get the image of an object.

When a lens converges light rays parallel to the principal axis, we call it a con-

verging lens, see Fig. 17.21a. If instead it causes such rays to diverge, we call it a

diverging lens, see Fig. 17.21b.

Fig. 17.21 (a) An

enlargement of the top part of

a converging lens. (b) An

enlargement of the top part of

a diverging lens

1R 2R

Converging lens

1R

2R

Diverging lens

n n

(a) (b)

The Thin Lens Equation

First, we consider a thick glass lens bounded by two spherical surfaces, air-to-glass

and glass-to-air. This lens is defined by the radii R1 and R2 of the two surfaces, its

thickness 	, and its index of refraction n, see Fig. 17.22.

Let us begin with an object O placed at a distance p in front of surface 1 of radius

R1. Using Eq. 17.26 with n1 = 1 and n2 = n, the position i1 of image I1 formed by

surface 1 satisfies the equation:

1

p
+ n

i1
= n − 1

R1
(17.29)
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Fig. 17.22 When we ignore the existence of surface 2 (of radius R2): (a) the first possibility is that an

object O produces a real image I1 by surface 1 (of radius R1), and (b) The other possibility is that the

image I1 is virtual. Point C1 is the center of curvature of surface 1

The position i1 is positive in Fig. 17.18a when the image I1 is real and negative in

Fig. 17.18b when the image I1 is virtual. In both cases, it seems as if I1 is formed in

the lens material with index n.

Next, we consider the image I1 as a virtual object placed at a distance p1 in front

of surface 2 of radius R2. Again, applying Eq. 17.26 with n1 = n and n2 = 1, the

position i of the final image I formed by surface 2 satisfies the equation:

n

p1
+ 1

i
= 1 − n

R2
(17.30)

We note from Fig. 17.22a, b that p1 = −i1 + 	, where i1 is positive for real images and

negative for virtual objects. For thin lenses, 	 is very small and therefore p1 � − i1.

Thus, the last equation becomes:

− n

i1
+ 1

i
= 1 − n

R2
(For thin lenses) (17.31)

Adding Eqs. 17.29 and 17.31, we get:

1

p
+ 1

i
= (n − 1)

(
1

R1
− 1

R2

)
(17.32)

The focal length f of a thin lens is obtained when p → ∞ and i → f in this equation.

Thus, the inverse of the focal length for a thin lens is:

1

f
= (n − 1)

(
1

R1
− 1

R2

)
(17.33)

which is called the lens-makers’ equation because it can be used to determine R1

and R2 for the desired values of n and f.
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In conclusion, a thin lens of index n and two surfaces of radii R1 and R2 has an

equation identical to the mirror equation, written as:

1

p
+ 1

i
= 1

f
, where

1

f
= (n − 1)

(
1

R1
− 1

R2

)
(17.34)

This is called the thin-lens equation. The sign conventions for R1 and R2 are pre-

sented in Table 17.3. Just as with mirrors, the thin lens lateral magnification is:

M = h′

h
= − i

p
(17.35)

Since light rays can travel in both directions of a lens, then each lens has two focal

points F1 and F2. Both focal points are at the same distance f (the focal length) from

a thin lens. The focal length f is the same for light rays passing through a given lens

in either direction. This is illustrated in Fig.17.23 for a biconvex lens (converging

lens) and a biconcave lens (diverging lens).

1F 2F 1F 2F

f f

1F
2F

f

1F
2F

f
(a) (b)

Fig. 17.23 Parallel rays passing through: (a) a converging lens, and (b) a diverging lens

Ray Diagrams for Thin Lenses

Ray diagrams are convenient tools that help us locate images formed by thin lenses.

They also clarify our sign conventions. For the purpose of locating an image, we

only use two special rays drawn from the top of the object to the top of the image as

follows:

• Ray 1 starts parallel to the principal axis.

– For a converging lens, the ray is refracted by the lens and passes through the

focal point F2 on the back side of the lens.

– For a diverging lens, the ray is refracted by the lens and appears to originate

from the focal point F1 on the front side of the lens.
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• Ray 2 passes through the center of the lens and continues in a straight line.

Figure 17.24 shows such ray diagrams for converging and diverging lenses.

1F

2F

1F 2F

Front Back Front Back

O
I

OI

1F 2F

Front Back
O

(a) (b)

I

(c)

Fig. 17.24 Ray diagrams for locating the image formed by a thin lens. (a) An object in front of a

converging lens (double convex lens). When the object is outside the focal point, the image is real, inverted,

and on the back side of the lens. (b) When the object is between the focal point and the converging lens

(double convex lens), the image is virtual, upright, larger than the object, and on the front side of the lens.

(c) When an object is anywhere in front of a diverging lens (double concave lens), the image is virtual,

upright, smaller than the object, and on the front side of the lens

When using Eq. 17.34, it is very important to use the proper sign conventions

introduced in Table 17.4.

Table 17.4 Sign conventions for thin lenses

Quantity Symbol Positive values when Negative values when

Radii R1 or R2 The center of curvature is in
back of lens

The center of curvature is in
front of the lens

Object location p The object is in front of lens
(real object)

The object is in back of lens
(virtual object)

Image location i The image is in back of lens
(real image)

The image is in front of lens
(virtual image)

Image height h′ The Image is upright The Image is inverted

Magnification M The Image is upright The Image is inverted

Table 17.5 shows a comparison of the image positions, magnifications, and types

of images formed by convex and concave lenses when an object is placed at various
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positions, p, relative to the lens. Notice that a converging (biconvex lens) can produce

real images or virtual images, whereas a diverging (biconcave) lens only produces

virtual images.

Table 17.5 Properties of a single spherical lens system

Type of lens f p i M Image

p > 2 f 2 f > i > f Reduced
inverted

Real

Converging lens
(Biconvex lens)

+ 2 f > p > f i > 2 f Enlarged
inverted

Real

f > p > 0 |i| > p
(Negative)

Enlarged
upright

Virtual

Diverging lens
(Biconcave lens)

− p > 0 |f | > |i| > 0
(Negative)

Reduced
upright

Virtual

∗ Combination of Thin Lenses

To understand and locate the image produced by two lenses, we follow two steps.

The first image formed by the first lens is located as if the second lens were not

present. Then this first image is treated as a virtual object and we use the second lens

to find the final image. This procedure can be extended to three or more lenses.

Let us consider the case were two lenses of focal lengths f1 and f2 are in contact

with each other. If p is the object distance from the system and i1 the is image distance

produced by the first lens, then:

1

p
+ 1

i1
= 1

f1
(17.36)

and
M1 = − i1

p
(17.37)

This image is the object for the second lens. Since this image is behind the second

lens, it serves as a virtual object and its distance for the second lens is negative, i.e.

its distance to the second lens is −i1 (see Table 17.4). Therefore, the distance i of the

final image produced by the second lens satisfies:

− 1

i1
+ 1

i
= 1

f2
(17.38)

and M2 = − i

(−i1)
= i

i1
(17.39)
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Adding the two Eqs. 17.36 and 17.38 gives:

1

p
+ 1

i
= 1

f
, where

1

f
= 1

f1
+ 1

f2
(17.40)

Thus, two thin lenses in contact are equivalent to a single thin lens of focal length f

given by f −1 = f −1
1 + f −1

2 . The overall magnification of the two lenses is:

M = M1 M2 = − i1
p

i

i1
= − i

p
(Thin lenses in contact) (17.41)

Example 17.8

A converging lens of focal length 20 cm forms an image of an object of height

30 cm located at a distance 40 cm from the lens. Locate and describe the image.

Draw two rays to locate the image.

Solution: A converging lens has a positive value for its focal length, i.e.

f = +20 cm. To find the image distance when p = 40 cm and f = +20 cm, we

use Eq. 17.34 as follows:

1

p
+ 1

i
= 1

f
⇒ 1

40 cm
+ 1

i
= 1

20 cm
⇒ i = 40 cm

Consequently we have : M = − i

p
= −40 cm

40 cm
⇒ M = −1

The image is real and on the back side because i is positive, inverted because M

is negative, and as large as the object, see Fig. 17.25.

Fig. 17.25

1F

2F

Front Back

O

I1C

2C

1

2

Example 17.9

Repeat Example 17.8 using a diverging lens.

Solution: The diverging lens would have f = −20 cm. Thus:

1

p
+ 1

i
= 1

f
⇒ 1

40 cm
+ 1

i
= − 1

20 cm
⇒ i = −40/3 cm
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Consequently, we have: M = − i

p
= − (−40/3 cm)

40 cm
⇒ M = +1/3

The image is virtual and on the front side because i is negative, upright because

M is positive, and reduced because M is less than unity, see Fig. 17.26.

Fig. 17.26

1F 2F

Front Back

O

I1C

1

2

Example 17.10

An object is placed 20 cm from a symmetrical lens that has an index of refrac-

tion n = 1.65. The lateral magnification of the object produced by the lens is

M = −1/4. (a) Determine the type of the lens and describe the image. (b) What

is the magnitude of the two radii of curvature of the lens?

Solution: (a) Using the lateral-magnification equation, we have:

M = − i

p
= −1

4
⇒ i = p

4
= 20 cm

4
⇒ i = +5 cm

Because i is positive, the obtained image must be real. The only type of lens that

can produce a real image is a converging lens. According to Fig. 17.24a, the object

must be outside the focal point and the image must be inverted and on the back

side of the lens.

(b) To find the focal length f of the lens when p = 20 cm and i = +5 cm, we

use Eq. 17.34 as follows:

1

p
+ 1

i
= 1

f
⇒ 1

20 cm
+ 1

5 cm
= 1

f
⇒ f = 4 cm

From the general lens-makers’ Eq. 17.33, f is related to the radii of curvatures R1

and R2 of the two surfaces of the lens and its index of refraction n by the relation:

1

f
= (n − 1)

(
1

R1
− 1

R2

)
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For a symmetric lens, R1 and R2 have the same magnitude R. If R1 is for the

surface where the center of curvature is in the back of the lens, and R2 is for the

surface where the center of curvature is in the back of the lens, then using the sign

convention of Table 17.4, we have R1 = +R and R2 = −R. Thus:

1

f
= (n − 1)

(
1

R
− 1

−R

)
= 2(n − 1)

R
⇒ R = 2(n − 1) f ,

Hence, R = 2(n − 1) f = 2(1.65 − 1) × (4 cm) = 5.2 cm

Example 17.11

Two thin coaxial lenses 1 and 2, with focal lengths f1 = +24 cm and f2 = +9 cm,

respectively, are separated by a distance L = 10 cm; see part (a) of Fig. 17.27. An

object is placed 6 cm in front of lens 1. Locate and describe the image. Draw the

necessary sketches to show how you can reach to the answer.

Solution: We first ignore the presence of lens 2 and find the image I1 produced

by lens 1 alone, see part (b) Fig. 17.27. Equation 17.34 written for lens 1 leads to

the following steps:

1

p
+ 1

i1
= 1

f1
⇒ 1

6 cm
+ 1

i1
= 1

24 cm

i1 = −8 cm

Consequently, we have the following lateral magnification:

M1 = − i1
p

= − (−8 cm)

6 cm
⇒ M1 = +4/3

This tells us that image I1 is virtual (8 cm in front of lens 1), upright because M is

positive, and enlarged because M is greater than unity, see part (b) of Fig. 17.27.

For the second step, we ignore lens 1 and treat the image I1 as a virtual object

O1 in front of the second lens. The distance p1 between the virtual object O1 and

lens 2 is:

p1 = L − i1 = 10 cm − (−8 cm) = 18 cm

Equation 17.34 written for lens 2 leads us to the following:
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Front Back

O

I

(a)

Lens 1 Lens 2

(b)

O

Lens 1

Lens 2

p L

1I

p
1i

1f

1O

L

1 1p      L+ |i |=
2f

i

Front Back

(c)

F1 F1

F2 F2

Fig. 17.27

1

p1
+ 1

i
= 1

f2
⇒ 1

18 cm
+ 1

i
= 1

9 cm

i = +18 cm

Consequently, we have the following lateral magnification:

M2 = − i

p1
= −18 cm

18 cm
⇒ M2 = −1
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The final image is real because i is positive and on the back side of lens 2, inverted

because M is negative, and as large as the virtual object I1, see part (c) of Fig. 17.27.

The overall magnification of the two lenses is:

M = M1 M2 = i1
p

i

p1
= (−8 cm)

(6 cm)

(18 cm)

(18 cm)

M = −4/3

The final image is enlarged because |M| > 1. Notice that when L = 0, we get

M = −i/p as expected from Eq. 17.41.

17.7 Exercises

Section 17.2 Reflection and Refraction of Light

(1) A beam of light travels in vacuum and has a wavelength λ = 500 nm. The beam

passes through a piece of diamond (n = 2.4). What is the wave’s speed and

wavelength in diamond?

(2) Assume that the wavelength of a yellow beam of light in vacuum is λ = 600 nm,

and that the index of refraction of water is 1.33. (a) What is the speed of this light

when it travels in vacuum? (b) What is the speed of this light when it travels

in water? (c) What is the frequency of this light when it travels in vacuum?

(d) What is the wavelength of this light when it travels in water? (e) What is

the frequency of this light when it travels in water?

(3) A beam of light having a wavelength λ = 600 nm is incident perpendicular to a

glass plate of thickness d = 2 cm and index of refraction n = 1.5. (a) How long

does it take a point on the beam to pass through the plate? (b) Calculate the

number of wavelengths in the glass plate.

(4) At what angle must a ray of light traveling in air be incident on acetone

(n = 1.38) in order to be refracted at 30◦?

(5) The index of refraction of alcohol is n = 1.4. (a) What is the speed of light in

alcohol? (b) Find the angle of refraction in alcohol assuming light meets the

air-alcohol boundary at an angle of incidence of 60◦?

(6) A beam of light in air falls on a liquid surface at an angle of incidence of 55◦.

The liquid has an unknown index of refraction. (a) If the beam is deviated by

20◦, what is the value of n? (b) What is the speed of light in this liquid?
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(7) A beam of light in air strikes a glass plate at an angle of incidence of 53◦. If

the thickness of the glass plate is 2 cm and its index of refraction is 1.6, what

will be the lateral displacement of the beam after it emerges from the glass?

(8) A beam of light in air falls on water at an angle of incidence of 45◦ and then

passes through a glass block before it emerges out to air again. The surfaces

of water and glass are parallel and their indexes of refraction are 1.33 and

1.63, respectively. (a) What is the angle of refraction in water? (b) What is the

angle of refraction in glass? (c) Show that the incoming and outgoing beams

are parallel. (d) At what distance does the beam shift from the original if the

thickness of water and glass are both equal to 1 cm?

Section 17.3 Total Internal Reflection and Optical Fibers

(9) Diamond has a high index of refraction n = 2.42. To some extent, Diamond’s

“brilliance” is attributed to its total internal reflection. Find the critical angle

for the diamond-air surface.

(10) A beam of light passes from glass to water. The index of refraction of glass

and water are 1.52 and 1.333, respectively. (a) What is the critical angle of

incidence in glass? (b) If the angle of incidence in glass is 45◦, what is the

angle of refraction in water?

(11) As it travels through ice, light has a speed of 2.307 × 108 m/s. (a) What is the

index of refraction of ice? (b) What is the critical angle of incidence for light

going from ice to air? (c) If the angle of incidence in ice is 45◦, what is the

angle of refraction in air?

(12) As the sun sets, its rays are nearly tangent to the surface of water, see Fig. 17.28.

The index of refraction of water is 1.33. (a) At which angle from the normal

would the fish in the figure see the sun? (b) Refraction at the water-air boundary

changes the apparent position of the Sun. What is the apparent direction of the

Sun with respect to the fish (measured above the horizontal)?

(13) Figure 17.29 shows a sketch of an Optical fiber cable that has a length

L = 1.51 m, diameter of D = 251 µm, and index of refraction n = 1.3. A ray

of light is incident on the left end of the cable at an angle of incidence θ1 = 45◦.

(a) What is the critical angle of incidence for light going from inside the cable

to air? (b) Find the angle of refraction θ2 and the length �. Does the angle θ
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fulfill the condition of total internal reflection? (c) How many reflections does

the light ray make before emerging from the other end?

Fig. 17.28 See Exercise (12) Direction of the sun
 as seen by the fish

2n =1

1 1.33n =

Sun
Water

Air

Apperant 
position

L
Air

1θ
2θ
θ D1 1n =

2 1.3n =
Optical fiber

Fig. 17.29 See Exercise (13)

(14) Using the figure of Exercise 13, show that the largest angle of incidence θ1

for which total internal reflection occuring at the top surface is given by the

relation sin θ1 = √
(n2/n1)2 − 1. Now find the value of this angle using the data

of Exercise 13.

Section 17.4 Chromatic Dispersion and Prisms

(15) Find the difference in time needed for two short pulses of light to travel 12 km

through a fiber optics cable, assuming that the cable’s index of refraction for a

pulse of wavelength 700 nm is 1.5 and 1.53 for a pulse of wavelength 400 nm.

(16) A monochromatic light ray is incident from air (n1 = 1) onto one of the faces

of an equilateral prism that has an index of refraction n2 = 1.5, see Fig. 17.30.

If the angle of incidence θ1 is 40◦, then at what angle from the normal would

this ray leave the prism?
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Fig. 17.30 See Exercise (16)
Air n

Glass n

6060

60

1θ

2θ
3θ 4θ

120°

2

1

° °

°

(17) A narrow beam of white light is incident from air onto a plate of fused quartz

at an angle of incidence θ1 = 60◦; see Fig. 17.31. The index of refraction of

quartz for violet and red light is nV = 1.470 and nR = 1.458, respectively. Find

the angular width δV−δR between the violet and red light rays inside the quartz.

Fig. 17.31 See Exercise (17)

Air

Quartz

White light

R

V

Rδ

Vδ

1θ

(18) A prism has an index of refraction n = 1.5 and an apex angle A = 30◦. The

prism is set for minimum deviation by allowing a ray of monochromatic light

to pass through it symmetrically, as shown in Fig. 17.32. (a) Find the angle of

minimum deviation δm. (b) Find the value of the angle of incidence θ1.

Fig. 17.32 See Exercise (18)

Air

Glass

1θ

mδ
30°
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Section 17.5 Formation of Images by Reflection

(19) The height h of a man is 200 cm. The top of his hat t, his eyes e, and his feet

f are marked by dots on Fig. 17.33. In order for the man to be able to see his

entire length in a vertical plane mirror, he needs a mirror of height H, as shown.

The figure also shows two paths, one for the light ray leaving his hat t and

entering his eyes e, and another for the light ray leaving his feet f and again

entering his eyes e. (a) Find the height H of the mirror. (b) Use two rays to

make a geometric sketch for the location and the height of the man’s image.

Fig. 17.33 See Exercise (19)

e

f

H

a
b

c
Mirrorh

t

p

(20) A concave mirror has a radius of curvature of 1.5 m. Where is the focal point

of this mirror?

(21) A concave mirror has a focal length f = +0.2 m. An object of height 3 cm is

placed 0.1 m along its principal axis. Locate and describe the image formed by

the mirror.

(22) Repeat Exercise 21 using a convex mirror.

(23) Assume a spherical concave mirror has a positive focal length | f |. Use the

mirror equation 1/p + 1/i = 1/| f | to determine where an object must be placed

if the image created has the same size as the object, i.e. when M = |− i/p| = 1.

(24) Assume a spherical convex mirror has a negative focal length −| f |. Use the

mirror equation 1/p + 1/i = −1/| f | to show that the condition M = |−i/p| = 1

cannot not be satisfied.
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(25) Six objects are located at the following positions from a spherical mirror:

(i) p = ∞, (ii) p = 15 cm, (iii) p = 10 cm, (iv) p = 7.5 cm, (v) p = 5 cm,

and (vi) p = 2.5 cm. Locate and describe the image for each object when the

spherical mirror is: (a) concave, with a focal length of 5 cm, (b) convex, with a

focal length of 5 cm.

(26) Repeat Exercise 25, this time sketching the lateral magnification M for each

object’s location p.

Section 17.6 Formation of Images by Refraction

(27) (a) A cylindrical glass rod (n2 = 1.6) has a hemispherical end of radius

R = 2 cm. An object of height h = 0.2 cm is placed in air (n1 = 1) on the axis

of the rod at a distance p = 6 cm from the spherical vertex, see Fig. 17.34.

(a) Locate and describe the image. (b) Repeat part (a) when p = 2 cm.

Fig. 17.34 See Exercise (27)

I

C

1          2n  < n 

Front O

Back
1n  =1 2n   =1.5

h
h'

R
p i

(28) A spherical fish bowl filled with water (n1 = 1.33) has a radius of 15 cm.

A small fish is located at a horizontal distance p = 20 cm from the left side

of the bowl, see Fig. 17.35. Neglecting the effect of the glass walls of the bowl,

where does an observer see the fish’s image? What is the lateral magnification

of the fish?

Fig. 17.35 See Exercise (28)

1 1.33n

2 1n =

i

p

I

O
Back Front
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(29) (a) An object is placed 30 cm from a converging lens with a 10 cm focal length.

Find the position of the image and its lateral magnification. Is the image real or

virtual? Is it upright or inverted? (b) Repeat part (a) for an object placed 5 cm

away.

(30) Repeat Exercise 29 with a diverting lens.

(31) Use a ray diagram to explain the results of Exercises 29 and 30.

(32) An object is placed 20 cm from a symmetrical lens that has an index of refrac-

tion n = 1.6. The lateral magnification of the object produced by the lens is

M = 1/4. (a) Determine the type of the lens used and describe the image.

(b) What are the values of the two radii of curvature of the lens?

(33) A thin converging lens of focal lens f1 = +15 cm is placed in contact with a

thin diverging lens of unknown focal length f2. Find f2 when incident Sunrays

on the converging lens are focused by this combination at a point 25 cm behind

the diverging lens.

(34) A converging lens of focal lens f1 = +2 cm is placed at a distance L = 4 cm

in front of a diverging lens of focal lens f2 = −14 cm. An object is placed at

infinite distance from the converging lens. Where will the object be focused?

(35) Repeat Exercise 34 with f1 = +10 cm and f2 = −16 cm.

(36) Two lenses with focal lenses f1 = +16 cm and f2 = +20 cm are at a distance

L = 64 cm apart. An object is placed 48 cm in front of the first lens. Locate and

describe the image formed by the system.

(37) Repeat Exercise 36 with L = 19 cm.

(38) A converging lens of f2 = +17 cm is placed behind a diverging lens of unknown

focal lens f1 by a distance L = 12 cm. Find f1 when parallel light rays strike the

diverging lens and leave the converging lens parallel.

(39) Repeat Exercise 38 when the two lenses exchange positions.

(40) An object is moving with velocity v = −dp/dt toward a converging lens of

focal length f such that p > f . Find the image velocity di/dt as a function of p.

Find p when v = di/dt.



Interference, Diffraction 18and Polarization of Light

In this chapter we treat light as waves to study interference, diffraction, and polar-

ization. This study is known as wave optics or physical optics.

We found in Chap. 16 that the superposition of two sound waves could be con-

structive or destructive. The same phenomena can be observed with light waves.

When a resultant wave at a given position or time has an amplitude larger than

the individual waves, we refer to their superposition as constructive interference.

However, when a resultant wave has an amplitude smaller than the individual waves,

we refer to their superposition as destructive interference.

18.1 Interference of Light Waves

If you have two ordinary light bulbs, incandescent or fluorescent, the light waves they

emit have random phases. These phases change in time intervals that are less than a

nanosecond apart; thus, the conditions for constructive and destructive interference

are maintained for only very short time intervals, too short for our eyes to notice.

Such light sources are said to be incoherent.

Spotlight

To observe detailed interference effects in light waves, the following conditions

must be fulfilled:
• The sources must be coherent, i.e., they must maintain a constant phase

with respect to each other.

• The sources must be monochromatic, i.e., of a single wavelength.

H. A. Radi and J. O. Rasmussen, Principles of Physics, 603
Undergraduate Lecture Notes in Physics, DOI: 10.1007/978-3-642-23026-4_18,
© Springer-Verlag Berlin Heidelberg 2013
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A common method for observing interference is to allow a single monochromatic

light source to split to form two coherent light sources and then allow the light waves

from the two sources to overlap. This can be achieved by using the diffraction of

light waves from a small opening as introduced in Fig. 17.2. Figure 18.1 shows the

overlap of monochromatic coherent light waves after being diffracted from two slits

when λ ≈ a, where a is the width of each slit.

Fig. 18.1 Spreading of light

waves from each slit (which is

known as diffraction) ensures

overlapping of waves, and

hence interference effects can

be observed when the light

from the two slits arrive at a

viewing screen (which is not

shown in this figure)

Wave Fronts

Ray

a

a

a

18.2 Young’s Double Slit Experiment

Figure 18.2 shows a schematic diagram of the apparatus used by Thomas Young

in 1801 to demonstrate the interference of light waves. Plane monochromatic light

waves arrive at a barrier that has two parallel slits S1 and S2. These two slits serve as

a pair of coherent light sources because the emerging waves originate from the same

wave front and hence have the same phase relationship.

Diffraction of the light by the two slits sends overlapping waves into the region

between the barrier and the viewing screen. When light waves from the two slits

combine constructively at any location on the screen, they produce a bright band.

On the other hand, when light from the two slits combine destructively at any location

on the screen they produce a dark band. These bands are called fringes, and the

pattern of bright and dark fringes is called an interference pattern. Figure 18.2b

shows a representation of the interference pattern observed on the screen.
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λ

Wave Fronts
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Max

Min

Max

Min

Max

Min

(b)(a)

Screen

Barrier

1S

2S

2SWave fronts from 

Wave fronts from  1S

Fig. 18.2 (a) When light waves are diffracted from the two slits S1 and S2, waves overlap and undergo

interference. Constructive interference in the region between the barrier and screen is represented by red

circles on the red lines. Destructive interference is represented by the yellow lines. (b) Representation of

the photograph that we get for the interference pattern in Young’s double slit experiment

With the help of Fig. 18.3a, we can quantitatively specify the positions of bright

and dark fringes in Young’s experiment. In this figure, we show the following:

• Light waves of wavelength λ illuminating a barrier having two narrow slits

• The two slits S1 and S2 are separated by a distance d

• Point Q is half way between the two slits

• The central line QO between the barrier and the screen has a distance D (where

D � d)

• Point P on the screen makes an angle θ above the central line QO. The central line

QO will be taken as a reference line for measuring positive angles above or below

the line

• The distance from P to S1 is r1, and the distance from P to S2 is r2.

The waves from S2 must travel a longer distance to reach point P than the waves

starting at S1. This difference �L in distance is called the path difference. When
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Wave Fronts
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Fig. 18.3 (a) Locating the fringes for Young’s double slit experiment geometrically (the figure is not

to scale). (b) For the condition D � d, we can approximate rays r1 and r2 as being parallel, making an

angle θ to the central line QO, and the path difference between the two rays is r2 − r1 = d sin θ

D � d, the rays r1 and r2 are approximately parallel. Using Fig. 18.3b the path

difference will be:
�L = |r2 − r1| � d sin θ (18.1)

Constructive interference (maximum light intensity) occurs at P when the two waves

are in phase (φ = 0,±2π,±4π, . . . rad), or when the path difference d sin θ is an

integer multiple of the wavelength λ. That is, when:

d sin θm = m λ (m = 0, 1, 2, . . .)

{
Maxima

Bright fringes

}
(18.2)

The number m for a bright fringe is called the fringe order number. The central

bright fringe at θm = 0, where m = 0, is called the zeroth-order maximum. The first

maximum on either sides of point O, where m = 1, is called the first-order maximum,

and so forth.

Destructive interference occurs at P when the path difference d sin θ is an odd

multiple of half the wavelength. That is when:

d sin θm = (m − 1
2 ) λ (m = 1, 2, 3, . . .)

{
Minima

Dark fringes

}
(18.3)

Similarly, the two waves reaching P at any time are completely out-of-phase

(φ = ±π,±3π,±5π, . . . rad), and hence a minimum light intensity is detected.

In this case, the first minimum on either side of point O, where m = 1, is called

the first-order minimum, and so forth.
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Using the triangle OPQ of Fig. 18.3a, we can find the location y, on either side

of point O, of a fringe from the relation:

y = D tan θ (18.4)

In addition to the conditions λ � a (where a is the width of each slit) and D � d,

we assume that λ � d. This assumption is valid only if θ is very small and hence

tan θ � sin θ. Therefore, y = D sin θ, or:

ym = D sin θm

{
Bright or dark fringes

when θm is very small

}
(18.5)

Substituting with sin θm into Eqs. 18.2 and 18.3, we get the following expressions

for the locations of bright and dark fringes above or below the central point O:

ym = m
λ D

d
(m = 0, 1, 2, . . .)

{
Bright fringes

for very small angles

}
(18.6)

ym = (m − 1
2 )

λ D

d
(m = 1, 2, 3, . . .)

{
Dark fringes

for very small angles

}
(18.7)

We can find the distance on the screen between the adjacent maxima or minima

near the origin O by finding the difference:

�y = ym+1 − ym

{
Bright or dark

fringes

}
(18.8)

Using Eq. 18.6, for bright fringes, we find:

�y = ym+1 − ym = (m + 1)
λ D

d
− m

λ D

d

Therefore:

�y = λ D

d

{
Above or below the central

point for very small angles

}
(18.9)

In other words, when the condition for small-angle approximation is valid, �y does

not depend on the order of the fringe m and the fringes are uniformly spaced. The

same result is true for dark fringes.
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Example 18.1

Two narrow slits are separated by 0.06 mm and are 1.2 m away from a screen.

When the slits are illuminated by light of unknown wavelength λ, we obtain a

fourth-order bright fringe 4.5 cm from the central line. Find the wavelength of the

light.

Solution: Using Eq. 18.6, with m = 4 and λ � d, we find that:

ym = m
λ D

d
⇒ λ = d ym

m D
⇒ λ = d y4

4 D

Thus: λ = (0.06 × 10−3 m)(4.5 × 10−2 m)

4 × 1.2 m
= 5.625 × 10−7 m = 563 nm

This wavelength is in the range of green light. The angle that this fringe makes

with the central line is θ4 = tan−1(y4/D)= 2.15◦.

Example 18.2

Two narrow slits are separated by 1.5 mm and are 3 m away from a screen. The

slits are illuminated by a yellow light of wavelength 589 nm from a sodium-vapor

lamp. Find the spacing between the bright fringes.

Solution: Using Eq. 18.9 when λ � d, we have:

�y = ym+1 − ym = λ D

d
= (589 × 10−9 m)(3 m)

1.5 × 10−3 m
= 1.178 × 10−3 m = 1.178 mm

Example 18.3

Two slits are separated by 0.4 mm and illuminated by light of wavelength 442 nm.

How far must the screen be placed in order for the first dark fringes to appear

directly opposite both slits?

Solution: Taking m = 1, d = 0.4 mm, y1 = 0.2 mm, and λ = 442 nm in Eq. 18.7,

see Fig. 18.4 , we get:

ym = (m − 1
2 )

λ D

d
⇒ D = 2 d y1

λ
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D = 2(4 × 10−4 m)(2 × 10−4 m)

442 × 10−9 m
= 0.36 m = 36 cm

Geometric optics incorrectly predicts bright regions opposite the slits.

Fig. 18.4

1S

2S

d

D

1y

1y
o

Bright

Dark

Bright

Bright

Dark

Light Intensity in the Double-Slit Experiment

Let us assume that the waves emerging from the two slits of Fig. 18.3a are two

sinusoidal electric fields having the same phase, wavelength λ, angular frequency

ω = 2π f , and amplitude E◦. When the two waves arrive at point P, their phase

difference φ depends on the path difference �L = |r2 − r1| � d sin θ. We can write

the magnitude of the electric field at point P due to each separate wave as:

E1 = E◦ sin(ω t),

E2 = E◦ sin(ω t + φ)

}
(18.10)

The superposition of E1 and E2, E = E1 + E2, can be calculated in a similar way as

in Sect. 16.6. Thus:

E = 2 E◦ cos

(
φ

2

)
sin

(
ω t + φ

2

)
(18.11)

We can prove that the intensity I of light waves at P is proportional to the square of

the resultant electric field averaged over one cycle. Thus:

I = I◦ cos2
(

φ

2

)
, I◦ = 4 Imax (18.12)

where I◦ is the peak intensity and Imax is the maximum intensity of one slit when the

second slit is closed.

Since a path difference of a complete wave length λ corresponds to a phase

difference of 2π rad, then one can relate the path difference�L to the phase difference

φ or vice-versa by the two relations:
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�L = φ

2π
λ

or

φ = 2π

λ
�L

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(18.13)

In the last form, when we replace �L by d sin θ, we get the following relation for

the phase:

φ = 2π d

λ
sin θ (18.14)

In addition, when we use the condition sin θ � tan θ, and replace tan θ by y/D as

shown in Fig. 18.3, we arrive at the following relation for the phase:

φ � 2π d

λ D
y (18.15)

Substituting the expression of φ from Eqs. 18.14 and 18.15 into Eq. 18.12, we get:

I = I◦ cos2
(

π d

λ
sin θ

)
(18.16)

I � I◦ cos2
(

π d

λD
y

)
(18.17)

Constructive interference occurs when π d y/λ D is an integer multiple of π,

corresponding to ym = m λ D/d, (m = 0, 1, 2, . . .). This is consistent with Eq. 18.6.

Figure 18.5 shows the variation of the intensity I against both d sin θ and φ, when

we satisfy both the conditions D � d and the small observation angle.

0 λ 2λλ2λ sind θ

φ0 2 π 4π2π4π

I Above the origin oBelow the origin o
I°

Fig. 18.5 A sketch showing intensity variations of a double-slit interference pattern as a function of the

path difference �L = d sin θ or the phase difference φ. This variation limit is true only for very small

values of θ



18.3 Thin Films—Change of Phase Due to Reflection 611

18.3 Thin Films—Change of Phase Due to Reflection

We saw that path differences can be used to generate a phase difference as given by

Eq. 18.13. Reflection is another method that we can use to generate a phase difference

for electromagnetic waves (especially light waves). Specifically, the reflection of light

from surfaces has the following effects:

• When a light wave traveling in a homogenous medium meets a boundary of higher

index of refraction, it reflects, undergoing a phase change of π rad (= 180◦).
• When a light wave traveling in a homogenous medium meets a boundary of lower

index of refraction, it reflects, undergoing no phase change.

These two rules can be deduced from Maxwell’s equations, but the treatment is

beyond the scope of this text. Fig. 18.6 summarizes these two rules.

3 1n =

1 1n =

2 1n n = >

Air

Air

π phase change due to reflection

No phase change
due to reflection

d

1 2

3 4

Exaggerated scale

Almost normal incidence

Fig. 18.6 When n1 < n2, light traveling in medium 1 will reflect from the surface between media 1 and 2

with 180◦ phase change. When n2 > n3, light traveling in medium 2 will reflect from the surface between

media 2 and 3 with no phase change. Rays 1 and 2 lead to interference of the reflected light, while rays 3

and 4 lead to interference of the transmitted light. All rays are drawn not quite normal to the surface, so

we can see each of them

The incoming ray in Fig. 18.6 is a light ray of wavelength λ that almost normally

strikes a thin transparent film of thickness d. This ray is reflected from the upper

surface of the film as ray 1 and has experienced a phase change φ1 = π rad relative to

the incident wave because n1 < n2. The transmitted ray has a wavelength λn = λ/n

and undergoes a second reflection at the lower surface without a phase change because

n2 > n3. This ray is transmitted back to the air as ray 2 after traveling an extra

distance 2 d before recombining in the air with ray 1. Thus, it has a phase change
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φ2 = (2π/λn)(2d) due to the additional path length. Rays 1 and 2 have a net phase

difference given by:

φnet = φ2 − φ1 = 2π

λn
(2d) − π ⇒ φnet = 2π

λ
(2 n d) − π (18.18)

where the first term is due to a 2 d path difference for ray 2, while the second term is

due to the reflection from the top surface for ray 1.

Rays 1 and 2 interfere constructively when φnet = 0, 2π, 4π, 6π, . . . , or accord-

ing to Eq. 18.18 when 2 nd is λ/2, 3λ/2, 5λ/2, . . . . Thus:

2 n dm = (m − 1
2 ) λ (m = 1, 2, 3, . . .)

{
Maxima

Bright bands

}
(18.19)

Rays 1 and 2 interfere destructively (which indicates that they are strongly trans-

mitted as rays 2 and 3), when φnet = π, 3π, 5π, . . . , or according to Eq. 18.18 when

2 n d is 0, λ, 2λ, 3λ, . . . . Thus:

2 n dm = m λ (m = 0, 1, 2, . . .)

{
Minima

Dark bands

}
(18.20)

The last two equations explain what we occasionally notice as colored bands on a

surface of oily water or in a thin film of soap, see Fig. 18.7. These colored bands arise

from the interference of white light reflected from the top and bottom surfaces of the

film. The different colors arise from the variations in thickness of the film, causing

interference for different wavelengths at different points. When the top portion of the

film is very thin, all reflected colors undergo destructive interference and produce

dark colors.

Fig. 18.7 Destructive interference

Up
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Newton’s Rings

Another method for observing light interference patterns from a thin film of varying

width is shown in Fig. 18.8a. This figure shows a plano-convex lens of radius R on

top of a flat glass surface. The thickness of the air film between the glass surfaces

increases from zero at the point of contact O to some value d at point P, which is at a

distance r from O. The loci of points of equal thickness d are circles concentric with

the point of contact O.

Ray 1 is reflected from the lower surface of the air film and hence undergoes

a π phase change (reflection from a medium of higher index of refraction). Ray 2

is reflected from the upper surface of the air film and undergoes no phase change

(reflection from a medium of lower index of refraction). Therefore, if R � r, the

conditions for constructive and destructive interference due to the combination of

rays 1 and 2 are given by Eqs. 18.19 and 18.20, respectively, but with n = 1. The

gap thickness changes by λ/2 as we move from one fringe to the next fringe of the

same type. The observed interference pattern of bright and dark rings is shown in

Fig. 18.8b.

(a) (b)

OP

R

r
d

r

1 2

Air film
(Exaggerated)

R   r Almost normal

π phase change

λ

Fig. 18.8 (a) An air film of variable thickness between a convex surface and a plane surface. (b) Repre-

sentation of Newton’s rings, which are formed by interference in the air film. Near the center, the thickness

of the film is negligible, and the interference is destructive because of the π phase change of ray 1 upon

reflection from the lower air surface

Example 18.4

A soap film has an index of refraction n = 1.33. Light of wavelength λ = 500 nm

is incident normally on the film. (a) What is the smallest thickness of the film that

will give a maximum interference in the reflected light? (b) Would doubling the

thickness calculated in part (a) produce maximum interference?
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Solution: (a) For a maximum reflected interference, the minimum film thickness

corresponds to m = 1 in Eq. 18.19. Thus:

2 n dm = (m− 1
2 ) λ ⇒ 2 n d1 = 1

2 λ ⇒ d1 = λ

4 n
= 500 nm

4 × 1.33
= 94 nm

(b) With the new thickness d′ = 2d1 = 2λ/(4n), Eq. 18.19 gives:

2 n d′ = (m − 1
2 ) λ (m = 1, 2, 3, . . .) ⇒ 1 = m − 1

2

The last relation cannot be satisfied, since m must be 1, 2, 3, . . . . Thus, maximum

interference will not occur for a film with twice d. Only odd multiples of d give

maximum interference in the reflected light.

Example 18.5

As in Fig.18.8, a plano-convex lens of radius R is placed on a flat sheet of glass.

Red light of wavelength λ = 670 nm is incident normally on the lens. The radius

r of the twentieth Newton’s dark ring is 11 mm. Find the radius of curvature R of

the lens.

Solution: The gap thickness changed by λ/2 as we move from fringe to the next

of same type. The thickness of the twentieth dark ring is:

d20 = 20
λ

2
= 10 × 670 nm = 6,700 nm

From the right triangle of Fig. 18.8a, we have:

R2 = r2 + (R − d)2 = r2 + R2 − 2Rd + d2 ⇒ 2Rd = r2 + d2

Neglecting d2 compared to r2, we get:

R = r2

2d
= (11 × 106 nm)2

2 × 6,700 nm
= 9.03 × 109 nm = 9.03 m

Example 18.6

A film with thickness d = 300 nm and index of refraction n = 1.5 is exposed to

white light from one side. Which colors of white light are strongly reflected and

which are transmitted?
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Solution: Interference is constructive for wavelengths that are most prominent

in the reflected light. When using Eq. 18.19, 2 n dm = (m − 1/2) λ, these wave-

lengths are:

λ = 2 n dm

m − 1/2
= 2(1.5)(300 nm)

m − 1/2
= 900 nm

m − 1/2
(m = 1, 2, 3, . . .)

where dm is fixed and always equal to d = 300 nm. For m = 1, 2, 3, we get

λ = 1,800 nm, 600 nm, and 360 nm. The first wavelength is in the infrared region

(IR), the second is in the visible region (Orange color), and the third is in the

ultra-violet region (UV). From these wavelengths that interfere constructively in

reflection, only orange has a wavelength within the visible spectrum (400–700 nm)

so the film will appear orange when viewed by reflection (see Fig.18.9).

Fig. 18.9

Air

Air

White
Orange

Indigo

(Reflected)

(Transmitted)

300 nmd = 1.5n =

Interference is destructive for wavelengths that are missing from reflected light

and thus are strongly transmitted. Using Eq.18.20, 2 n dm = m λ, the transmitted

rays have wavelengths:

λ = 2 n dm

m
= 2(1.5)(300 nm)

m
= 900 nm

m
(m = 0, 1, 2, . . .)

For m = 1, 2, 3, we get λ = 900 nm, 450 nm, and 300 nm. The first wavelength

is in the infrared region (IR), the second is in the visible region (Indigo color),

and the third is in the ultra violet region (UV). From these wavelengths that

interfere destructively in reflection (and hence are transmitted), only indigo has

a wavelength within the visible spectrum, so the film will appear indigo when

viewed by transmission.

18.4 Diffraction of Light Waves

In Fig.18.2, we introduced the fact that light waves of λ ≈ a or λ > a spread out after

passing through a single slit of width a, and this effect is called diffraction. We will
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see that this spread has interesting features. It has a diffraction pattern consisting of

bright and dark areas somewhat similar to the interference pattern.

We have two models of diffractions, one observed when the viewing screen is

placed close to the narrow slit (known as Fresnel diffraction), and another observed

when the viewing screen is placed very far from the slit (known as Fraunhofer

diffraction). We will consider only the second model, since it is easier to analyze.

In this model, we need to focus the parallel rays by using a converging lens.

Figure 18.10a shows a light wave of wavelength λ entering a single slit of width

a and diffracted towards a viewing screen. Fig. 18.10b shows a representation of a

photograph obtained for a Fraunhofer diffraction pattern. Notice the existence of a

wide bright central fringe followed by successive narrower dark fringes.

Wave Fronts

(b)(a)

ScreenBarrier

Slit

Min

Min

Min

Min

θ

D

a

Fig. 18.10 (a) A Fraunhofer diffraction pattern for a single slit (not to scale). (b) Representation of a

photograph showing this pattern with a wide central bright fringe followed by much weaker maxima

Figure 18.11 displays the geometry as viewed from above the slit. According to

Huygens’ principle, each point on the wave front within the slit acts like a secondary

wave source. Waves reaching the screen from different portions of the slit differ in

phase because they travel different path lengths. Differences in phase of the arrived

secondary waves produce the diffraction pattern.

We can take advantage of the symmetry of path differences about the central axis

by first adding the interference effect from two equal portions of the slit, each of

width a/2, one above the central axis and one below it, see Fig.18.11a. This means

that the diffraction pattern is actually an interference pattern!
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Fig. 18.11 (a) Waves from the two portions of the slit, each having a width a/2, undergo destructive

interference at point P. (b) When D � a, we can approximate rays r1, r, and r2 as being parallel lines

making an angle θ to the central axis. The path difference between rays r1 and r, or rays r and r2 is equal

to (a/2) sin θ

The second step is to apply this strategy to locate the first dark fringe at point P,

which makes an angle θ with the central line. If the screen is far away from the slit,

D�a, the three rays of Fig.18.11a are almost parallel, as shown in Fig. 18.11b . This

figure indicates that the path difference between rays r1 and r is (a/2) sin θ. Similarly,

the path difference between rays r and r2 is (a/2) sin θ. If this path difference is

exactly λ/2, then the two waves at P cancel each other and produce a destructive

interference. In other words, waves from the upper half interfere destructively with

waves from the lower half. Consequently, we have:

a

2
sin θ = λ

2
or−−−−−→ a sin θ = λ (First minimum) (18.21)

To locate the second dark fringe at point P, we divide the slit into four equal

portions, each of width a/4, two above the central axis and two below it. Then, the

four waves corresponding to the four portions of the slit interfere destructively at P

when the path difference is exactly λ/2. Thus:

a

4
sin θ = λ

2
or−−−−−→ a sin θ = 2 λ (Second minima) (18.22)

We can extend this strategy to many portions of the slit of equal even numbers. Then

the locations of the dark fringes can be generalized as:
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a sin θm = m λ (m = 1, 2, 3, . . .)

{
Minima

Dark fringes

}
(18.23)

Although this relation is derived for D � a, it is also applicable if we place a con-

verging lens between the slit and the screen such that the lens focal plane coincides

with the screen. Usually we are only interested in the first minimum because nearly

all the light energy is contained in the wide central diffraction maximum.

In Fig. 18.11a, the distance y from the central maximum to the first diffraction

minimum is related to the angle θ and the distance d from the slit to the screen by

y = D tan θ. Generally, we have:

ym = D tan θm (m = 1, 2, 3, . . .) (Minima) (18.24)

Intensity of Single-Slit Diffraction Patterns

The total path difference between r1 and r2 in Fig. 18.11a is �L = a sin θ. Conse-

quently, according to Eq. 18.13, the total phase difference δ between the two rays is:

δ = 2π

λ
a sin θ (18.25)

The intensity I of the diffraction pattern as a function of θ is given, without proof, in

terms of δ as follows:

I = I◦
(

sin δ/2

δ/2

)2

(18.26)

where I◦ is the intensity at the central maximum (when θ = 0◦).
Substituting the expression of δ into the last equation leads to:

I = I◦
(

sin(πa sin θ/λ)

πa sin θ/λ

)2

(18.27)

A minimum of I occurs when:

πa sin θm

λ
= mπ (m = 1, 2, 3, . . .) (18.28)

or a sin θm = mλ, (m = 1, 2, 3, . . .), which agrees with Eq. 18.23. Part (a) of

Fig. 18.12 displays the variation of I as a function of δ/2. Part (b) is a represen-

tation of the obtained photograph.
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Fig. 18.12 (a) A sketch

showing intensity variations as

a function of half the total

phase difference δ/2.

(b) Representation of a

Fraunhofer diffraction pattern

resulting from a single slit

(b)

(a) / 2δ
π 2π0 3ππ−2π−3π−

I
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Example 18.7

Parallel rays of light with wavelength λ = 500 nm are incident on a slit of width

a = 0.2 mm. A diffraction pattern is formed on a screen at a distance D = 2.5 m

from the slit. Find the position of the first minimum and the width of the central

bright fringe.

Solution: We use Eq. 18.23, a sin θm = m λ, with m = 1 to find the angle of the

first minimum as follows:

sin θ1 = λ

a
= 500 × 10−9 m

0.2 × 10−3 m
= 2.5 × 10−3

Because θ1 is very small, we can approximate sin θ1 ≈ tan θ1. Then we use Eq.

18.24, ym = D tan θm, with m = 1 to calculate the position of the first minimum

as follows:

y1 = D tan θ1 � D sin θ1 = (2.5 m)(2.5 × 10−3) = 6.25 × 10−3 m

The width of the central bright fringe is twice y1. Thus:

2y1 = 2 × (6.25 × 10−3 m) = 0.0125 m = 1.25 cm

Example 18.8

Use Fig. 18.12a for a single-slit Fraunhofer diffraction pattern to estimate the

ratio of the intensities of the first and second maxima to the central maximum.

[Hint: use the intensity relation I = I◦[(sin δ/2)/(δ/2)]2, where δ is the total phase

difference between the two rays r1 and r2 of Fig. 18.11a. See Exercise 32.]

Solution: From Fig. 18.12a, the first and second maxima occur at δ/2 = 3π/2

and δ/2 = 5π/2, respectively. Substituting these values in the intensity equation,

we find the following for the first maximum:
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I1

I◦
=

(
sin 3π/2

3π/2

)2

= 4

9π2 = 0.045 ⇒ I1 is 4.5% of I◦

Similarly, for the second maximum, we find that:

I2

I◦
=

(
sin 5π/2

5π/2

)2

= 4

25π2 = 0.016 ⇒ I2 is 1.6% of I◦

18.5 Diffraction Gratings

A diffraction grating is one of the most useful devices used to analyze light sources.

This device is somewhat like the double-slit experiment of Fig. 18.2 but it has a much

greater number of slits1, perhaps as many as several thousands of slits per millimeter.

For example, a typical grating has about N = 5,000 grooves/cm, which means

that the spacing between every two successive slits d is of the order of

(1/5,000) cm = 2 × 10−4 cm.

We deal with two types of diffraction gratings:

• Transmission gratings: can be obtained by cutting parallel grooves on a glass

plate with a highly precise ruling machine. The spaces between the grooves act as

separate slits and produce transmitted interference fringes.

• Reflection gratings: can be obtained by cutting parallel grooves on a reflecting

surface with a highly precise ruling machine. The reflection of light from the

spaces between the grooves form the reflected interference fringes.

When monochromatic light of wavelength λ is sent through any type of diffraction

grating, it forms narrow interference fringes that can be analyzed to determine the

wavelength of the light.

To study the effect of diffraction gratings, we first consider a small number of slits

that produce an interference pattern on a distant viewing screen. Each slit produces

diffraction, and the diffracted beams interfere with one another to produce the final

pattern. Then we gradually increase the number of slits to a larger number N.

Figure 18.13a shows a small section of a diffraction grating containing only five

slits. The grating is placed in front of a very distant screen. Plane light waves of

1 For historical reasons, it is called diffraction grating, but it would be more correct to call it
interference grating because it is somewhat like the double-slit experiment but with huge number
of double slits.
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wavelength λ are incident normally on the grating. Consider all rays leaving the slits

in phase and traveling in an arbitrary direction θ measured from the central axis

before reaching point P on the far screen.

λ 

Wave fronts

(b)(a)

ScreenD

d

Zeroth-order
maximum

m = 0

First-order
maximum

m = 1

First-order
maximum

m = 1

θ

sind θ

θ

d

Diffraction grating
P

θ
θ

Fig. 18.13 (a) A small section of a diffraction grating having a slit-spacing d. (b) When D � d, the rays

at point P, which make an angle θ to the central axis, are considered to be parallel. The path difference

between adjacent slits is d sin θ

As shown in Fig. 18.13b , the path difference between rays from any two adjacent

slits is d sin θ. If this path difference is equal to an integral multiple of the wavelength,

then waves from all slits reach point P in phase, and a bright fringe is observed. The

condition for a maximum to exist at P is thus:

d sin θm = m λ (m = 0, 1, 2, . . .)

{
Maxima

Bright fringes

}
(18.29)

where m is the fringe order number. Generally, fringes are referred to as follows:

• The zeroth-order maximum, when m = 0. All waves must meet at θ = 0,

• The first-order maximum, when m = 1. Each wavelength corresponds to an angle

sin θ1 = λ/d,

• The second-order maximum, when m = 2. Each wavelength corresponds to an

angle sin θ2 = 2 λ/d, and so forth.
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Therefore, Eq. 18.29 can be used to measure λ if the grating spacing d and θm are

known.

For monochromatic light, Fig. 18.14 shows a sharp intensity distribution for the

maxima and a broad distribution in the dark areas.

m  

sinθ
/ d 2 /d/ d2 /d 0

I

1 22 01

λ λ λ λ

Fig. 18.14 A sketch of the intensity versus sin θ for a diffraction grating. The zeroth-, first-, and second-

order maxima are shown. The sharpness of the maxima and the broadness of the minima are shown

We can use this technique to distinguish and identify light of several unknown

wavelengths. We cannot do that with the double-slit arrangement of Sect. 18.2, even

though the same equation and wavelength dependencies apply there. In a double-slit

interference, the bright fringes due to different wavelengths overlap too much to be

distinguished.

Resolving Power of the Diffraction Gratings

Diffraction gratings are useful tools for accurately measuring wavelengths. To resolve

two similar light sources with nearly equal wavelengths λ1 and λ2 (near a wavelength

λ), the diffraction grating should have a high resolving power R, defined in terms

of the average wavelength λav and the wavelength difference �λ as:

R = λav

�λ
λav = λ1 + λ2

2
� λ, �λ = λ2 − λ1 (18.30)

If N is the number of illuminated slits in the grating, then it can be shown that the

resolving power in the mth-order diffraction is:

R = N m (18.31)

Thus, R increases as N and m increase. When m = 0, we know that all the wavelengths

are indistinguishable and hence R = 0 as expected.
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Example 18.9

A diffraction grating has 7,000 lines per centimeter. When the grating is illu-

minated normally with a monochromatic light, the second order spectral line is

found at 62◦.
(a) What is wavelength of the light? (b) Where can we observe the third order

maximum?

Solution: (a) First, we must find the slit separation d as follows:

d = 1 cm

7,000
= 1.429 × 10−4 cm = 1,429 nm

Then, we use d sin θm = m λ with m = 2 to find the wavelength:

λ = d sin θ2

2
= (1,429 nm) sin 62◦

2
= 631 nm

(b) For m = 3, we calculate sin θ3 as follows:

sin θ3 = 3 λ

d
= 3 × 631 nm

1,429 nm
= 1.33

Since sin θ3 cannot exceed unity, then this order cannot be observed.

Example 18.10

A diffraction grating 1 cm wide has N = 1,000 equally spaced slits across its

width. The diffraction grating is illuminated at normal incidence by a sodium-

vapor yellow lamp. The yellow light (known as the sodium doublet) contains

two colors, one with wavelengths λ1 = 589.0 nm and the other with wavelength

λ2 = 589.6 nm. (a) What is the separation between the slits of the grating? (b)

How many bright fringes are seen for both colors? (c) What must the resolving

power of the grating be if the two colors are to be resolved (distinguished)? (d)

How many slits of this grating must be illuminated in order to resolve these two

colors in the fourth-order?

Solution: (a) The ruling separation distance d is:

d = 1 cm

1,000
= 10−3 cm = 104 nm

(b) Maxima occur at sin θm = m λ/d (m = 0, 1, 2, . . .). This condition is acce-

pted only if m λ/d < 1,or m < d/λ.We select the larger wavelengthλ2 = 589.6 nm

to find the possible values of m as follows:
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m <
d

λ2
= 104 nm

589.6 nm
= 16.96

Thus, the orders m = 0, 1, 2, . . . , 16 are seen in the diffraction pattern.

(c) With λav = (λ1 +λ2)/2 = 589.3 nm and �λ = 0.6 nm, we use Eq. 18.30 to

calculate the resolving power as follows:

R = λav

�λ
= 589.3 nm

0.6 nm
= 982

(d) Using Eq. 18.31 and R = 982, we find that:

N ′ = R

m
= 982

4
= 246

Thus, in order to resolve the yellow sodium doublet up to a 4th-order maximum,

we must illuminate at least N ′ = 246 slits.

18.6 Polarization of Light Waves

Light propagates in vacuum with a speed c = 2.9979 × 108 m/s, see Chap. 27.

As shown in Fig. 18.15a, light waves have the properties of transverse electromag-

netic waves, with an electric field vector
→
E and a magnetic field vector

→
B vibrating in

two planes perpendicular to each other. In addition,
→
E and

→
B propagate with veloc-

ity →c in the direction of the light wave, which is perpendicular to both.

The direction of vibration of
→
E for an individual wave is defined as the direction of

polarization of the wave. However, an ordinary beam of light contains a large number

of electromagnetic waves emitted by atoms having random vibrational orientations,

and hence the direction of the electric field vector
→
E in the beam is random. In this

case the beam of light is unpolarized.

An electromagnetic wave is said to be polarized if the electric field vector
→
E at a

given position vibrates in the same direction at all times. The plane of polarization

is defined as the plane containing
→
E and the direction of propagation →c. Fig. 18.15a

displays a schematic diagram for a light wave polarized along the y axis. Fig. 18.15b

represents an unpolarized light beam and Fig. 18.15c represents a polarized beam,

both viewed along the direction of propagation.

A bean of unpolarized light can be polarized by reflection, refraction, scattering,

or absorption.
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E
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Fig. 18.15 (a) An electromagnetic wave propagating in the x direction with velocity →c , where →c is

perpendicular to both
→
E and

→
B . (b) A sketch representing an unpolarized light beam. (c) A sketch

representing a polarized light beam

In 1938, E. H. Land invented a polarizing sheet called Polaroid. This sheet trans-

mits waves whose electric fields
→
E vibrate in a certain direction (called the trans-

mission axis) and absorbs waves whose electric fields vibrate in a perpendicular

direction.

Figure 18.16 represents an unpolarized light beam incident first on a polarizing

sheet, called the polarizer. Because the transmission axis is vertical in the figure, the

light transmitted through this sheet is polarized vertically with an electric field vector

denoted by
→
E◦. A second polarizing sheet, called the analyzer, with transmission axis

making an angle θ with the polarizer, intercepts the beam. The only component that

is allowed through by the analyzer is
→
E cos θ, while other components are absorbed.

Unpolarized light

Polarizer

Analyzer
E

°

Transmission axis

cosE θ°
θ

Polarized light

Fig. 18.16 Two polarizing sheets whose transmission axes make an angle θ with each other. Only a

fraction of the polarized light incident on the analyzer is transmitted through it

Since the intensity of the transmitted beam varies as the square of the electric

field, then the intensity of the polarized beam transmitted through the analyzer varies

with θ, and is given by Malus’s law as:
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I = I◦ cos2 θ (18.32)

where I◦ is the intensity of the polarized beam incident on the analyzer. This expres-

sion applies to any two polarizing materials where their transmission axes are placed

at an angle θ to each other.

Example 18.11

A plane-polarized light wave
→
E◦ sin ωt of intensity I◦ makes an angle θ with

the transmission axis of a Polaroid sheet. What fraction of the original light is

transmitted through the Polaroid?

Solution: The incident polarized wave is equivalent to two mutually perpendicular

components. One component is parallel to the transmission axis
→
E‖ = (

→
E◦ cos θ)

sin ω t and the other is perpendicular to it
→
E⊥ = (

→
E◦ sin θ) sin ωt. Since

→
E‖ is the

only transmitted component through the Polaroid with an intensity I proportional

to the square of its amplitude, see Fig. 18.17, then:

I

I◦
= (

→
E◦ cos θ) • (

→
E◦ cos θ)

→
E◦ •

→
E◦

= cos2 θ

Or: I = I◦ cos2 θ

Which is Malus’s law.

Fig. 18.17 E°

E° cos θ
I°

I

Polaroid

Transmission axis

θ

Example 18.12

Unpolarized light of intensity I◦ is incident on a Polaroid sheet with a vertical

transmission axis, see Fig. 18.18. What is the intensity I of the transmitted beam?

Solution: We recall that the incident wave consists of a multitude of randomly

oriented electric fields. Then, Eq. 18.32 applies to each electric field, but with
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angle θ ranging from 0◦ to 360◦. Because the orientation is random, all values of

θ will occur equally. As a result, Eq. 18.32 will give us the transmitted intensity

if we use the average value of cos2 θ.

Thus, I = I◦ cos2 θ, where cos2 θ = 1
2 .

Then: I = 1
2 I◦ (as indicated in Fig. 18.18)

Fig. 18.18

1
2

Unpolarized light
Polarized light

Transmission axis

I        I°

I°
=

18.7 Exercises

Sections 18.1 and 18.2 Interference of Light Waves and Young’s

Double-Slit Experiment

(1) Two identical narrow slits are separated by a distance d = 0.3 mm. The slits

are illuminated by a monochromatic red light of wavelength λ = 630 nm. An

interference pattern is observed on a screen at a distance D = 1.2 m from the

plane of the slits. Find the separation between adjacent bright fringes.

(2) Two narrow slits are separated by a distance d = 0.05 mm and are 2 m away

from a screen. When the slits are illuminated by a monochromatic light of

unknown wavelength λ, we obtain a second-order bright fringe 4 cm from the

central line. Find the wave length of the light.

(3) When white light is used instead of the monochromatic light in Exercise 2, the

first-order fringe of the observed interference pattern resembles a rainbow of

violet and red light at the fringe border. The approximate locations of the violet

and red light on the screen are y1V = 16 mm and y1R = 28 mm from the central

line. Estimate the wavelengths of the violet and red light.

(4) In a Young’s double-slit experiment, monochromatic light is diffracted from

two narrow slits 0.4 mm apart. Near the central line, successive bright and dark

fringes that are 6 mm apart are both viewed on a screen 4 m away. Find the

wavelength and frequency of the light.
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(5) In a double-slit experiment, the fifth-order bright fringe produced by light of

wavelength 450 nm is observed at an angle of 30◦ from the central line. How

far apart are the two slits?

(6) What are the expected angles of all dark fringes preceding the fifth-order bright

fringe of Exercise 5?

(7) A blue light of wavelength λB = 475 nm and yellow light of wavelength

λY = 570 nm pass through a Young’s double-slit apparatus. Blue and yellow

patterns of fringes are formed on the screen of the experiment. At the central

bright fringe, where mV = mB = 0, both the blue and yellow light mix and form

a green fringe. What is the next order of the blue and yellow fringes that overlap

on the screen to form a green fringe?

(8) Two narrow slits that are 0.015 mm apart in a Young’s double-slit experiment

are illuminated by a green laser beam of wavelength λG = 510 nm. (a) What

will be the total number of bright fringes that will be formed on both sides of

a very large distant screen? (b) What angle does the most distant bright fringe

from the central fringe make with respect to the original direction of the laser

beam?

(9) Two very narrow slits are 1.5 µm apart and are 25 cm away from a screen. Light

of wavelength 450 nm passes through the double slits, forming an interference

pattern that does not satisfy the condition λ � d, i.e., tan θ �= sin θ. What is the

distance between the first and second dark fringes of the interference pattern

on the screen?

(10) A double-slit experiment is designed for easy viewing in a classroom such that

the distance between the central maximum and the first maximum is 30 cm.

The wavelength of the He-Ne red laser light used in the experiment is 634 nm,

and the viewing screen is 9 m away from the double slits. What slit separation

is required for such an interference pattern?

(11) Light of wavelength 600 nm passes through two slits that are 0.5 mm apart.

What is the phase difference between two parallel diffracted light rays making

an angle 15◦ with the central line?

(12) The peak intensity of a two-slit interference pattern is denoted by I◦ and the

variation of the intensity as a function of the phase difference is given by

Eq. 18.12. Assume a point in the pattern where the phase difference between

waves from the two slits is π/3 rad. (a) What is the intensity of the pattern at

this point? (b) What is the path difference between waves at this point when

light of wavelength λ = 567 nm is used?
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(13) Two narrow slits 0.15 mm apart are illuminated by 634 nm light and their inter-

ference pattern is viewed on a screen 1.2 m meters away from the slits. Find the

intensity (relative to the central maximum) of the interference pattern 3.5 cm

above the central line.

(14) Show that the relation 2d sin θ = (m+ 1
2 )λ, m = 0, 1, 2, . . . gives the angle θ at

which the double-slit intensity is one-half of the peak value, i.e., when I = 1
2 I◦.

(15) Using the relation obtained in Exercise 14 for half the intensity at the peak,

show that the angular displacement from the half-intensity position on one side

of the central maximum to the half-intensity position on the other side is given

by the relation �θ = λ/2d. (Hint: sin θ � θ when θ is small)

Section 18.3 Thin Films—Change of Phase due to Reflection

(16) An oil film has an index of refraction n = 1.5. Monochromatic light of wave-

length λ = 600 nm is incident normally on the film. (a) What is the smallest

thickness of the film that will give a maximum interference in the reflected light

view? (b) Would tripling the thickness calculated in part (a) produce maximum

interference in the reflected light view?

(17) A soap bubble has an index of refraction n = 1.32 and is 130 nm thick. White

light is incident normally on the outer surface of the bubble. What is the wave-

length of the color that reflected from the bubble’s outer surface?

(18) Two glass plates are in contact at one edge and separated by a very fine sep-

arator at the other end to form a wedge as shown in Fig. 18.19. The wedge

is illuminated normally from above by light of wavelength λ = 589 nm. When

the wedge is viewed vertically, six dark fringes are observed between the left

edge and the last dark fringe located at the separator, see Fig. 18.19. Find the

height of the separator.

Fig. 18.19 See Exercise(18)

Separator

d

Air film
(Exaggerated)

Almost normal
λ

D D D D D D

Dark fringes
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(19) Assume that the separator in Fig. 18.19 has a height d = 6,000 nm. (a) How

many dark and bright bands will be seen in the wedge area? (b) Assume that

the glass plates are 20.5 cm long and the dark and bright bands are equal in

thickness. How far apart are the bright bands?

(20) A soap film has an index of refraction n = 1.32.The film is illuminated normally

by light of wavelength λ = 445 nm. (a) What is the smallest thickness of the

film that it will appear black? (b) Why would the film also appear black if the

film thickness is much less than the wavelength?

(21) A lens of index of refraction nL = 1.52 appears green (λ = 510 nm, i.e., reflects

most of the green) when white light is shined on its surface. One solution to

avoid this effect is to coat the surface of the lens with a film of material that has

an index of refraction nC = 1.25. What is the minimum thickness of coating

required such that the coating interferes constructively with the green light?

(22) Figure 18.20 shows a very thin film of oil (no = 1.5) with variable thickness.

The oil is floating on water (nw = 1.33). The film is illuminated from above by

white light, which causes a sequence of highly distinguished colors to appear as

shown in the figure. Take blue to have λ = 445 nm, yellow to have λ = 570 nm,

and red to have λ = 650 nm. (a) Find the minimum and maximum thickness

of the variable thickness of the oil film. (b) Explain the existence of the dark

region in the oil film.
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no = 1.5

nw = 1.33

Fig. 18.20 See Exercise (22)

(23) The radius of curvature of the convex surface of a plano-convex thin lens

is R = 5 m. The convex surface is placed down on a plane glass plate and

illuminated from above by light of wavelength λ = 450 nm, see Fig. 18.21. (a)

What is the change in thickness of the air film between the third d3 and the

sixth d6 bright fringes in the reflected light view? (b) What is the radius r4 of

the fourth bright fringe?
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Fig. 18.21 See Exercise(23)

(24) When viewing the Newton’s rings from above, use the geometry of Fig. 18.21

to show that the radius rm of the mth dark ring when rm � R is given by

rm = √
mλR/nfilm, where nfilm is refractive index of the film. [Hint: Use the

binomial expansion (1 − x)n � 1 − nx, when x � 1.]

(25) Use the result of Exercise 24 to show that the distance �r between adjacent

dark Newton’s rings of order m and m + 1 is given by �r =√
λR/4mnfilm,

when m � 1.

(26) The maximum ring radius in Fig. 18.21 is r = 1.5 cm and corresponds to the

32th dark ring. (a) What is the radius of curvature of the plano-convex lens if

light of wavelength λ = 570 nm is used? (b) What is the focal length of the lens

if its refractive index is n = 1.52?

Sections 18.4 and 18.5 Diffraction of Light Waves and

Diffraction Gratings

(27) A beam of red light from a helium-neon laser is diffracted by a slit of

width a = 0.5 mm. A diffraction pattern is formed on a screen at a distance

D = 1.9 m from the slit. The distance between the zero intensities on either

side of the central peak is 4.81 mm. (a) Find the wavelength of the laser light.

(b) Calculate the ratio of the intensities of the third maximum to the central

maximum.

(28) Monochromatic light of wavelength λ = 480 nm is diffracted by a single slit

of width a = 4.5 × 10−3 mm. A diffraction pattern is formed on a screen at
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a distance D = 7 m away from the slit. Assuming that the angle of the first

maximum is equal to the average of the angles of the first and second minima,

estimate how far the first maximum is from the central maximum.

(29) A single slit diffracts light of wavelength λ = 650 nm. When the screen is at a

distance D = 4 m away from the slit, the central maximum is 2 cm wide. What

is the width of the slit?

(30) (a) What will be the minimum value of a single slit of width a that will not

produce diffraction minima for a given wavelength λ? (b) What will be the

minimum value of the width a that will not produce diffraction minima for

the whole range of visible light (with the approximate range from 400 nm to

700 nm)?

(31) A single slit 1.5 µm wide is illuminated by 634 nm light and its diffraction

pattern is viewed on a screen 53.6 cm away from the slit. (a) What is the height

of the first minimum above the central maximum? (b) As a fraction of the

central maximum’s intensity I◦, determine the light intensity 10 cm above the

central maximum.

(32) The secondary maxima in Eq. 18.26 do not occur precisely at the maximum

of the sine function. This is because the denominator of the intensity function

causes the intensity to decrease more rapidly than the sine function causes it

to increase. Consequently, the intensity reaches a maximum slightly before the

sine function reaches its maximum. By differentiating Eq. 18.26 with respect

to δ/2, show that the secondary maxima occur when δ/2 satisfies the condition

tan δ/2 = δ/2.

(33) A diffraction grating has 8,000 grooves per centimeter. The first order of the

spectral line is observed to be diffracted at an angle of 30◦. What is the wave-

length of the light used?

(34) A diffraction grating has 5,000 lines per centimeter. The grating is illuminated

normally with the green light of mercury, which has a wavelength λ = 546.1 nm.

What is the angular separation between the first and second-order green lines?

(35) A diffraction grating has N = 4,000 equally spaced slits per centimeter. The

diffraction grating is illuminated at normal incidence by the doublet colors

of wavelengths λ1 = 732 nm and λ2 = 733 nm, emitted by a singly-ionized

Oxygen atom. (a) What is the separation between the slits of the grating?

(b) How many bright fringes are seen for both colors? (c) What should the
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resolving power of the grating be if these two colors are to be distinguished?

(d) How many slits of this grating must be illuminated in order to resolve these

two colors in the second-order?

(36) A diffraction grating has 4,500 lines per centimeter. The grating is illuminated

normally by white light (wavelengths ranging from 400 nm to 700 nm). How

many spectral orders can be observed?

(37) Use the data of Exercise 36 to find the width of the first-order spectrum on a

screen 0.5 m away from the grating.

(38) Find the range of wavelengths of the second-order spectra of a diffraction

grating of white light that overlap with the range of wavelengths of the third-

order spectra.

(39) A diffraction grating has 6,200 lines per centimeter and is illuminated by light

with λ = 525 nm. The light falls normally on its surface. (a) What is the maxi-

mum possible order for this grating? (b) What order gives the best resolution?

(c) How close can two wavelengths be if they are to be resolved in the maximum

order?

Section 18.6 Polarization of Light Waves

(40) A beam of polarized light has one-fifth of its initial intensity after passing

through an analyzer. What is the angle between the axis of the analyzer and the

initial polarization direction of the beam?

(41) The transmission axes of two polarizers are oriented at 60◦ to one another.

Unpolarized light of intensity I◦ falls on them. What fraction of light is trans-

mitted through them?

(42) If the light in Exercise 41 was polarized and the transmitted intensity from

the two polarizers is 0.125 I◦, what is the angle between the axis of the first

polarizer and the initial polarization direction of the beam?

(43) Two polarizers are oriented 60◦ to one another. Light of intensity I◦ gets polar-

ized as it passes through these polarizers at half the orientation angle between

them. What fraction of light intensity is transmitted through both of them?

(44) Determine the angle in Exercise 43 that will make the two polarizers transmit

only half of the incident light intensity.

(45) An ordinary light of intensity I◦ is incident on one Polaroid sheet and then falls

on a second Polaroid sheet whose transmission axis makes an angle θ = 30◦
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with the first, see Fig. 18.22. (a) Find the intensity fractions I1/I◦, I2/I1, and

I2/I◦. (b) If the second Polaroid is rotated until the transmitted intensity is 10%

of the incident intensity I◦, what is the new angle?

Unpolarized light Polaroid 1

Transmission axis

θ

Polaroid 2

I°
I1 I2

Fig. 18.22 See Exercise(45)
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In this chapter, we study one of the fundamental forces of nature, the electric force.

Electrical forces play an important role in the structure of atoms, molecules, and

nuclei. We will discuss the following:

(1) The existence of electric charges and electric forces.

(2) The basic properties of electrostatic forces.

(3) Coulomb’s law, which is the fundamental law governing electric forces between

charged particles.

(4) The application of Coulomb’s law to simple charge distributions.

19.1 Electric Charge

Many simple experiments indicate the existence of electric forces and charges. It is

possible to impart an electric charge to any solid material by rubbing it with another

material. The rubbed solid material is said to be electrified, or electrically charged.

For example, a comb becomes electrified when it is used to brush dry hair. This is

justified by observing that the comb will attract bits of paper.

Many experiments conducted by Benjamin Franklin reveal that there are two

types of electric charges: positive and negative. A glass rod that has been rubbed

with silk is commonly used as an example for identifying positive and negative

charges. Another common example is a hard rubber rod that has been rubbed with

fur. Using Franklin’s convention, positive charges are formed on a glass rod that has

been rubbed with silk, and negative charges are formed on a rubber rod that has been

rubbed with fur.

H. A. Radi and J. O. Rasmussen, Principles of Physics, 637
Undergraduate Lecture Notes in Physics, DOI: 10.1007/978-3-642-23026-4_19,
© Springer-Verlag Berlin Heidelberg 2013
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When a positively charged glass rod is brought close to a suspended negatively

charged rubber rod, the two rods attract each other, see Fig. 19.1a. Conversely, if two

positively charged glass rods (or two negatively charged rubber rods) are brought

close to each other, the two rods repel each other, see Fig. 19.1b.

F
F

F

F

Rubber

Glass

Glass

Glass

(a) (b)

Fig. 19.1 (a) A negatively charged rubber rod attracting a positively charged glass rod. (b) A positively

charged glass rod repelling another positively charged glass rod

Based on these observations, we conclude that there are two kinds of charges

in nature; one is positive and the other is negative, and they obey the following

properties:

Spotlight

Like charges repel each other and unlike charges attract each other.

Additionally, it was found that when one object is rubbed with another, charge is

transferred between them, i.e. charge is not created in the rubbing process. That is:

Spotlight

The total charge in any isolated system is conserved.

In 1909, Robert Millikan discovered that an electric charge always occurs in

integral multiples of a fundamental charge e. In a modern view, the electric charge q is

said to be quantized and we can write q = ne, where n is an integer (n = ±1,±2, . . .).

That is:
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Spotlight

Charge is quantized.

In today’s modern scientific views, an electric charge is considered to be a basic

property of atoms. As we all know, an atom is the fundamental entity of which

all matter is formed. Atoms themselves are composed of three types of particles—

protons, electrons, and neutrons. A proton carries one unit of positive charge +e, an

electron carries one unit of negative charge −e, and a neutron carries no charge; it is

electrically neutral.

Based on the charge conservation and the atomic structure, we find that when

a glass rod is rubbed with silk, electrons are transferred from the glass to the silk

giving the silk a net negative charge and consequently leaving a net positive charge

of the same magnitude on the glass, see Fig. 19.2. Similarly, when a rubber rod is

rubbed with fur, electrons are transferred from the fur to the rod, giving the rod a net

negative charge, leaving the fur with a net positive charge.

Fig. 19.2 When a neutral

glass rod is rubbed with a

neutral silk cloth, electrons are

transferred from the glass to

the silk, leaving the glass

positively charged

Glass

Before rubbing After rubbing

Neutral Glass

Neutral Silk
Silk

19.2 Charging Conductors and Insulators

Materials can be classified according to their ability to conduct electrical charge. In

some materials, such as metals (copper, aluminum, etc), tap water, and the human

body, some of the negative charges (electrons) can move rather freely. We call such

materials conductors.

Spotlight

Conductors are materials containing some electrons that can move freely.
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In contrast, charges cannot move freely in some other materials such as glass,

rubber, and plastic. We call such materials nonconductors or insulators.

Spotlight

Insulators are materials that contain electrons that are bound to their atoms and

cannot move freely through the material.

Semiconductors are materials that lie somewhere between conductors and insu-

lators, such as silicon and germanium. The electrical properties of semiconductors

can be changed drastically by adding specific amounts of certain atoms (impurities).

Generally, the conductivity of semiconductors increases with increasing temperature,

in contrast to metallic conductors. The microelectronic revolution that has changed

our lives is due to devices constructed of semiconductors.

Spotlight

Semiconductors are materials that have electrical properties that lie somewhere

between conductors and insulators, such as silicon and germanium.

Charging a Conductor by Rubbing

When a person rubs a copper rod with wool while holding it in his hand, he will not

be able to charge the rod. The reason is that both the rod and his body are conductors.

The rubbing will cause a charge imbalance on the rod, but the excess charge will

immediately flow from the rod through his body to the Earth, and the rod will be

neutralized immediately. Conversely, if the experiment is repeated while the rod is

held by an insulating handle, we would eliminate the conducting path to Earth, and

the rod can then be charged.

Charging a Conductor by Induction

Another way of charging a conductor is shown in Fig. 19.3. Figure 19.3a shows a

negatively charged plastic rod and an isolated neutral copper rod that is suspended

by an insulated twistable wire. When the plastic rod is brought into the vicinity of

the copper rod, many of the conduction electrons in the closer end of the copper rod
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are repelled by the negative charge on the plastic rod. They move to the far end of

the copper rod, leaving the near end depleted in electrons. Such repulsion of negative

charges from the near end leaves that end positively charged. This positive charge is

attracted to the negative charge in the plastic rod as shown in Fig. 19.3b. Although as a

whole, the copper rod is still neutral, it is said to have an induced charge. At this state,

if we ground the copper rod, as shown in Fig. 19.3c, some of the negative charges

move out of the rod through the wire into the Earth. Earth can accept or provide

electrons freely with negligible effect on its electrical characteristics. When the wire

to the ground is removed, the conducting copper rod remains in an induced positive

charge state, see Fig. 19.3d. When the plastic rod is removed from the vicinity of the

copper rod, this induced positive charge remains and is distributed on the rod, see

Fig. 19.3e.

This process can be repeated with a positively charged glass rod to obtain a

negatively charged copper rod.

Neutral
copper

Charged
plastic

(a)

FF FF FF

(b) (c) (d) (e)

Charged copper

Induced
charge

Fig. 19.3 (a) A negatively charged plastic rod is kept far away from a neutral copper rod. (b) The electrons

on the copper rod are redistributed when the charged plastic rod is brought into the vicinity of the copper

rod. (c) When the copper rod is grounded, some of the electrons move into the Earth. (d) Removing the

ground connection. (e) Removing the plastic rod to obtain a positively charged conductor

Charging an Insulator by Induction

In most of the neutral molecules of insulators, the center of positive charge coincides

with the center of negative charge. In the presence of a charged object, the charged

centers of each molecule in the insulator may shift slightly. The molecule is then said

to be electrically polarized. This produces a layer of induced charge on the insulator

surface as shown in Fig. 19.4a. Consequently, the charged object and the insulator

will attract each other, see Fig. 19.4b.
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Charged
object

Charged
comb

Neutral bits
of paper

(a) (b)

Induced charge

Neutral
insulator

Polarized
molecule

Fig. 19.4 (a) A negatively charged object produces an induced charge on the surface of an insulator

because charges in the molecules of the insulator are electrically polarized. (b) A charged comb attracts

small bits of dry paper due to the effect of molecular polarization

19.3 Coulomb’s Law

In an experiment to measure the magnitude of the electrical force F between two

charged particles separated by a distance r and having charges q1 and q2, Charles

Coulomb was able to find that:

F = k
|q1| |q2|

r2 (Coulomb’s law) (19.1)

This formula is known as Coulomb’s Law, and k is a constant called the Coulomb

constant. Coulomb found that each charged particle (also called a point charge)

exerts a force of this magnitude on the other particle, and the two forces form an

action–reaction pair. It was found that charges of the same sign repel each other,

while charges of opposite signs attract each other, see Fig. 19.5. The SI unit of a

charge is the coulomb (abbreviated by C) and is derived from the SI unit of electric

current, the ampere (abbreviated by A) which will be defined in Chap. 24.

The form given by Eq. 19.1 resembles Newton’s force law that describes the

universal gravitation between two objects of masses m1 and m2 that are separated by

a distance r, see Fig. 19.6. That is:

F = G
m1 m2

r2 (Newton’s gravitational law) (19.2)

where G = 6.67 × 10−11 N.m2/kg2 is the gravitational constant.
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Both the inverse square laws describe a property of interacting objects where

charges are involved in one case and masses in the other. The laws differ in that

the electrostatic forces between two charged particles may be either attractive or

repulsive, but gravitational forces are always attractive.

F− F

(a) (b) (c)

+ –+ – + –F− F

1
q

2
q

1
q

2
q

F F−

1
q

2
q

r r r

Fig. 19.5 In (a) and (b), two charged particles of the same sign repel. In (c), two charged particles of

different signs attract each other. Notice that in all cases, the exerted forces are equal in magnitude but

opposite in direction

m2

r

m1 12F
21F

Fig. 19.6 Newton’s law of universal gravitation states that the gravitational force between two objects

of masses m1 and m2 is attractive. The magnitude of the force F12 exerted on object 1 by object 2 is equal

to the magnitude of the force F21 exerted on object 2 by object 1. Note that
→
F12 = −→

F21.

The electrostatic constant k in Coulomb’s law has the value:

k = 8.9875 × 109 N.m2/C2 ≈ 9 × 109 N.m2/C2 (19.3)

For historical reasons and for the aim of simplifying many other formulas, the con-

stant k is usually written as:

k = 1

4πε◦
(19.4)

where the quantity ε◦ (called the permittivity constant of free space) has the

value:
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ε◦ = 8.8542 × 10−12 C2/N.m2 (19.5)

Any positive or negative charge q that can be detected is written as:

q = ne, n = ±1, ±2, ±3, . . . (19.6)

where e is the smallest unit charge in nature1 and has the value:

e = 1.60219 × 10−19 C (19.7)

As introduced earlier, the charge of an electron is −e and of a proton is +e. Therefore,

the number N of electrons or protons in 1 C is:

N = 1 C

1.60219 × 10−19 C
= 6.24 × 1018 electrons or protons (19.8)

Table 19.1 lists the charges and masses of the three elementary particles: the

electron, the proton, and the neutron.

Table 19.1 Charge and mass of the electron, proton and neutron.

Particle Charge (C) Mass (kg)

Electron (e) −e (=−1.60219 × 10−19 C) 9.1095 × 10−31

Proton (p) +e (= +1.60219 × 10−19 C) 1.67261 × 10−27

Neutron (n) 0 1.67492 × 10−27

Example 19.1

Consider the three point charges q1 = +2 μC, q2 = −5 μC, and q3 = +8 μC that

are shown in Fig. 19.7. (a) Find the resultant force exerted on the charge q2 by

the two charges q1 and q3. (b) In a different layout (see Fig. 19.8), q2 experiences

a resultant force of zero. Find the position of q2 and find the magnitude of each

force exerted on q2.

Solution: (a) Because q2 is negative and both q1 and q3 are positive, the forces
→
F21 and

→
F23 are both attractive as displayed in Fig. 19.7. From Coulomb’s law we

can find F21 as follows:

1 No charge smaller than e has yet been detected on a free particle. Recent theories propose the
existence of particles called quarks having charges −e/3 and +2e/3 inside nuclear matter. Although
a significant number of recent experiments indicate the existence of quarks inside nuclear matter,
free quarks have not been detected yet.
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q1 =+2

1m 5m

F 21 F 23

q2 =−5 q3 =+8 μCC C

+ +–
μμ

Fig. 19.7

q1 = +2μ C

 x 6m - x

F  21 F  23

q2 =−5 μ C q3  = +8 μ C

+ +–

Fig. 19.8

F21 = k
|q2| |q1|

r2 = 9×109 N.m2/C2 (5 × 10−6 C)(2 × 10−6 C)

(1 m)2 = 0.09 N

Also, we can find F23 as follows:

F23 = k
|q2| |q3|

r2 = 9 × 109 N.m2/C2 (5 × 10−6 C)(8 × 10−6 C)

(5 m)2 = 0.0144 N

Since F21 is greater than F23, the resultant force F exerted on q2 will be toward

the charge q1, i.e. to the left. Therefore:

F = F21 − F23 = 0.09 N − 0.0144 N = 0.0756 N

(b) When the resultant force on q2 is zero, the magnitudes of F21 and F23 must

be equal. Based on Fig. 19.8, the equality of the two forces F21 and F23 leads to

the following steps:

F21 = F23 =⇒ k
|q2| |q1|

x2 = k
|q2| |q3|

(6 m − x)2 =⇒ |q1|
x2 = |q3|

(6 m − x)2

We can now substitute the given values of q1 and q3 and this yields the

following:

2 × 10−6 C

x2 = 8 × 10−6 C

(6 m − x)2 =⇒ (6 m − x)2 = 4x2 =⇒ 6 m − x = 2x =⇒ x = 2 m
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From Coulomb’s law we can find either of the value of F21 or the value of F23 as

follows:

F23 = F21 = k
|q2| |q1|

x2 = 9 × 109 N.m2/C2 (5 × 10−6 C)(2 × 10−6 C)

(2 m)2 = 0.0225 N

Example 19.2

In the classical model of the hydrogen atom proposed by Niels Bohr, the electron

rotates around a stationary proton in a circular orbit with an approximate radius

r = 0.053 nm, see Fig. 19.9. (a) Find the magnitude of the electrostatic force of

attraction, Fe, between the electron and the proton. (b) Find the magnitude of the

gravitational force of attraction, Fg, between the electron and the proton, and then

find the ratio Fe/Fg.

Fig. 19.9

A classical model of the hydrogen atom

Electron

Fe

Fer

Proton
Electrostatic

attraction

Proton
Gravitational

attraction

Electron
me

mp
Fg

Fgr

Solution: (a) From Coulomb’s law, the magnitude of the electrostatic force of

attraction
→
Fe between the electron and the proton is:

Fe = k
| − e| |e|

r2 = 9 × 109 N.m2/C2 (1.6 × 10−19 C)2

(0.053 × 10−9 m)2 = 8.2 × 10−8 N

(b) From Newton’s law of gravitation, the magnitude of the gravitational force

of attraction
→
Fg between the two particles is:

Fg = G
me mp

r2

= 6.67 × 10−11(N.m2/kg2)
(9.11 × 10−31 kg)(1.67261 × 10−27 kg)

(0.053 × 10−9 m)2

= 3.6 × 10−47 N

The ratio Fe/Fg ≈ 2.3 × 1039. Thus, for elementary particles the gravitational

force is negligible compared to the electrical forces.
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Example 19.3

Two identical copper coins of mass m = 2.5 g contain about N = 2 × 1022 atoms

each. A number of electrons n are removed from each coin to acquire a net positive

charge q. Assume that when we place one of the coins on a table and the second

above the first, the second coin stays at rest in air at a distance of 1 m, see Fig.

19.10. (a) Find the value of q that keeps the two coins in that configuration. (b)

Find the number of removed electrons n from each coin. (c) Find the fraction of

the copper atoms that lost those n electrons in each coin. Assume that each copper

atom loses only one electron.

Fig. 19.10
F

mg

Coin

Coin
1 m

q

q

Solution: (a) The upper coin is in equilibrium due to its weight and the electrostatic

repulsion between the two charged coins. Therefore:

m g = k
q × q

r2

q =
√

m g r2

k
=

√
(2.5 × 10−3 kg)(9.8 N/kg)(1 m)2

9 × 109 N·m2/C2 = 1.65 × 10−6 C

This small charge leads to a measurable force between large bodies.

(b) From the electronic charge (−e) and the total charge q on each coin, we

can find the number of removed electrons n as follows:

n = q

e
= 1.65 × 10−6 C

1.6 × 10−19 C
≈ 1013 electrons (Very big number)

(c) The fraction of the copper atoms that loses the n electrons is:

f = n

N
= 1013

2 × 1022 = 5 × 10−10 (Very small fraction)



648 19 Electric Force

Example 19.4

Two identical tiny spheres of mass m = 2 g and charge q hang from non-conducting

strings, each of length L = 10 cm. At equilibrium, each string makes an angle

θ = 5◦ with the vertical, see Fig. 19.11a. Find the magnitude of the charge on

each sphere.

Fig. 19.11

θ θ

L L

q q

(a) (b)

Fe

T

m g

T cosθ

T sinθ

θ

x

r q

Solution: To analyze this problem, we draw the free-body diagram for the right

sphere as shown in Fig. 19.11b. This sphere is in equilibrium under the tensional

force
→
T from the string, the electric force

→
Fe from the left sphere, and the grav-

itational force m→g . After decomposing the tensional force
→
T in the vertical and

horizontal directions, we apply the condition of equilibrium as follows:
∑

Fx = Fe − T sin θ = 0 ⇒ Fe = T sin θ∑
Fy = T cos θ − mg = 0 ⇒ T cos θ = mg

Eliminating T from the above two equations, we get the value of Fe:

Fe = mg tan θ = (2 × 10−3 kg)(9.8 N/kg)(tan 5◦) = 1.7 × 10−3 N

From Fig. 19.11a, we find the distance r between the two charges:

r = 2 x = 2 L sin θ = 2(0.1 m)(sin 5◦) = 0.017 m

Applying Coulomb’s law, we find the magnitude of the charge to be:

Fe = k
|q| |q|

r2 ⇒ |q| =
√

Fe r2

k
=

√
(1.7 × 10−3 N)(0.017 m)2

9 × 109 N.m2/C2 = 7.39 × 10−9 C

Note that the charges of the two spheres could be positive or negative.
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Example 19.5

Consider three charges q1 = +12 μC, q2 = +6 μC, and q3 = −4 μC are setup

as shown in Fig. 19.12. Find the resultant force exerted on the charge q2 by the

two charges q1 and q3.

90 cm

F21

F23

q3 = − 4    C

60 cmF

θ

x

y

+

–

+

μ

q2 = + 6    Cμ

q1 = + 12    Cμ

Fig. 19.12

Solution: Because q1 and q2 are positive, while q3 is negative, the force
→
F21

is repulsive and the force
→
F23 is attractive as displayed in Fig. 19.12. From

Coulomb’s law we can find F21 as follows:

F21 = k
|q2| |q1|

r2 = 9 × 109 N.m2/C2 (6 × 10−6 C)(12 × 10−6 C)

(0.9 m)2

= 0.8 N

Similarly, we can find F23 as follows:

F23 = k
|q2| |q3|

r2 = 9 × 109 N.m2/C2 (6 × 10−6 C)(4 × 10−6 C)

(0.6 m)2

= 0.6 N

Since
→
F21 is perpendicular to

→
F23, we can use the Pythagorean theorem to find

the magnitude of the resultant force
→
F , and we can use Fig. 19.12 to find its

direction. Thus:

F =
√

F2
21 + F2

23 =
√

(0.8 N)2 + (0.6 N)2 =
√

0.64 N2 + 0.36 N2 = 1 N

θ = tan−1
(

F23

F21

)
= tan−1(0.75) = 36.9◦

We can also write the resultant force
→
F in vector form as follows:

→
F = −F21

→
i + F23

→
j =

(
−0.8

→
i + 0.6

→
j

)
N
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Example 19.6

Consider three charges q1 = +5 μC, q2 = +10 μC, and q3 = −2 μC are setup as

shown in Fig. 19.13. Find the resultant force exerted on the charge q2 by the two

charges q1 and q3.

30 cm

x

q1 = + 5    Cμμ

q2 = + 10    Cμ

q3 = − 2    Cμ

40 cm

θ

F21

F23

21F  sin

y

50 cm

θ

F

F2x

F2y

φ

q2

+

– + +

θ

21F  cosθ

Fig. 19.13

Solution: Because q1 and q2 are positive, while q3 is negative, the force
→
F21 is

repulsive and the force
→
F23 is attractive as displayed in Fig. 19.13. From Coulomb’s

law we can find F21 and F23 as follows:

F21 = k
|q2| |q1|

r2 = 9 × 109 N.m2/C2 (10 × 10−6 C)(5 × 10−6 C)

(0.5 m)2 = 1.8 N

F23 = k
|q2| |q3|

r2 = 9 × 109 N.m2/C2 (10 × 10−6 C)(2 × 10−6 C)

(0.3 m)2 = 2 N

Using the coordinate system shown in Fig. 19.13, we have:

F2x = F21 cos θ − F23 = (1.8 N)
30 cm

50 cm
− 2 N = −0.92 N

F2y = −F21 sin θ = −(1.8 N)
40 cm

50 cm
= −1.44 N

Resultant: F =
√

F2
2x + F2

2y = √
(−0.92 N)2 + (−1.44 N)2 = 1.7 N

Direction: φ = tan−1
( |F2y|

|F2x|
)

= tan−1(1.565) = 57.4◦

We can also write the resultant force
→
F in vector form as follows:

→
F = −F2x

→
i + F2y

→
j =

(
−0.92

→
i + 1.44

→
j

)
N
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19.4 Exercises

Section 19.1 Electric Charge

(1) Explain what is meant by the following: (a) a neutral atom, (b) a negatively

charged atom, and (c) a positively charged atom.

(2) A neutral rubber rod is rubbed with fur as shown in Fig. 19.14. After rubbing,

what would be the charge on each of these items? Is it possible to transfer

positive charges from one of them to the other? Why so or why not?

Fig. 19.14 See Exercise (2)

Before rubbing

Neutral
rubber

Neutral
fur

Section 19.2 Charging Conductors and Insulators

(3) If we repeat the experiment illustrated in Fig. 19.3 but instead of using a charged

plastic rod, we use a charged rubber rod, what will the final charge on the copper

rod be?

(4) A charged plastic comb often attracts small bits of dry paper, as shown in the

left part of Fig. 19.15. After a while, the bits of paper fall down, as shown in

the right part of Fig. 19.15. Explain this observation.

Fig. 19.15 See Exercise (4)
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(5) In an oxygen-enriched atmosphere (as in hospital operation rooms), workers

must wear special conducting shoes and avoid wearing rubber-soled shoes.

Explain the reason behind this.

(6) A negatively charged balloon clings to a wall as shown in the right part of Fig.

19.16. Does this mean that the wall is positively charged? Why does the balloon

fall afterwards?

Fig. 19.16 See Exercise (6)
Charged
balloon

Before After

(7) Using a charged rubber rod, show the steps of how two uncharged metallic

spheres mounted on insulating stands can be electrostatically charged with

equal amount of charges, but opposite in sign.

Section 19.3 Coulomb’s Law

(8) How many electrons exist in a −1 C charge? What is the total mass of these

electrons?

(9) Find the magnitude of the electrostatic force between two 1 C charges separated

by a distance (a) 1 cm, (b) 1 m, and (c) 1 km, if such a configuration could be

set up. Are these forces substantial forces? Do they indicate that the coulomb

is a very large unit of charge?

(10) Find the magnitude of the force between two electrons when they are separated

by 0.1 nm (a typical atomic dimension).

(11) The uranium nucleus contains 92 protons. How large a repulsive force would

a uranium proton experience when it is 0.01 nm from the nucleus center? (The

nucleus can be treated as a point charge since the nuclear radius is of the order

of 10−14 m).

(12) Two electrically neutral spheres are 0.1 m apart. When electrons are moved

from one of the spheres to another, an attractive force of magnitude 10−3 N is

established between them. How many electrons were transferred?
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(13) Silver has 47 electrons per atom and a molar mass of 107.87 kg/kmol. An

electrically neutral pin of silver has a mass of 10 g. (a) Calculate the number of

electrons in the silver pin (Avogadro’s number is 6.022 × 1026 atoms/kmol).

(b) Electrons are added to the pin until the net charge is −1 mC. How many

electrons are added for every billion (109) electrons in the neutral atoms?

(14) Two protons in an atomic nucleus are separated by 2 × 10−15 m (a typical inter-

nuclear dimension). (a) Find the magnitude of the electrostatic repulsive force

between the protons. (b) How does the magnitude of the electrostatic force

compare to the magnitude of the gravitational force between the two protons?

(15) Two particles have an identical charge q and an identical mass m. What must

the charge-mass ratio, q/m, of the two particles be if the magnitude of their

electrostatic force equals the magnitude of the gravitational force.

(16) Two equally charged pith balls are at a distance r = 3 cm apart, as shown in

Fig. 19.17. Find the magnitude of the charge on each ball if they repel each

other with a force of magnitude 2 × 10−5 N. Does the answer give you any hint

about the exact sign of each charge? Explain.

Fig. 19.17 See Exercise (16)

q q

r

(17) Two point charges q1 and q2 are 3 m apart, and their combined charge is 40 μC.

(a) If one repels the other with a force of 0.175 N, what are the two charges?

(b) If one attracts the other with a force of 0.225 N, what are the two charges?

(18) Two point charges q1 = +4 μC and q2 = +6 μC are 10 cm apart. A point charge

q3 = +2 μC is placed midway between q1 and q2. Find the magnitude and

direction of the resultant force on q3.

(19) Three 4 μC point charges are placed along a straight line as shown in Fig. 19.18.

Calculate the net force on each charge.

(20) Three point charges q1 = q2 = q3 = −4 μC are located at the corners of an

equilateral triangle as shown in Fig. 19.19. (a) Calculate the magnitude of
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the net force on any one of the three charges. (b) If the charges are posi-

tive, i.e. q1 = q2 = q3 = +4 μC, would this change the magnitude calculated in

part a?

Fig. 19.18 See Exercise (19)
1 4   Cq =+ 2 4   Cq =+ 3 4   Cq =+

3m3m

+ + +

Fig. 19.19 See Exercise (20)
1

q
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23

q

1m 1m

1m

–
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(21) Three point charges q1 =+2 μC, q2 = −3 μC, and q3 = +4 μC are located at

the corners of a right angle triangle as shown in Fig. 19.20. Find the magnitude

and direction of the resultant force on q3.

Fig. 19.20 See Exercise (21)

q3

x

q2

q1

–

5cm

y

30° +

+

(22) Three equal point charges of magnitude q lie on a semicircle of radius R as

shown in Fig. 19.21. Show that the net force on q2 has a magnitude kq2/
√

2R2

and points downward away from the center C of the semicircle.

(23) Four equal point charges, q1 = q2 = q3 = q4 = +3 μC, are placed at the four

corners of a square that has a side a = 0.4 m, see Fig. 19.22. (a) Find the force
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on q1. (b) Find the force exerted on a test charge of 1 C placed at the center P

of the square.

Fig. 19.21 See Exercise (22)
1q

2q

3q
R

R

C

Fig. 19.22 See Exercise (23)

1q

2q 3q
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y 4q
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0.4ma =
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+ +
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(24) Four equal point charges q1 = q2 = q3 = q4 = −1 μC, are located as shown in

Fig. 19.23. (a) Calculate the net force exerted on the charge q4, which is located

midway between q1 and q3. (b) Calculate the magnitude and direction of the

net force on the charge q2.

Fig. 19.23 See Exercise (24)
1q

2q 3q

1m

1m

4q

x
y–

– –

–

(25) A negative point charge of magnitude q is located on the x-axis at point x = −a,

and a positive point charge of the same magnitude is located at x = +a, see Fig.

19.24. A third positive point charge q◦ is located on the y-axis with a coordinate
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(0, y). (a) What is the magnitude and direction of the force exerted on q◦ when

it is at the origin (0,0)? (b) What is the force on q◦ when its coordinate is (0, y)?

(c) Sketch a graph of the force on q◦ as a function of y, for values of y between

−4a and +4a.

Fig. 19.24 See Exercise (25)

-q +q
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(26) In the Bohr model of the hydrogen atom, an electron of mass m = 9.11 ×
10−31 kg revolves about a stationary proton in a circular orbit of radius

r = 5.29 × 10−11 m, see Fig. 19.25. (a) What is the magnitude of the electrical

force on the electron? (b) What is the magnitude of the centripetal acceleration

of the electron? (c) What is the orbital speed of the electron?

Fig. 19.25 See Exercise (26) Electron

Fe

Fer

Proton

(27) In the cesium chloride crystal (CsCl), eight Cs+ ions are located at the corners

of a cube of side a = 0.4 nm and a Cl− ion is at the center, see Fig. 19.26. What

is the magnitude of the electrostatic force exerted on the Cl− ion by: (a) the

eight Cs+ ions?, (b) only seven Cs+ ions?

(28) Two positive point charges q1 and q2 are set apart by a fixed distance d and

have a sum Q = q1 + q2. For what values of the two charges is the Coulomb

force maximum between them?
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Fig. 19.26 See Exercise (27)

Cl

Cs

a

(29) Two equal positive charges q are held stationary on the x-axis, one at x = − a

and the other at x = +a. A third charge +q′ of mass m is in equilibrium at x = 0

and constrained to move only along the x-axis. The charge +q′ is then displaced

from the origin to a small distance x � a and released, see Fig. 19.27. (a) Show

that +q′ will execute a simple harmonic motion and find an expression for its

period T. (b) If all three charges are singly-ionized atoms (q = q′ = +e) each of

mass m = 3.8 × 10−25 kg and a = 3 × 10−10 m, find the oscillation period T.

Fig. 19.27 See Exercise (29)

x
aa

0
′+ q+ q + q

(30) Two identical small spheres of mass m and charge q hang from non-conducting

strings, each of length L. At equilibrium, each string makes an angle θ with

the vertical, see Fig. 19.28. (a) When θ is so small that tan θ 	 sin θ , show that

the separation distance r between the spheres is r = (Lq2/2πε◦mg)1/3. (b) If

L = 10 cm, m = 2 g, and r = 1.7 cm, what is the value of q?

Fig. 19.28 See Exercise (30)

θ θL L

q qx

r

x
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(31) For the charge distribution shown in Fig. 19.29, the long non-conducting mass-

less rod of length L (which is pivoted at its center) is balanced horizontally

when a weight W is placed at a distance x from the center. (a) Find the distance

x and the force exerted by the rod on the pivot. (b) What is the value of h when

the rod exerts no force on the pivot?

Fig. 19.29 See Exercise (31)

x

L

h hPivot W

+q

+Q +Q

+2q

(32) Two small charged spheres hang from threads of equal length L. The first sphere

has a positive charge q, mass m, and makes a small angle θ1 with the vertical,

while the second sphere has a positive charge 2 q, mass 3m, and makes a smaller

angle θ2 with the vertical, see Fig. 19.30. For small angles, take tan θ 	 θ and

assume that the spheres only have horizontal displacements and hence the

electric force of repulsion is always horizontal. (a) Find the ratio θ1/θ2. (b)

Find the distance r between the spheres.

Fig. 19.30 See Exercise (32)

m

q

3m

2q

L

r

L

1θ
2 2

θ T1T



Electric Fields 20

In this chapter, we introduce the concept of an electric field associated with a variety

of charge distributions. We follow that by introducing the concept of an electric field

in terms of Faraday’s electric field lines. In addition, we study the motion of a charged

particle in a uniform electric field.

20.1 The Electric Field

Based on the electric force between charged objects, the concept of an electric field

was developed by Michael Faraday in the 19th century, and has proven to have

valuable uses as we shall see.

In this approach, an electric field is said to exist in the region of space around

any charged object. To visualize this assume an electrical force of repulsion
→
F

between two positive charges q (called source charge) and q◦ (called test charge),

see Fig. 20.1a.

Now, let the charge q◦ be removed from point P where it was formally located as

shown in Fig. 20.1b. The charge q is said to set up an electric field
→
E at P, and if q◦

is now placed at P, then a force
→
F is exerted on q◦ by the field rather than by q, see

Fig. 20.1c.

Since force is a vector quantity, the electric field is a vector whose properties are

determined from both the magnitude and the direction of an electric force. We define

the electric field vector
→
E as follows:

H. A. Radi and J. O. Rasmussen, Principles of Physics, 659
Undergraduate Lecture Notes in Physics, DOI: 10.1007/978-3-642-23026-4_20,
© Springer-Verlag Berlin Heidelberg 2013
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Spotlight

The electric field vector
→
E at a point in space is defined as the electric

force
→
F acting on a positive test charge q◦ located at that point divided by

the magnitude of the test charge:

→
E =

→
F

q◦
(20.1)

Fig. 20.1 (a) A charge q

exerts a force
→
F on a test

charge q◦ at point P. (b) The

electric field
→
E established at

P due to the presence of q. (c)

The force
→
F = q◦

→
E exerted

by
→
E on the test charge q◦

q

+
qo

F  

P

+
++

+
+

q

P

+
++

+
+ E  

q

+
q o

P

+
++

+
+ F  = q o E  

(a)

(b)

(c)

This equation can be rearranged as follows (see Fig. 20.1c):

→
F = q◦

→
E (20.2)

The SI unit of the electric field
→
E is newton per coulomb (N/C).

The direction of
→
E is the direction of the force on a positive test charge placed in

the field, see Fig. 20.2.

20.2 The Electric Field of a Point Charge

To find the magnitude and direction of an electric field, we consider a positive point

charge q as a source charge. A positive test charge q◦ is then placed at point P,
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a distance r away from q, see Fig. 20.3. From Coulomb’s law, the force exerted on

q◦ is:

→
F = k

q q◦
r2

→̂r (20.3)

P
E(a)

(b)
P

E

q
+

++
+
+

--
- -

-
-
-

q

Fig. 20.2 (a) If the charge q is positive, then the force
→
F on the test charge q◦ (not shown in the figure)

at point P is directed away from q. Therefore, the electric field
→
E at P is directed away from q. (b) If the

charge q is negative, then the force
→
F on q◦ at point P is directed toward q. Therefore, the electric field

→
E at P is directed toward q

where →̂r is a unit vector directed from the source charge q to the test charge q◦ . This

force has the same direction as the unit vector →̂r .

Since the electric field at point P is defined from Eq. 20.1 as
→
E = →

F /q◦ , then

according to Fig. 20.3, the electric field created at P by q is an outward vector given by:

→
E = k

q

r2
→̂r (20.4)

+
q

Pr

q

Pr

+

+ F
qo

r r

E

Fig. 20.3 If the point charge q is positive, then both the force
→
F on the positive test charge q◦ and the

electric field
→
E at point P are directed away from q



662 20 Electric Fields

When the source charge q is negative, the force
→
F on q◦ and the electric field

→
E

at point P will be toward q, see Fig. 20.4.

Note that for both positive and negative charges, →̂r is a unit vector that is always

directed from the source charge q to the point P, see Figs. 20.3 and 20.4.

In all previous and coming discussions, the positive test charge q◦ must be very

small, so that it does not disturb the charge distribution of the source charge q.

Mathematically, this can be done by taking the limit of the ratio
→
F /q◦ when q◦

approaches zero. Thus:

→
E = lim

q◦→0

→
F

q◦
(20.5)

q

P
P

r r

q
- -

+F

qo

r r

E

Fig. 20.4 If the point charge q is negative, then both the force
→
F on the test positive charge q◦ and the

electric field
→
E at point P are directed toward q, but the unit vector →̂r remains pointed toward P

The electric field due to a group of point charges q1, q2, q3 . . . at point P can

be obtained by first using Eq. 20.4 to calculate the electric field of each individual

charge, such that:

→
En = k

qn

r2
n

→̂rn (n = 1, 2, 3, . . .) (20.6)

Then we calculate the vector sum
→
E of the electric fields of all the charges. This sum

is expressed as follows:

→
E = →

E1 + →
E2 + →

E3 + . . . = k
∑
n

qn

r2
n

→̂rn (n = 1, 2, 3, . . .) (20.7)
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where rn is the distance from the nth source charge qn to the point P and →̂rn is a unit

vector directed away from qn to P.

It is clear that Eq. 20.7 exhibits the application of the superposition principle to

electric fields.

Example 20.1

Four point charges q1 = q2 = Q and q3 = q4 = −Q, where Q = √
2 μC, are placed

at the four corners of a square of side a = 0.4 m, see Fig. 20.5a. Find the electric

field at the center P of the square.

1
q

q
3

q

4
q

P

1
q

22
q

3
q

x

4
q

P

E24

E

E

45°

45°

(b)(a)

13

a a

+ -

+ -

+ -

+ -

a a

Fig. 20.5

Solution: The distance between each charge and the center P of the square is

a/
√

2. At point P, the point charges q1 and q3 produce two diagonal electric field

vectors
→
E1 and

→
E3, both directed toward q3, see Fig. 20.5b. Hence, their vector

sum
→
E13 = →

E1 + →
E3 points toward q3 and has the magnitude:

E13 = E1 + E3 = k
Q

(a/
√

2)2
+ k

Q

(a/
√

2)2
= 4k

Q

a2

At point P, the charges q2 and q4 produce two diagonal electric fields
→
E2 and

→
E4,

both directed toward q4, see Fig. 20.5b. Hence, their vector sum
→
E24 = →

E2 + →
E4

points toward q4 and has the magnitude:

E24 = E2 + E4 = k
Q

(a/
√

2)2
+ k

Q

(a/
√

2)2
= 4k

Q

a2

We now must combine the two electric field vectors
→
E13 and

→
E24 to form

the resultant electric field vector
→
E = →

E13 + →
E24 which is along the positive

x-direction and has the magnitude:
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E = E13 cos 45◦ + E24 cos 45◦ = 2 ×
(

4k
Q

a2 × 1√
2

)
= k

8Q√
2a2

= (9 × 109 N.m2/C2)
8(

√
2 × 10−6 m)√
2 (0.4 m)2

= 4.5 × 105 N/C

Example 20.2 (Electric Dipole)

Consider two point charges q1 = −24 nC and q2 = +24 nC that are 10 cm apart,

forming an electric dipole, see Fig. 20.6. Calculate the electric field due to the two

charges at points a, b, and c.

Fig. 20.6

a b

c

10 cm 10 cm

6 cm 2 cm4 cm

EbEa  

E c  

q1 q260°

2cE

1cE

Solution: At point a, the electric field vector due to the negative charge q1, is

directed toward the left, and its magnitude is:

E1a = k
|q1|
r2

1a

= (9 × 109 N.m2/C2)
(24 × 10−9 C)

(0.04 m)2 = 135 × 103 N/C

The electric field vector due to the positive charge q2 is also directed toward the

left, and its magnitude is:

E2a = k
|q2|
r2

2a

= (9 × 109 N.m2/C2)
(24 × 10−9 C)

(0.06 m)2 = 60 × 103 N/C

Then, the resultant electric field at point a is toward the left and its magnitude is:

Ea = E1a + E2a = 135 × 103 N/C + 60 × 103 N/C

= 195 × 103 N/C (Toward the left)
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At point b, the electric field vector due to the negative charge q1, is directed toward

the left, and its magnitude is:

E1b = k
|q1|
r2

1b

= (9 × 109 N.m2/C2)
(24 × 10−9 C)

(0.12 m)2 = 15 × 103 N/C

In addition, the electric field vector due to the positive charge q2 is directed toward

the right, and its magnitude is:

E2b = k
|q2|
r2

2b

= (9 × 109 N.m2/C2)
(24 × 10−9 C)

(0.02 m)2 = 540 × 103 N/C

Since E2b > E1b, the resultant electric field at point b is toward the right and its

magnitude is:

Eb = E2b − E1b = 540 × 103 N/C − 15 × 103 N/C

= 525 × 103 N/C (Toward the right)

At point c, the magnitudes of the electric field vectors
→
E1c and

→
E2c established

by q1 and q2 are the same because |q1| = |q2| = 24 nC and r1c = r2c = 10 cm.

Thus:

E2c = E1c = k
|q1|
r2

1c

= (9×109 N.m2/C2)
(24 × 10−9 C)

(0.1 m)2 = 21.6×103 N/C

The triangle formed from q1, q2, and point c in Fig. 20.6 is an equilateral

triangle of angle 60◦. Hence, from geometry, the vertical components of the

two vectors
→
E1c and

→
E2c cancel each other. The horizontal components are both

directed toward the left and add up to give the resultant electric field Ec at point c,

see the figure below.

2cE

1cE

60

60
1 2cos60 cos60c c cE E E c

°

°

° °

Thus: Ec = E1c cos 60◦ + E2c cos 60◦ = 2E1c cos 60◦

= 2(21.6 × 103 N/C)(0.5) = 21.6 × 103 N/C (Toward the left)
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20.3 The Electric Field of an Electric Dipole

Generally, the electric dipole introduced in Example 20.3 consists of a positive charge

q+ = +q and a negative charge q− = −q separated by a distance 2a, see Fig. 20.7.

In this figure, the dipole axis is taken to be along the x-axis and the origin of the

xy plane is taken to be at the center of the dipole. Therefore, the coordinates of q+
and q− are (+a, 0) and (−a, 0), respectively.

0
x

P (x,y)

y

(a,0)(-a,0)

x + a

x - a

y

E

+-
-q

+q
r+

r+

r−

r−

E+

E−

Fig. 20.7 The electric field
→
E = →

E+ + →
E− at point P(x, y) due to an electric dipole located along the

x-axis. The dipole has a length 2a

Let us assume that a point P(x, y) exists in the xy-plane as shown in Fig. 20.7. We

will call the electric field produced by the positive charge
→
E+ and the electric field

produced by the negative charge
→
E−.

Using the superposition principle, the total electric field at P is:

→
E = →

E+ + →
E− = k

q+
r2+

→̂r+ + k
q−
r2−

→̂r− (20.8)

From the geometry of Fig. 20.7, we have r2+ = (x −a)2 +y2 and r2− = (x +a)2 +y2.

In addition, →̂r + is a unit vector directed outwards and away from the positive charge

q+ at (+a, 0). On the other hand, →̂r− is a unit vector directed outwards and away

from the negative charge q− at (−a, 0). Accordingly, Eq. 20.8 becomes:

→
E = k

[
q

(x − a)2 + y2
→̂r+ + −q

(x + a)2 + y2
→̂r−

]
(20.9)



20.3 The Electric Field of an Electric Dipole 667

Therefore, the general electric field will take the following form:

→
E = kq

[ →̂r+
(x − a)2 + y2 −

→̂r−
(x + a)2 + y2

]
(20.10)

The Electric Field Along the Dipole Axis

Let us first assume a point P exists on the dipole axis, i.e. y = 0, and satisfies the

condition x < −a, as shown in Fig. 20.8a. In this case, →̂r+ = →̂r− = −→
i , where

→
i is

a unit vector along the x-axis.

x

0
x

E+ E−

x
+−

(a)

(b)

(c)

a x a− < < +

x a> +

P

P

0

0

+-

+-

+-

- q +  q+ −

- q

- q + q

+ a- a

+a a

+ a- a

+ q

x a< −

PE E

E E

Fig. 20.8 The electric field
→
E = →

E+ + →
E− at different points along the axis of a dipole that has a length 2a

When P has an x-coordinate that satisfies −a < x < + a as in Fig. 20.8b, then
→̂r + = −→

i and →̂r − = +→
i . When P satisfies x > + a as in Fig. 20.8c, then →̂r + =

→̂r − = +→
i . Substituting in Eq. 20.10, we get:

→
E =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

−kq

[
1

(x − a)2 − 1

(x + a)2

] →
i x < −a (Toward the right)

−kq

[
1

(x − a)2 + 1

(x + a)2

] →
i −a < x < +a (Toward the left)

kq

[
1

(x − a)2 − 1

(x + a)2

] →
i x > +a (Toward the right)

(20.11)
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When x � a we can take out a factor of x2 from each denominator of the brackets

of the last formula for x > +a and then expand each of these terms by binomial

expansion. Therefore, we get:

→
E = kq

[
1

(x − a)2 − 1

(x + a)2

] →
i

= kq

x2

[(
1 − a

x

)−2 −
(

1 + a

x

)−2
] →

i

= kq

x2

[(
1 + 2a

x
− · · ·

)
−

(
1 − 2a

x
+ · · ·

)] →
i

� kq

x2

4a

x

→
i = 2 k (2a q)

x3

→
i x � a

(20.12)

For x � −a, we can find an identical expression but with |x| instead of x in the last

formula. The product of the positive charge q and the length of the dipole 2a is called

the magnitude of the electric dipole moment, p = 2a q. The direction of →p is taken

to be from the negative charge to the positive charge of the dipole, i.e. →p = p
→
i .

Using this definition, we have:

→
E =

⎧⎪⎪⎨
⎪⎪⎩

2 k
→p
x3 x � a

2 k
→p
|x|3 x �−a

(
→p = 2 a q

→
i ) (20.13)

Thus, at far distances, the electric field along the x-axis is proportional to the electric

dipole moment →p and varies as 1/|x3|.

Electric Field Along the Perpendicular Bisector of a Dipole Axis

Let us assume that a point P lies on the y-axis, i.e. along the perpendicular bisector

of the line joining the dipole charges, see Fig. 20.9. Substitute x with 0 in Eq. 20.10

to get:

→
E = k q

a2 + y2

[→̂r + − →̂r −
]

(20.14)

From Fig. 20.9, we see that:

→̂r+ = − cos θ
→
i + sin θ

→
j ,

→̂r − = cos θ
→
i + sin θ

→
j , cos θ = a/

√
a2 + y2

(20.15)
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Fig. 20.9 The electric field
→
E = →

E+ + →
E− at point P(0, y)

along the y-axis of an electric

dipole lying along the x-axis

with a length 2a

-q +q

0 x

P

y

( a ,0 )( -a ,0 )

r+r−

y
r−

r+

+

E−

θ

θ

θθ
+-

E

E

Substituting these relations in Eq. 20.14 we get:

→
E = −k

2a q

(a2 + y2)3/2

→
i = −k

→p
(a2 + y2)3/2 (

→p = 2a q
→
i ) (20.16)

When |y| � a, we can neglect a2 when we compare it with y2 in the denominator

bracket and write:

→
E =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

− k
→p
y3 y � a

− k
→p
|y|3 y � −a

(
→p = 2 a q

→
i ) (20.17)

Thus, at far distances, the electric field along the perpendicular bisector of the line

joining the dipole charges is proportional to the electric dipole moment →p and varies

as 1/|y|3. Generally, this inverse cube dependence at a far distance is a characteristic

of a dipole.

Example 20.3 (The Dipole Field Along the Dipole Axis)

A proton and an electron separated by 2 × 10−10 m form an electric dipole, see

Fig. 20.10. Use exact and approximate formulae to calculate the electric field on

the x-axis at a distance 20 × 10−10 m to the right of the dipole’s center.
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- e +e
x

E+E−

+a-a

P

0

1010 ma −=
1020 10 m−×

Electron Proton- +

Fig. 20.10

Solution: In this problem we have a = 10−10 m, q = e = 1.6 × 10−19 C, x =
20 × 10−10 m, ke = (9 × 109 N.m2/C2) (1.6 × 10−19 C)= 1.44 × 10−9 N.m2/C,

x − a = 19 × 10−10 m, and x + a = 21 × 10−10 m. Using the exact formula given

by Eq. 20.11 in the case of x > +a, we have:

E = ke

[
1

(x − a)2 − 1

(x + a)2

]

= (1.44 × 10−9 N.m2/C)

[
1

(19 × 10−10 m)2 − 1

(21 × 10−10 m)2

]

= (1.44 × 10−9 N.m2/C)[2.770 × 1017 m−2 − 2.268 × 1017m−2]
= 7.236 × 107 N/C

On the other hand, we have x � a and we can use the approximate formula given

by Eq. 20.13 as follows:

E = 2k
p

x3 = 2k
2a e

x3 = ke
4a

x3

= (1.44 × 10−9 N.m2/C)
(4 × 10−10 m)

(20 × 10−10 m)3

= 7.200 × 107 N/C

Clearly this calculation is a good approximation when x/a = 20.

20.4 Electric Field of a Continuous Charge Distribution

The electric field at point P due to a continuous charge distribution shown in Fig. 20.11

can be evaluated by:

(1) Dividing the charge distribution into small elements, each of charge �qn that is

located relative to point P by the position vector →rn = rn
→̂rn.
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(2) Using Eq. 20.4 to evaluate the electric field �
→
En due to the nth element as follows:

�
→
En = k

� qn

r2
n

→̂rn (20.18)

(3) Evaluating the order of the total electric field at P due to the charge distribution

by the vector sum of all the charge elements as follows:

→
E ≈ k

∑
n

� qn

r2
n

→̂rn (20.19)

(4) Evaluating the total electric field at P due to the continuous charge distribution

in the limit �qn → 0 as follows:

→
E = k lim

�qn→0

∑
n

�qn

r2
n

→̂rn = k
� dq

r2
→̂r (20.20)

where the integration is done over the entire charge distribution.

Fig. 20.11 The electric field
→
E at point P due to a

continuous charge distribution

is the vector sum of all the

fields �
→
En (n = 1, 2, · · · ) due

to the charge elements

�qn (n = 1, 2, · · · ) of the

charge distribution

nq nr

nEP

Now we consider cases were the total charge is uniformly distributed on a line,

on a surface, or throughout a volume. It is convenient to introduce the charge density

as follows:

(1) When the charge Q is uniformly distributed along a line of length L, the linear

charge density λ is defined as:

λ = Q

L
(20.21)

where λ has the units of coulomb per meter (C/m).

(2) When the charge Q is uniformly distributed on a surface of area A, the surface

charge density σ is defined as:
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σ = Q

A
(20.22)

where σ has the units of coulomb per square meter (C/m2).

(3) When the charge Q is uniformly distributed throughout a volume V, the volume

charge density ρ is defined as:

ρ = Q

V
(20.23)

where ρ has the units of coulomb per cubic meter (C/m3).

Accordingly, the charge dq of a small length dL, a small surface of area dA, or a

small volume dV is respectively given by:

dq = λ dL, dq = σ dA, dq = ρ dV (20.24)

20.4.1 The Electric Field Due to a Charged Rod

For a Point on the Extension of the Rod

Figure 20.12 shows a rod of length L with a uniform positive charge density λ

and total charge Q. In this figure, the rod lies along the x-axis and point P is taken to

be at the origin of this axis, located at a constant distance a from the left end. When

we consider a segment dx on the rod, the charge on this segment will be dq = λ dx.

x
0

y

La

P

E

dx

dq
+ + + + + + + + + + + +

x

Fig. 20.12 The electric field
→
E at point P due to a uniformly charged rod lying along the x-axis. The

magnitude of the field due to a segment of charge dq at a distance x from P is k dq/x2. The total field is

the vector sum of all the segments of the rod

The electric field d
→
E at P due to this segment is in the negative x direction and

has a magnitude given by:
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dE = k
dq

x2 = k
λ dx

x2 (20.25)

The total electric field at P due to all the segments of the rod is given by Eq. 20.20

after integrating from one end of the rod (x = a) to the other (x = a + L) as follows:

E =
�

dE =
a+L�
a

k
λ dx

x2 = kλ

a+L�
a

x−2dx = kλ
∣∣− 1

x

∣∣a+L
a

= kλ

{
− 1

a + L
+ 1

a

}
= kλL

a(a + L)

(20.26)

When we use the fact that the total charge is Q = λL, we have:

E = kQ

a(a + L)
(Toward the left) (20.27)

If P is a very far point from the rod, i.e. a � L, then L can be neglected in the

denominator of Eq. 20.27. Accordingly, we have E ≈ kQ/a2, which resembles the

magnitude of the electric field produced by a point charge.

For a Point on the Perpendicular Bisector of the Rod

A rod of length L has a uniform positive charge density λ and total charge Q. The

rod is placed along the x-axis as shown in Fig. 20.13. Assume that point P is on

the perpendicular bisector of the rod and is located at a constant distance a from the

origin of the x-axis. The charge on a segment dx on the rod will be dq = λ dx.

Fig. 20.13 A rod of length L

has a uniform positive charge

density λ and an electric field

d
→
E at point P due to a segment

of charge dq, where P is

located along the

perpendicular bisector of the

rod. From symmetry, the total

field will be along the y-axis

x
0

 a

L

P

dx

dq

+ + + + + + + + + + + +
θ θ ο

x

d E

xd E

yd E

r

 y
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The electric field d
→
E at P due to this segment has a magnitude:

dE = k
dq

r2 = k
λ dx

r2 (20.28)

This field has a vertical component dEy = dE sin θ along the y-axis and a horizontal

component dEx perpendicular to it, as shown in Fig. 20.13. An x-component at such

a location is canceled out by a similar but symmetric charge segment on the opposite

side of the rod. Thus:

Ex =
∑

dEx = 0 (20.29)

The total electric field at P due to all segments of the rod is given by two times

the integration of the y-component from the middle of the rod (x = 0) to one of the

ends (x = L/2). Thus:

E = 2
x=L/2�
x=0

dEy = 2
x=L/2�
x=0

dE sin θ = 2 k λ

x=L/2�
x=0

sin θ dx

r2 (20.30)

To perform the integration of this expression, we must relate the variables θ, x, and

r. One approach is to express θ and r in terms of x. From the geometry of Fig. 20.13,

we have:

r =
√

x2 + a2 and sin θ = a

r
= a√

x2 + a2
(20.31)

Therefore, Eq. 20.30 becomes:

E = 2 kλ a
L/2�
0

dx

(x2 + a2)3/2 (20.32)

From the table of integrals in Appendix B, we find that:

� dx

(x2 + a2)3/2 = x

a2
√

(x2 + a2)
(20.33)

Thus:

E = 2kλ a
L/2�
0

dx

(x2 + a2)3/2 = 2 kλ a

∣∣∣∣ x

a2
√

x2 + a2

∣∣∣∣
L/2

0

= 2kλ a

[
L/2

a2
√

(L/2)2 + a2
− 0

]
= kλ L

a
√

(L/2)2 + a2
(20.34)
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When we use the fact that the total charge is Q = λL, we have:

E = kQ

a
√

a2 + (L/2)2
or E = kλ L

a
√

a2 + (L/2)2
(20.35)

When P is a very far point from the rod, a � L, we can neglect (L/2)2 in the denom-

inator of Eq. 20.35. Thus, E ≈ kQ/a2. This is just the form of a point charge. For an

infinitely long rod we get:

E = lim
L→∞

2kλ

a
√

(2a/L)2 + 1
⇒ E = 2k

λ

a
(20.36)

Example 20.4

Figure 20.14 shows a non-conducting rod that has a uniform positive charge

density +λ and a total charge Q along its right half, and a uniform negative

charge density −λ and a total charge −Q along its left half. What is the direction

and magnitude of the net electric field at point P that shown in Fig. 20.14?

Fig. 20.14

x
0

L

P

y

a

+Q-Q

Solution: When we consider a segment dx on the right side of the rod, the charge

on this segment will be dq = λ dx, see Fig. 20.15.

The electric field d
→
E+ at P due to this segment is directed outwards and away

from the positive charge dq and has a magnitude:

dE+ = k
dq

r2 = k
λ dx

r2

A symmetric segment on the opposite side of the rod, but with a negative charge,

creates an electric field d
→
E− that is directed inwards and toward this segment and
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has the same magnitude as d
→
E+, i.e. dE+ = dE−. The resultant electric field d

→
E

from both symmetric segments will be a vector to the left, see Fig. 20.15, and its

magnitude will be given by:

dE = dE+ cos θ + dE+ cos θ = 2 dE+ cos θ

= 2 k
λ dx

r2

x

r
= k λ(x2 + a2)−3/2(2x)dx

Fig. 20.15

x
0

L

P

+

y

a
+Q- Q

θ

dqrr

x dx

d E+

d E −

θ

d E

The total electric field at P due to all segments of the rod is found by inte-

grating dE from x = 0 to only x = L/2,since the negative charge of the rod is

considered in evaluating dE. Thus:

E =
�

dE = k λ

x=L/2�
x=0

(x2 + a2)−3/2(2x dx)

To evaluate the integral in this equation, we transform it to the form�
un du = un+1/(n + 1), as we shall do in solving Eq. 20.53. Thus:

E = k λ

∣∣∣∣ (u
2 + a2)−1/2

−1/2

∣∣∣∣
u=L/2

u=0
= k λ

[
−2√

(L/2)2 + a2
− −2

a

]

= 2k λ

[
1

a
− 1√

(L/2)2 + a2

]

When we use the fact that the magnitude of the charge Q is given by Q = λL/2,

we get:
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E = 4k Q

L

[
1

a
− 1√

(L/2)2 + a2

]

When P is very far away from the rod, i.e. a � L, we can neglect (L/2)2 in

the denominator of this equation and hence get E ≈ 0. In this situation, the two

oppositely charged halves of the rod would appear to point P as if they were two

coinciding point charges and hence have a zero net charge.

Example 20.5

An infinite sheet of charge is lying on the xy-plane as shown in Fig. 20.16. A

positive charge is distributed uniformly over the plane of the sheet with a charge

per unit area σ. Calculate the electric field at a point P located a distance a from

the plane.

x

y

+

+

+

+

+

+

a

dx

x

P

zdE
xdE

dE

o
r

z

θ

+ +

Fig. 20.16
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Solution: Let us divide the plane into narrow strips parallel to the y-axis.

A strip of width dx can be considered as an infinitely long wire of charge per

unit length λ = σ dx. From Eq. 20.36, at point P, the strip sets up an electric field

d
→
E lying in the xz-plane of magnitude:

dE = 2k
λ

r
= 2k

σdx

r

This electric field vector can be resolved into two components d
→
Ex and d

→
Ez.

By symmetry the components d
→
Ex will sum to zero when we consider the entire

sheet of charge. Therefore, the resultant electric field at point P will be in the

z-direction, perpendicular to the sheet. From Fig. 20.16, we find the following:

dEz = dE sin θ
and hence:

E =
�

dEz = 2kσ

+∞�
−∞

sin θdx

r

To perform the integration of this expression, we must first relate the variables θ,

x, and r. One approach is to express θ and r in terms of x. From the geometry of

Fig. 20.16, we have:

r =
√

x2 + a2 and sin θ = a

r
= a√

x2 + a2

Then, from the table of integrals in Appendix B, we find that:

E = 2kσa
+∞�
−∞

dx

x2 + a2 = 2kσa

∣∣∣∣1

a
tan−1 x

a

∣∣∣∣
+∞

−∞

= 2kσ
[
tan−1(∞) − tan−1(−∞)

] = 2kσ
[π

2
+ π

2

]

Thus:

E = 2πkσ = σ

2ε◦

This result is identical to the one we shall find in Sect. 20.4.4 for a charged

disk of infinite radius. We note that the distance a from the plane to the point P

does not appear in the final result of E. This means that the electric field set up at

any point by an infinite plane sheet of charge is independent of how far the point
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is from the plane. In other words, the electric field is uniform and normal to the

plane.

Also, the same result is obtained if the point P lies below the xy-plane. That

is, the field below the plan has the same magnitude as that above the plane but as

a vector it points in the opposite direction.

20.4.2 The Electric Field of a Uniformly Charged Arc

Assume that a rod has a uniformly distributed total positive charge Q. Also assume

that the rod is bent into a circular section of radius R and central angle φ rad. To find

the electric field at the center P of this arc, we place coordinate axes such that the

axis of symmetry of the arc lies along the y-axis and the origin is at the arc’s center,

see Fig. 20.17a. If we let λ represent the linear charge density of this arc which has

a length Rφ, then:

λ = Q

Rφ
(20.37)

For an arc element ds subtending an angle dθ at P, we have:

ds = R dθ (20.38)

Therefore, the charge dq on this arc element will be given by:

dq = λ ds = Q

Rφ
R dθ = Q

φ
dθ (20.39)

To find the electric field at point P, we first calculate the magnitude of the electric

field dE at P due to this element of charge dq, see Fig. 20.17b, as follows:

dE = k
dq

R2 = kQ

R2φ
dθ (20.40)

This field has a vertical component dEy = dE cos θ along the y-axis and a horizontal

component dEx along the negative x-axis, as shown in Fig. 20.17b. The x-component

created at P by any charge element dq is canceled by a symmetric charge element on

the opposite side of the arc. Thus, the perpendicular components of all of the charge

elements sum to zero. The vertical component will take the form:

dEy = dE cos θ = kQ

R2φ
cos θ dθ (20.41)
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Consequently, the total electric field at P due to all elements of the arc is given by

the integration of the y-component as follows:

E =
�

dEy = kQ

R2φ

+φ/2�
−φ/2

cos θ dθ = kQ

R2φ

∣∣∣sin θ

∣∣∣+φ/2

−φ/2
= kQ

R2φ

[
sin

φ

2
− sin

(
− φ

2

)]

(20.42)

P

y

x

φ

(a)

R

Q

R

P

d E
yd E

y

d qθ

RQ

xdE

(b)

R

d s

s

x

dθ

Fig. 20.17 (a) A circular arc of radius R, central angle φ, and center P has a uniformly distributed

positive charge Q. (b) The figure shows the electric field d
→
E at P due to an arc element ds having a charge

dq. From symmetry, the horizontal components of all elements cancel out and the total field is along the

y-axis

Finally, the total electric field at P will be along the y-axis and will have a mag-

nitude given by:

E = kQ

R2

sin φ/2

φ/2
(20.43)

There are three special cases to Eq. 20.43:

(1) φ = 0 (Point charge)

When we apply the limiting case lim
φ →0

[sin(φ/2)/(φ/2)] = 1,we get:

E = kQ

R2 (20.44)
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(2) φ = π (Half a circle of radius R)

When we substitute with sin(π/2)/(π/2) = 2/π, we get:

E = 2kQ

πR2 (20.45)

(3) φ = 2π (A ring of radius R)

When we substitute with sin π = 0, we get:

E = 0 (20.46)

This is an expected result, since we shall see that Eq. 20.50 gives E = 0 when P

is at the center of the ring, i.e. when a = 0.

20.4.3 The Electric Field of a Uniformly Charged Ring

Assume that a ring of radius R has a uniformly distributed total positive charge Q,

see Fig. 20.18. Also, assume there is a point P that lies at a distance a from the center

of the ring along its central perpendicular axis, as shown in the same figure.

Fig. 20.18 A ring of radius R

having a uniformly distributed

positive charge Q. The figure

shows the electric field d
→
E at

an axial point P due to a

segment of charge dq. The

horizontal components will

cancel each other, and the total

field will be along the z-axis

P

d E
z

dq

θ

r

R

Q a

d E⊥

dEz

To find the electric field at P, we first calculate the magnitude of the electric field

dE at P due to this segment of charge dq as follows:
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dE = k
dq

r2 (20.47)

This field has a vertical component dEz = dE sin θ along the z-axis and a component

dE⊥ perpendicular to it, as shown in Fig. 20.18. The perpendicular component created

at P by any charge segment is canceled by a symmetric charge segment on the opposite

side of the ring. Thus, the perpendicular components of all of the charge segments

sum to zero. Using r = √
R2 + a2 and sin θ = a/r, the vertical component will take

the form:

dEz = dE sin θ = k
dq

r2

a

r
= ka dq

(R2 + a2)3/2 (20.48)

The total electric field at P due to all segments of the ring is given by the integration

of the z-component as follows:

E =
�

dEz =
� ka dq

(R2 + a2)3/2

= ka

(R2 + a2)3/2

�
dq

(20.49)

Since
�

dq represents the total charge Q over the entire ring, then the total electric

field at P will be given by:

E = kQa

(R2 + a2)3/2 (20.50)

This formula shows that the field is zero at the center of the ring, i.e., at a = 0.When

point P is very far from the ring, i.e., a � R, then we can neglect R2 in the denominator

of Eq. 20.50 and get E ≈ kQ/a2. This form resembles the one we got for a point

charge.

20.4.4 The Electric Field of a Uniformly Charged Disk

Assume that a disk of radius R has a uniform positive surface-charge density σ. Also,

assume that a point P lies at a distance a from the disk along its central perpendicular

axis, see Fig. 20.19.

To find the electric field at P, we divide the disk into concentric rings, then calculate

the electric field at P for each ring by using Eq. 20.50, and finally we can sum up the

contributions of all the rings.
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Fig. 20.19 A disk of radius R

has a uniform positive surface

charge density σ. The ring

shown has a radius r and radial

width dr. The total electric

field at an axial point P is

directed along this axis

r

dr

R

P

a

z

Charge per
unit area σ

E

Ring

Disk

Figure 20.19 shows one such ring, with radius r, radial width dr, and surface area

dA = 2πr dr. Since σ is the charge per unit area, then the charge dq on this ring is:

dq = σdA = 2π rσ dr (20.51)

Using this relation in Eq. 20.50, and replacing E with dE, R with r, and Q with

dq = 2π rσ dr, then we can calculate the field resulting from this ring as follows:

dE = ka

(r2 + a2)3/2 (2π rσ dr) = πkσa
2r dr

(r2 + a2)3/2 (20.52)

To find the total electric field, we integrate this expression with respect to the

variable r from r = 0 to r = R. This gives:

E =
�

dE = πkσa
R�
0

(r2 + a2)−3/2(2r dr) (20.53)

To solve this integral, we transform it to the form
�

undu = un+1/(n + 1) by setting

u = r2 + a2, and du = 2r dr. Thus, Eq. 20.53 becomes:

E = πkσa
R�
0

(r2 + a2)−3/2(2r)dr = πkσa
u=R2+a2�

u=a2

u−3/2du

= πkσa

∣∣∣∣u−1/2

−1/2

∣∣∣∣
u=R2+ a2

u= a2
= πkσa

[
(R2 + a2)−1/2

−1/2
− a−1

−1/2

] (20.54)
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Rearranging the terms, we find:

E = 2πkσ

[
1 − a√

R2 + a2

]
(20.55)

Using k = 1/4πε◦, where ε◦ is the permittivity of free space, it is sometimes prefer-

able to write this relation as:

E = σ

2ε◦

[
1 − a√

R2 + a2

]
(20.56)

We can calculate the field when point P is very close to the disk (the near-field

approximation) by assuming that R � a, or by assuming the disk to be an infinite

sheet when R → ∞ while keeping a finite. In both cases, the second term between

the two brackets of Eq. 20.56 approaches zero, and the equation is reduced to:

E = σ

2ε◦

⎧⎪⎪⎨
⎪⎪⎩

(Points very close to the disk)

or

(Infinite sheet)

⎫⎪⎪⎬
⎪⎪⎭

(20.57)

20.5 Electric Field Lines

The concept of electric field lines was introduced by Faraday as an approach to help

us visualize electric fields.

Spotlight

An electric field line is an imaginary line drawn in such a way that the direction

of its tangent at any point is the same as the direction of the electric field vector
→
E at that point, see Fig. 20.20.

Since the direction of an electric field generally varies from one point to another, the

electric field lines are usually drawn as curves, see Fig. 20.20.
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Fig. 20.20 The direction of

the electric field at any point is

the tangent to the electric field

line at this point

P

Q
Electric field

at point P

Electric field at
point Q

Electric field line

The relation between electric field lines and electric field vectors is as follows:

Spotlight

• The electric field vector
→
E is tangent to the electric field line at any point.

• The direction of the electric field line at any point is the same as the

direction of the electric field.

• The number of electric field lines per unit area, measured in the plane of

the lines, is proportional to the magnitude of
→
E . Thus, the electric field

lines are closer together when the electric field is strong, and far apart

when the field is weak.

The rules for drawing electric field lines are as follows:

Spotlight

• Electric field lines must emerge from a positive charge and end on a neg-

ative charge. For a system that has an excess of one type of charge, some

lines will emerge or end infinitely far away.

• The number of lines emerging from a positive charge or ending at a negative

charge is proportional to the magnitude of the charge.

• Electric field lines cannot cross each other.

The above rules are used in the six cases shown in Fig. 20.21.
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EE

N N

q
q−

qq q− q−

qq−

(b)(a)

(d)(c)

(f)(e)

Neutral point

Fig. 20.21 The figure shows the electric field lines of: (a) a positive point charge, (b) a negative point

charge, (c) two equal positive charges, (d) two equal negative charges, (e) an electric dipole, and (f) a side

view of an infinite sheet of charge

20.6 Motion of Charged Particles in a Uniform Electric Field

When a particle of charge q and mass m is in an external electric field of strength
→
E , a force q

→
E will be exerted on this particle. If q

→
E is the only acting force on the

particle, then according to Newton’s second law, 

→
F = m→a , the acceleration of the

particle will be given by:

→a = q
→
E /m (20.58)

If
→
E is uniform, then →a will be constant vector.
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Motion of a Charged Particle Along an Electric Field

Consider a particle of positive charge q and mass m in a uniform horizontal electric

field
→
E produced by two charged plates that are separated by a distance d as shown

in Fig. 20.22.

If the particle is released from rest at the positive plate and q
→
E is the only force

that acts on the particle, then the particle will move horizontally along the x-axis with

an acceleration →a = q
→
E /m. In such a case, we can apply the kinematics equations

(see Chap. 3) on the initial and final motion as follows:

• The particle’s time of flight t:

x = v◦ t + 1
2 a t2 ⇒ d = 0 + 1

2
qE

m
t2 ⇒ t =

√
2md

qE
(20.59)

• The speed of the particle v:

v = v◦ + a t ⇒ v = 0 + qE

m

√
2md

qE
⇒ v =

√
2qEd

m
(20.60)

• The kinetic energy of the particle K:

K = 1
2 mv2 ⇒ K = qEd (20.61)

The last result can also be obtained from the application of the work-energy theorem

W = �K because W = (qE)d and �K = Kf − Ki = K .

Example 20.6

In Fig. 20.22, assume that the charged particle is a proton of charge q =+e. The

proton is released from rest at the positive plate. In this case, each of the two

oppositely charged plates which are d = 2 cm apart has a charge per unit area of

σ = 5 μC/m2. (a) What is the magnitude of the electric field between the two

plates? (b) What is the speed of the proton as it strikes the second plate?

Solution: (a) The electric field arises from two infinite plates, Thus:

E = σ

2ε◦
+ σ

2ε◦
= σ

ε◦
= 5 × 10−6 C/m2

8.85 × 10−12 C/N.m2 = 5.65 × 105 N/C
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Fig. 20.22 A force q
→
E

exerted on a positive charge q

by a uniform electric field
→
E

established between two

oppositely charged plates

v

d

0t = t

0=° q Eq E

E

(b) We first find the proton’s acceleration from Newton’s second law:

a = F

m
= eE

m
= (1.6 × 10−19 C)(5.65 × 105 N/C)

1.67 × 10−27 kg
= 5.41 × 1013 m/s2

Then, using x = v◦ t + 1
2 a t2, we find that d = 1

2 a t2. Thus:

t =
√

2d

a
=

√
2(0.02 m)

5.41 × 1013 m/s2 = 2.72 × 10−8 s

Finally, we use v = v◦ + a t to find the speed of the proton as follows:

v = a t = (5.41 × 1013 m/s2)(2.72 × 10−8 s) = 1.47 × 106 m/s

Motion of a Charged Particle Perpendicular to an Electric Field

Consider an electron of charge q = −e and mass m being projected in a uniform

vertical electric field
→
E that is established in a region of length L by two oppositely

charged plates as shown in Fig. 20.23. If the initial speed v◦ of the electron at t = 0

is along the nagative x-axis, and if
→
E is along the y-axis, then the acceleration of the

electron will be constant along the positive y-axis (ignoring the gravitational force

and assuming vacuum conditions). That is:

ax = 0 ay = eE

m
(Upwards) (20.62)

When we apply the kinematics equations with vx◦ = v◦ and vy◦ = 0 while the electron

is in the region of the electric field, we find that:
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The components of the electron’s velocity at time t will be:

Along x vx = vx◦ = v◦
Along y vy = ay t = eE

m
t

(20.63)

The components of the electron’s position at time t will be:

Along x x = v◦t

Along y y = 1
2 ay t2 = eE

2m
t2

(20.64)

x

y

L D

h

1y

2y

α
E

° 1y D
e−

1t

0t =

-

-

-

Fig. 20.23 The effect of an upward force −e
→
E exerted on an electron projected horizontally with speed

v◦ into a downward uniform electric field
→
E

The electron will move a distance L horizontally and a distance y1 vertically before

leaving the region of the electric field, see Fig. 20.23. According to Eq. 20.64, the

time at this instant will be:

t1 = L

v◦
(20.65)

The vertical position y1 that corresponds to this time is:

y1 = eEL2

2mv2◦
(20.66)
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When the electron leaves the region of the electric field, with vx = v◦ and

vy = ayt1, the electric force vanishes and the electron continues to move in a straight

line with a constant velocity:

→
v = v◦

→
i + eEL

mv◦
→
j (20.67)

This velocity makes an angle α with the horizontal and so:

tan α = eEL/mv◦
v◦

= eEL

mv2◦
(20.68)

The extra vertical distance y2 that the electron will move before hitting the screen,

which is located at a horizontal distance D from the plates, is given by:

y2 = D tan α = D
eEL

mv2◦
(20.69)

Finally, the total vertical distance h that the electron will move is:

h = y1 + y2 = eEL

mv2◦

(
L

2
+ D

)
(20.70)

Example 20.7

In Fig. 20.23, assume that the horizontal length L of the plates is 5 cm, and assume

that the separation D between the plates and the screen is 50 cm. If the uniform

electric field has E = 250 N/C, and the electron’s initial speed v◦ is 2 × 106 m/s,

then; (a) What is the acceleration of the electron between the two plates? (b) Find

the time when the electron leaves the two plates. (c) Find the electron’s vertical

position before leaving the field region. (d) Find the electron’s vertical distance

before hitting the screen.

Solution: (a) Using the magnitude of the electronic charge e = 1.6 × 10−19 C and

the electronic mass m = 9.11 × 10−31 kg in Eq. 20.62, we get:

ax = 0 and ay = eE

m
= (1.6 × 10−19 C)(250 N/C)

9.11 × 10−31 kg
= 4.391 × 1013 m/s2
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(b) Using Eq. 20.65 for the horizontal motion, we get:

t1 = L

v◦
= 0.05 m

2 × 106 m/s
= 2.5 × 10−8 s

(c) Using Eq. 20.66 for the vertical motion, we get:

y1 = eEL2

2mv2◦
= (1.6 × 10−19 C)(250 N/C)(0.05 m)2

2(9.11 × 10−31 kg)(2 × 106 m/s)2 = 0.0137 m = 1.37 cm

Alternatively, we can use Eq. 20.64 to find y1 as follows:

y1 = 1
2 ay t2

1 = 1
2 (4.391 × 1013 m/s2)(2.5 × 10−8 s)2 = 0.0137 m = 1.37 cm

(d) We calculate y2 from Eq. 20.69 as follows:

y2 = D
eEL

mv2◦
= (0.5 m)(1.6 × 10−19 C)(250N/C)(0.05 m)

(9.11 × 10−31 kg)(2 × 106 m/s)2 = 0.274 m = 27.4 cm

Therefore, the total vertical distance moved by the electron is:

h = y1 + y2 = 0.0137 m + 0.274 m = 0.2877 m = 28.77 cm

20.7 Exercises

Section 20.2 Electric Field of a Point Charge

(1) Find the electric field of a 1 μC point charge at a distance of: (a) 1 cm, (b) 1 m,

and (c) 1 km.

(2) Find the value of a point charge if it has an electric field of 1 N/C at points:

(a) 1 cm away, (b) 1 m away, and (c) 1 km away.

(3) A vertical electric field is set up in space to compensate for the gravitational

force on a point charge. What is the required magnitude and direction of the

field when the point charge is: (a) an electron? (b) a proton? Comment on the

obtained values.

(4) An electron experiences a force of 8 × 10−14 N directed toward the front side

of a TV tube (the positive x-direction). (a) What is the magnitude and direction

of the electric field that produces this force? (b) What is the magnitude of the

acceleration of the electron?
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(5) A 4 μC point charge is placed at a point P(x = 0.2 m, y = 0.4 m). What is the

electric field
→
E due to this charge: (a) at the origin, (b) at x = 1 m and y = 1 m.

(6) Two point charges q1 =+9 μC and q2 = −4 μC are separated by a distance

L = 10 cm, see Fig. 20.24. Find the point at which the resultant electric field is

zero.

Fig. 20.24 See Exercise (6)

L

1q 2
q

+ -

(7) Three negative point charges are placed at the vertices of an isosceles trian-

gle as shown in Fig. 20.25. Given that a = 10 cm, q1 = q3 = −2 μC, and q2 =
−4 μC, find the magnitude and direction of the electric field at point P (which

is midway between q1 and q3).

Fig. 20.25 See Exercise (7)
1q

2q 3q
a

a P

(8) Four charges of equal magnitude are located at the four corners of a square

of side a = 0.1 m. Find the magnitude and direction of the electric field at

the center P of the square if: (a) all the charges are positive, i.e. qi = 5 μC,

where i = 1, 2, 3, 4, see top of Fig. 20.26. (b) the charges alternate in sign

around the perimeter of the square, i.e. q1 = q3 = 5 μC and q2 = q4 = −5 μC,

see middle of Fig. 20.26. (c) the anti-clockwise sequence of the charge signs

around the perimeter are plus, plus, minus, and minus, i.e. q1 = q2 = 5 μC and

q3 = q4 = −5 μC, see lower of Fig. 20.26.
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Fig. 20.26 See Exercise (8)

1q

2q 3q

x

y
4q

P

a

1q

2q 3q

x

y
4q

P

a

1q

2q 3q

x

y
4q

P

a

a

a

a

Section 20.3 Electric Field of an Electric Dipole

(9) Two point charges q1 = −6 μC and q2 = +6 μC are placed at two vertices of

an equilateral triangle, see Fig. 20.27. If a = 10 cm, find the electric field at the

third corner.

Fig. 20.27 See Exercise (9)

1q 2qa

aa

(10) A proton and an electron form an electric dipole and are separated by

a distance of 2a = 2 × 10−10 m, see Fig. 20.28. (a) Use exact formulas to

calculate the electric field along the x-axis at x = −10a, x = −2a, x = −a/2,
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x = +a/2, x = +2a, and x = +10a. (b) Show that at both points x = ±10a, the

approximate formula given by Eq. 20.13 has a very close percentage difference

from the exact value.

Fig. 20.28 See Exercise (10)
- e

+a- a
0

Electron Proton

x

1010 ma −=

y + e

(11) Rework the calculations of Exercise 10 but on the y-axis at y = −10 a,

y = −2 a, y = −a/2, y = +a/2, y = +2a, and y = +10a. In part (b), use

Eq. 20.17.

Section 20.4 Electric Field of a Continuous Charge Distribution

(12) A non-conductive rod of length L has a total negative charge −Q that is uni-

formly distributed along its length, see Fig. 20.29. (a) Find the linear charge

density of the rod. (b) Use the coordinates depicted in the figure to prove that the

electric field at point P, a distance a from the right end of the rod, has the same

form as the one given by Eq. 20.27. (c) When P is very far from the rod, i.e.

a � L, show that the electric field reduces to the electric field of a point charge

(i.e. the rod would look like a point charge). (d) If L = 15 cm, Q = 25 μC, and

a = 20 cm, find the value of the electric field at P.

x0

y

L a

PQ−

Fig. 20.29 See Exercise (12)

(13) A non-conductive rod lies along the x-axis with one of its ends located at x = a

and the other end located at ∞, see Fig. 20.30. Starting from the definition of

an electric field of a differential element on the rod, find the electric field at the
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origin if: (a) the rod carries a uniform positive linear charge density λ. (b) the

rod carries a positive varying linear charge density λ = λ◦a/x.

0

y

a
∞-x

λ

Fig. 20.30 See Exercise (13)

(14) A uniformly charged ring of radius 15 cm has a total charge of 50 μC. Find the

electric field on the central perpendicular axis of the ring at: (a) 0 cm, (b) 1 cm,

(c) 10 cm, and (d) 100 cm. (e) What do you observe about the values you just

calculated?

(15) A charged ring of radius R = 0.5 m has a gap d = 0.1 m, see Fig. 20.31.

Calculate the electric field at its center C if it carries a uniform charge q = 1 μC.

Fig. 20.31 See Exercise (15)

d = 0. 1m

R = 0. 5 m

q = 1 C

C

(16) Figure 20.32 shows a non-conductive semicircular arc of radius R that consists

of two quarters. The semicircle has a uniform positive total charge Q along its

right half, and a uniform negative total charge −Q along its left half. Find the

resultant electric field at the center of the semicircle.

Fig. 20.32 See Exercise (16)
P

RR

R

+Q-Q
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(17) Two non-conductive semicircular arcs, one of a uniform positive charge +Q

and the other of a uniform negative charge −Q, form a circle of radius R,

see Fig. 20.33. Find the resultant electric field at the center of the circle, and

compare it with the result of Exercise 16.

Fig. 20.33 See Exercise (17)

P

R

R

+Q-Q

(18) If you consider a uniformly charged ring of total charge Q and a fixed radius

R (as in Fig. 20.18), then the graph of Fig. 20.34 would map the electric field

along the axis of such a ring as a function of z/R. Show that the maximum

electric field is Emax = 2k Q/3
√

3R2 and occurs at z = R/
√

2.

Fig. 20.34 See Exercise (18)

0 2 4 6 8 10

maxEE

/z R

(19) An electron is constrained to move along the central axis of a ring of radius R

that has a uniform positive charge q, see Fig. 20.35. Show that when the position

x of the electron is much less than the radius R (x � R), the electrostatic force

exerted on the electron can cause it to oscillate through the center of the ring

with an angular frequency given by ω = √
kqe/mR3, where e and m are the

electronic charge and mass, respectively.

(20) Two non-conductive rings having the same radius R are arranged with their

central axes along a common horizontal line and separated by a distance of 4 R,

see Fig. 20.36. Ring 1 has a uniform positive charge q1, while ring 2 has a

uniform positive charge q2. Given that the net electric field is zero at point P,

which is at a distance R from ring 1 and on the common central axis of the

two rings, (a) find the ratio between the two charges. (b) If only the sign of q1
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is reversed, is it possible to have a point on the common axis where the net

electric field is zero? If so, where would it be?

Fig. 20.35 See Exercise (19)

R

-e

x

0

q

x-x

x R

F

Fig. 20.36 See Exercise (20)

RR

P

4 R
R

Ring 1 Ring 2

C1

1q 2q

C2

(21) A disk of radius R = 5 cm has a surface charge density σ = 6 μC/m2 on its

surface. Calculate the magnitude of the electric field at points on the central

axis of the disk located at: (a) 1 mm, (b) 1 cm, (c) 10 cm, and (d) 100 cm.

(22) A disk of radius R has a charge Q that is uniformly distributed over its surface

area. Show that Eq. 20.55 transforms to:

E = 2kQ

R2

[
1 − a√

R2 + a2

]

Show that when a � R, the electric field approaches that of a point charge

formula:

E ≈ k
Q

a2 (a � R)

You may use the binomial expansion (1 + δ)p ≈ 1 + pδ when δ � 1.

(23) Compare the obtained results of Exercise 21 to the near-field approximation

E = σ/2ε◦ as well as to the point charge approximation E = k(πR2σ)/a2, and

find which result(s) of Exercise 21 match the two approximations.
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(24) A disk of radius R has a surface charge density σ and an electric field of mag-

nitude E◦ = σ/2ε◦ at the center of its surface, see Fig. 20.37. At what distance

z along the central axis of the disk is the magnitude of the electric field E equal

to one-half of E◦?

Fig. 20.37 See Exercise (24)

R

z

Charge per  
unit area σ

2
E0

°

0

4
E

°

σ

σ

(25) Find the electric field between two oppositely-charged infinite sheets of charge,

each having the same charge magnitude and surface charge density σ, but

opposite signs, see Fig. 20.38.

Fig. 20.38 See Exercise (25)

E

+
+

+
+

Section 20.5 Electric Field Lines

(26) (a) A negatively charged disk has a uniform charge per unit area. Sketch the

electric field lines in the plane of the plane of the disk passing through its center.

(b) Redo part (a) taking the disk to be positively charged. (c) A negatively

charged rod has a uniform charge per unit length. Sketch the electric field

lines in the plane of the rod. (d) Three equal positive charges are placed at the

corners of an equilateral triangle. Sketch the electric field lines in the plane

of the charges. (e) An infinite linear rod has a uniform charge per unit length.

Sketch the electric field lines in the plane of the rod.
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Section 20.6 Motion of Charged Particles in a Uniform Electric Field

(27) An electron and a proton are released simultaneously from rest in a uniform

electric field of 105 N/C. Ignore the effect of the fields of the electron and proton

on each other. (a) Find the speed and kinetic energy of the electron 50 ns after

it has been released. (b) Repeat part (a) for the proton.

(28) Figure 20.39 shows two oppositely charged parallel plates that are separated

by a distance d = 1.5 cm. Each plate has a charge per unit area of magnitude

σ = 4 μC/m2. An electron is released from rest at t = 0 from the negative plate.

(a) Calculate the electric field between the two plates. (b) Ignoring the effect of

gravity, find the resultant force exerted on the electron? (c) Find the acceleration

of the electron. (d) How long does it take the electron to strike the positive plate?

(e) What is the speed and kinetic energy of the electron just before striking the

positive plate?

Fig. 20.39 See Exercise (28)

+
+

+
+

d

0tt
0°

E

- -

(29) In Exercise 28 assume that the electron is projected from the positive plate

toward the negative plate with an initial speed v◦ at time t = 0. The electron

travels the distance d = 1.5 cm between the two plates and stops temporarily

before hitting the negatively charged plate. (a) Find the magnitude and direction

of its acceleration. (b) Find the value of the electron’s initial speed. (c) Find the

time before the electron stops temporarily.

(30) Two oppositely charged horizontal plates are separated by a distance d = 1 cm

and each has a length L = 3 cm, see Fig. 20.40. The electric field between the

plates is uniform and has a magnitude E = 102 N/m. An electron is projected

between the plates with a horizontal initial speed of v◦ = 106 m/s as shown.

Assuming this experiment is conducted in a vacuum, where will the electron

strike the upper plate?

(31) Repeat Exercise 30 when a proton replaces the electron.
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Fig. 20.40 See Exercise (30)
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(32) To prevent the Electron in exercise 30 from striking the upper plate, its initial

horizontal speed is increased to v◦ = 2 × 106 m/s, see Fig. 20.41, and it then

strikes a screen at a distance D = 30 cm. (a) What is the acceleration of the

electron in the region between the two plates? (b) Find the time when the

electron leaves the two plates. (c) What is the vertical position of the electron

just before leaving the region between the two plates? (d) Find the electron’s

total vertical distance just before hitting the screen.

x

y

L D

h

1y

2y

E

+ + + + +

1y D
e

1t

0t/ 2d -

-

-

Fig. 20.41 See Exercise (32)

(33) Repeat Exercise 32 when a proton replaces the electron.
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Although Coulomb’s law is the governing law in electrostatics, its form does not

always simplify calculations in situations involving symmetry. In this chapter, we

introduce Gauss’s law as an alternative method for calculating electric fields of certain

highly symmetrical charge distribution systems. In addition to being simpler than

Coulomb’s law, Gauss’s law permits us to use qualitative reasoning.

21.1 Electric Flux

Consider a uniform electric field
→
E penetrating a small area A oriented perpendic-

ularly to the field as shown in Fig. 21.1. Recall from Sect. 20.5 that the number of

electric field lines per unit area (measured in a plane perpendicular to the lines) is

proportional to the magnitude of
→
E . Therefore, the total number of lines penetrating

the surface is proportional to EA. This product is called the electric flux1 �E . Thus:

�E = EA (21.1)

The SI units for �E is newton-meters square per coulomb (N.m2/C).

Spotlight

Electric flux is proportional to the number of electric field lines penetrating a

certain area.

If the area in Fig. 21.1 is tilted by an angle θ with respect to
→
E, the flux through

it (the number of electric lines) will decrease. To visualize this, Fig. 21.2 shows an

1 The word “flux” comes from the Latin word meaning “to flow”.

H. A. Radi and J. O. Rasmussen, Principles of Physics, 701
Undergraduate Lecture Notes in Physics, DOI: 10.1007/978-3-642-23026-4_21,
© Springer-Verlag Berlin Heidelberg 2013



702 21 Gauss’s Law

area A that makes an angle θ with the field. The number of lines that cross the area

A is equal to the number that cross the area A′, which is perpendicular to
→
E and

hence A′ = A cos θ. Thus, the flux through A, �E(A), is equal to the flux through A′,
�E(A′). But according to Eq. 21.1, the flux through A′ is defined as �E(A′)= EA′.
Therefore, the flux through A is:

�E(A) = �E(A′) = EA′ = EA cos θ (21.2)

E

Area A

Area A E

Side view

Fig. 21.1 Electric field lines representing a uniform electric field
→
E that penetrates an area A perpen-

dicularly (shown both in 3D and as a side view). The electric flux �E through this area is EA

θθ

Normal
θ

Eθ
Area A'Area A'

Side view

Area A

Area A

E

Fig. 21.2 Electric field lines representing a uniform electric field
→
E penetrating an area A that is at an

angle θ with the field (both three dimensional and side views are displayed). Since the flux through A is

the same as through A′, the flux through A is �E = EA cos θ

If we define a vector area
→
A whose magnitude represents the surface area and

whose direction is defined to be perpendicular to the surface area as in Fig. 21.3, then

Eq. 21.2 can be written as:

�E = →
E •

→
A = EA cos θ (21.3)

The flux through a surface of area A has a maximum value EA when the surface is

perpendicular to the field (i.e. when θ = 0◦), and is zero when the surface is parallel

to the field (i.e. when θ = 90◦).
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Area  A

Side view

θ

A

E
θ

A

E
Area A

Fig. 21.3 The definition of a vector area
→
A whose magnitude represents the surface area and whose

direction is defined to be perpendicular to the surface area

Generally, the electric field may vary over the surface of any shape. Let us consider

the general surface depicted by the shape in Fig. 21.4 and calculate the electric flux

over the whole surface.

θ
E

d A

Fig. 21.4 The differential surface vector area d
→
A of magnitude dA and direction perpendicular to the

differential surface area and pointing outwards. When the electric field
→
E makes an angle θ with that

differential surface area, the differential flux d�E is
→
E • d

→
A

We start by considering a differential vector surface area d
→
A to be normal to the

surface and to point outwards at a specific location. If the electric field vector at this

location is
→
E , then the differential electric flux d�E through this differential area

will be:

d�E = →
E • d

→
A (21.4)

We integrate this relation over a surface S to get the electric flux as:

�E =
�
S

→
E • d

→
A (21.5)

Generally, �E depends on the field pattern and the surface shape.
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According to the definition of the vector area d
→
A which always points outwards,

the sign of the flux depends on the angle between
→
E and d

→
A as follows:

(1) If θ < 90◦, then
→
E crosses the surface from the inside to the outside and hence

d�E = →
E • d

→
A is positive.

(2) If θ = 90◦, then
→
E grazes the surface and hence d�E = →

E • d
→
A is zero.

(3) If 90◦ < θ < 180◦, then
→
E crosses the surface from the outside to the inside

and hence d�E = →
E • d

→
A is negative.

The net flux through a surface is proportional to the net number of electric field

lines leaving the surface. If more lines are entering than leaving, then the net flux is

negative. If more lines are leaving than entering, then the net flux is positive.

We can write the net flux through a closed surface as:

�E =
� →

E • d
→
A (21.6)

where the symbol
�

represents an integral over a closed surface.

Example 21.1

Find the electric flux through a sphere of radius r enclosing at its center: (a) a

positive charge q, and (b) a negative charge −q.

Solution: (a) When a positive charge q is at the center of such a sphere, the electric

field would be directed outwards and be normal to the surface. It would also have

a constant magnitude, E = q/(4πε◦ r2), see Fig. 21.5. Therefore:

→
E • d

→
A = E dA cos 0◦ = E dA = q

4πε◦ r2 dA

Fig. 21.5

E

q

d A
r

E
+
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From Eq. 21.6 and the fact that
�

dA over a spherical surface gives the area of the

sphere, i.e.
�

dA = A = 4πr2, we find the net flux through the sphere that encloses

the positive charge q to be:

�E =
� →

E • d
→
A = q

4πε◦ r2

�
dA = q

4πε◦ r2 4πr2 = q

ε◦
(b) When a negative charge −q is at the center of such a sphere, the electric

field would be directed inwards and be normal to the surface. It would also have

a constant magnitude, E = q/(4πε◦ r2), see Fig. 21.6. Therefore:

→
E • d

→
A = E dA cos 180◦ = −E dA = − q

4πε◦ r2 dA

Fig. 21.6

q−

E
r

d A
r

E
r

r
-

Performing similar steps as in part (a), we find the net flux to be:

�E =
� →

E • d
→
A = − q

4πε◦ r2

�
dA = − q

4πε◦ r2 4πr2 = − q

ε◦
Negative electric flux means electric lines are entering the surface.

21.2 Gauss’s Law

In this section, we introduce a new foundation of Coulomb’s law, called Gauss’s

law. This law can be used to take advantage of symmetry in the problem under con-

sideration. Central to Gauss’s law is a hypothetical closed surface called a Gaussian

surface.

In Example 21.1 we noticed that the flux over a sphere of radius r was equal to the

charge q inside the sphere divided by the permittivity of free space ε◦. Now consider

several closed Gaussian surfaces surrounding the charge as shown in Fig. 21.7. The
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number of electric field lines passing through the spherical surface S1 is the same as

the number of lines passing through the non-spherical surfaces S2 and S3. Therefore,

we conclude that the flux through any closed Gaussian surface surrounding the point

charge q is q/ε◦.

Fig. 21.7 Different closed

Gaussian surfaces enclosing a

point charge q. The net electric

flux is the same through all

surfaces
q

1S 2S
3S

E+

Gauss’s law is a generalization to what we just described.

Gauss’s Law

The net electric flux through any closed surface is equal to the net charge inside

the surface divided by the permittivity of free space ε◦.

That is: �E =
� →

E • d
→
A = qin

ε◦
(21.7)

where qin represents the net charge inside the surface and
→
E represents the total

electric field at any point on the surface, which includes contributions from charges

inside and/or outside (if any).

Note that Gauss’s law is very useful in calculating electric fields in situations where

the charge distributions have planar, cylindrical, or spherical symmetry. In these

charge distribution systems, one must carefully construct the imaginary Gaussian

surface such that it simplifies the integral in Eq. 21.7. This can be done by trying to

satisfy one or more of the following conditions:

(1) The value of the field over the surface is constant, E = constant.

(2) The dot product
→
E • d

→
A is EdA because

→
E // d

→
A .

(3) The dot product
→
E • d

→
A is zero because

→
E ⊥ d

→
A .

(4) The value of the field over the surface is zero, E = 0.
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21.3 Applications of Gauss’s Law

Example 21.2

Using Gauss’s law, find the electric field at a distance r from a positive point

charge q, and compare it with Coulomb’s law.

Solution: We apply Gauss’s law to the spherical Gaussian surface of radius r

in Fig. 21.5. From the symmetry of the problem, we know that at any point, the

electric field
→
E is perpendicular to the surface and directed outwards from the

spherical center. Thus,
→
E // d

→
A and

→
E • d

→
A = E dA. Then, with qin = q, we can

write Gauss’s law as:

�E =
� →

E • d
→
A = qin

ε◦
⇒

� →
E • d

→
A =

�
E dA = E

�
dA = 4πr2E = q

ε◦

This leads to: E = 1

4πε◦
q

r2 = k
q

r2

which is simply Coulomb’s law. This proves that Gauss’s law and Coulomb’s law

are equivalent.

Example 21.3

Prove that any excess positive charge q on the isolated conductor of Fig. 21.8 will

lie entirely on its outer surface.

Conductor's
outer surfaceGaussian

surfaces

Cavity

Conductor's
inner surface

Fig. 21.8
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Solution: The electric field inside the conductor must be zero. If this is not the

case, the field would exert forces on the free electrons and a current would flow

within the conductor. Of course, there are no such currents in an isolated conductor

in electrostatic equilibrium.

First, we draw a Gaussian surface surrounding the conductor’s cavity, close to

its surface, as seen in Fig. 21.8. Since
→
E = 0 inside the conductor, then �E = 0

and hence according to Gauss’s law, no net charge would exist on the inner walls

of the cavity.

Then we draw a Gaussian surface just inside the outer surface of the conductor.

Since
→
E = 0 inside the conductor, then �E = 0 and according to Gauss’s law, no

net charge will exist inside the Gaussian surface. If the excess charge is not inside

the Gaussian surface, it must then be outside that surface, on the conductor’s

surface; see Fig. 21.9.

Fig. 21.9

Cavity

q

+

+

+

+

+
Conductor's 
outer surface

Conductor's 
inner surface

+

Example 21.4

Using Gauss’s law, find the electric field just outside the surface of a conductor

carrying a positive surface charge density σ.

Solution: Consider a small section of the conductor’s surface so as to neglect

curvature. Then construct a cylindrical Gaussian surface normal to the conductor

as shown in Fig. 21.10, where one end of the cylinder is inside the conductor while

the other end is outside. Each end has an area A. The electric field
→
E inside the

conductor is zero, and the electric field
→
E just outside the conductor’s surface
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must be perpendicular to the surface. If this were not true, the component of the

field along the surface of the conductor would force the free electrons to move,

violating the conductor’s electrostatic equilibrium.

Side view

A
E

Conductor
0E =

+

+

+

+
+

Charge per
unit area 

+
+
+
+
+
+

σ
Gaussian
cylinder

E
A

0E =+

σ

Fig. 21.10

To find the net flux through this cylindrical Gaussian surface, let us consider

each of the four faces of the cylinder. (1) Because
→
E = 0 inside the conductor, then

the flux through the end of the cylinder inside the conductor is �E(1)= 0. (2) For

the same reason, the flux through the curved surface of the cylinder inside the con-

ductor is �E(2)= 0. (3) Since
→
E ⊥ d

→
A along the curved surface of the cylinder

outside the conductor, the flux there is also �E(3)= 0. (4) Since
→
E // d

→
A along

the end of the cylinder that is outside the conductor, the flux there is �E(4)= EA.

Thus, the net flux through the cylindrical Gaussian surface is �E = EA. Since

qin = σA, we can then find electric field just outside the surface of the conductor

as follows:

�E =
� →

E • d
→
A = qin

ε◦
⇒ EA = σA

ε◦
⇒ E = σ

ε◦

Example 21.5

Find the electric field due to an infinite plane sheet of charge with a uniform

positive surface charge density σ.

Solution: By symmetry, the electric field
→
E outside the infinite plane sheet must

be: (1) uniform, (2) perpendicular to the sheet, (3) of the same magnitude at all

points equidistant from the sheet, and (4) in opposite direction on the other side

of the sheet, see Fig. 21.11. The choice that reflects that symmetry is a cylindrical
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Gaussian surface normal to the sheet as shown in Fig. 21.11, where one end of

the cylinder (of area A) is to the right of the sheet while the other end is to the left

of it.

+
+
+

+
+
+

Side view

A
E

Sheet of charge

+

+

+

+
+

Charge per
unit area

σ
Gaussian
cylinder

E
A

σ

+

E

A
+
+
+E

A

Fig. 21.11

As in Example 21.4, to find the net flux through this cylindrical Gaussian

surface, let us consider each of the four faces of the cylinder. (1) Because
→
E // d

→
A

through the left end of the cylinder, then the flux there is �E(1)= EA. (2) Because
→
E ⊥ d

→
A through the left curved surface of the cylinder then the flux there is

�E(2)= 0. (3) For the same reason (
→
E ⊥ d

→
A ), and the flux through the right

curved surface of the cylinder is �E(3)= 0. (4) Because
→
E // d

→
A through the

right end of the cylinder, then the flux there is �E(4)= EA. Thus, the net flux

through the Gaussian surface is �E = 2EA. Since qin = σA, we then can find

electric field as follows:

�E =
� →

E • d
→
A = qin

ε◦
⇒ 2 EA = σ A

ε◦
⇒ E = σ

2ε◦

Example 21.6

Two infinite conducting plates have a uniform surface charge density of magnitude

σ ′ on their faces. The excess charge is positive on one plate and negative on the

other, see Fig. 7.12a, b. The two plates are brought together as shown in Fig. 21.12c.

Find the electric field to the left and right of the plates in each part of the figure.

Solution: The charge on the positively charged conductor in Fig. 21.21a will

spread over its two faces each with a surface density of magnitude σ ′. From
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Example 21.4, the electric field just outside each of these surfaces would be

directed away from the two faces and would have a magnitude of:

E+ = σ ′

ε◦

+

+
E

++

+

+

E+ E− E−

(b)(a)

+

+
+
+
+

+
(c)

-

-
-
-
-

-
σ ′

2σ σ= ′

0E =0E =

Conductor Conductor
-

-
--

-

-

Conductor Conductor

σ ′ σ ′σ ′

E+

Fig. 21.12

We have a similar situation in Fig. 21.12b, except that the electric field is directed

toward the two faces and has a magnitude given by:

E− = σ ′

ε◦
When we bring the two plates together, the excess charge on one plate attracts

the excess of charge on the other, and all the excess charge moves onto the inner

surfaces of the plates, see Fig. 21.12c. The magnitude of the new surface charge

density of the inner surfaces is σ = 2σ ′. Thus, the electric field between the plates

is to the right with a magnitude:

E = σ

ε◦
(Between the plates)

The electric field on the outer sides of the two plates of Fig. 21.12c is zero since

no charge is left on those sides.

Example 21.7

Two infinitely long nonconductive sheets are aligned in parallel, see Fig. 21.13a.

Each sheet has a fixed uniform charge. One sheet is positively charged and has

a surface charge density of magnitude σ+ = 6.5 µC/m2. The other sheet is nega-

tively charged with |σ−| = 4.5 µC/m2. Find the electric field: (a) to the left (L) of

the sheets, (b) between (B) the sheets, and (c) to the right (R) of the sheets.
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(b)(a) (c)
L B R L B R

σ + σ − σ + σ −

L B R

Fig. 21.13

Solution: For items of fixed charge, we can calculate the electric field of the

items in the same manner as if each item were isolated, i.e. by adding the fields

algebraically using the superposition principle. Thus, the magnitude of the electric

field due to the positive sheet is:

E+ = σ+
2ε◦

= 6.5 × 10−6 C/m2

2(8.85 × 10−12 C2/N.m2)
= 3.67 × 105 N/C

Also, the magnitude of the electric field due to the negative sheet is:

E− = σ−
2ε◦

= 4.5 × 10−6 C/m2

2(8.85 × 10−12 C2/N.m2)
= 2.54 × 105 N/C

The directions of the fields to the left (L), between (B), and right (R) of the sheets

are shown in Fig. 21.13b. The resultant field depends on the values of E+ and E−.

Since E+ > E−, then EL is:

EL = E+ − E− = 3.67 × 105 N/C − 2.54 × 105 N/C = 1.13 × 105 N/C (to the left)

The field to the right of the sheets ER has the same magnitude but is directed to

the right. Between the sheets, we have:

EB = E+ + E− = 3.67 × 105 N/C + 2.54 × 105 N/C = 6.21 × 105 N/C (to the right)

Example 21.8

Using Gauss’s law, find the electric field at a distance r from a long thin rod that

has a uniform charge per unit length λ.

Solution: By symmetry, the electric fields outside the rod are radial and lie in

a plane perpendicular to the rod. Additionally, the field has the same magnitude
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at all points at the same radial distance from the rod. This suggests that we can

construct a cylindrical Gaussian surface of an arbitrary radius r and height �. Such

a cylinder would have its ends perpendicular to the rod as shown in Fig. 21.14.

+
+

E

d A

Gaussian
cylinder

Top view

+

r

+
+
+

r
E

Fig. 21.14

We divide the flux into two cases: (1) The flux through the two ends of the Gaussian

cylinder is zero because
→
E is parallel to these surfaces, i.e.

→
E ⊥ →

A . (2) The flux

through the curved surface of the Gaussian cylinder can be obtained by taking into

account that E = constant and
→
E is parallel to d

→
A , i.e.

→
E • d

→
A = E dA. Therefore,� →

E • d
→
A = �

E dA = E
�

dA = EA, where A is the area of the curved cylinder

and is given by A = 2πr�. The net charge inside the Gaussian cylinder is qin = λ�.

We can now use Gauss’s law to find the electric field as follows:

�E =
� →

E • d
→
A = qin

ε◦
⇒

� →
E • d

→
A =

�
E dA = E

�
dA

= E(2π r�) = λ�

ε◦

Then: E = 1

2πε◦
λ

r
= 2k

λ

r

This relation was derived in Chap. 20 using Coulomb’s law (Eq. 20.36).

Example 21.9

A solid sphere of radius R has a uniform volume charge density ρ and carries a

total positive charge Q. Find and sketch the electric field at any distance r away

from the sphere’s center.
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Solution: We divide the solution to 0 ≤ r ≤ R and r ≥ R.

(1) For 0 ≤ r ≤ R

When dealing with a spherically symmetric charge distribution, we chose a spher-

ical Gaussian surface of radius r < R concentric with the charged sphere as shown

in Fig. 21.15.

Fig. 21.15

Gaussian
sphere

d A

E

Rρ

r

By symmetry, the magnitude of the electric field is constant everywhere on the

spherical Gaussian surface and normal to the surface at any point, i.e.
→
E // d

→
A .

Thus:

� →
E • d

→
A =

�
E dA = E

�
dA = E(4πr2)

It is important to notice that the volume, say V ′, of the Gaussian sphere encloses

a net charge qin = ρV ′; that is:

qin = ρV ′ = ρ( 4
3πr3)

We can now use Gauss’s law to find electric field as follows:

�E =
� →

E • d
→
A = qin

ε◦
⇒ E(4πr2) = ρ( 4

3πr3)

ε◦

Then: E = ρ

3ε◦
r (0 ≤ r ≤ R)

Using the definition ρ = Q/( 4
3πR3) and k = 1/(4πε◦), we get:

E = Q

4πε◦ R3 r = k
Q

R3 r (0 ≤ r ≤ R)
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(2) For r ≥ R

Again, because the charge distribution is spherically symmetric, we can construct

a Gaussian sphere of radius r > R concentric with the charged sphere, as shown

in Fig. 21.16.

Fig. 21.16

Gaussian
sphere

d A

E
R

r

Q

Just as when r < R,
� →

E • d
→
A = E(4πr2), but qin = Q. Thus, we can use

Gauss’s law to find the electric field as follows:

�E =
� →

E • d
→
A = qin

ε◦
⇒ E(4πr2) = Q

ε◦

i.e.: E = 1

4πε◦
Q

r2 = k
Q

r2 (r ≥ R)

Notice that this is identical to the result obtained for a point charge. Therefore, we

conclude that the electric field outside any uniformly charged sphere is equivalent

to that of a point charge located at the center of the sphere. At r = R, the two cases

give identical results E = kQ/R2. A plot of E versus r is shown in Fig. 21.17. This

figure shows the continuation of E and its maximum at r = R.

Fig. 21.17

ρ
R

r
R0

E

3

Q
E k r

R
=

2

Q
E k

r
=
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Example 21.10

A thin spherical shell of radius R has a total positive charge Q distributed uniformly

over its surface. Find the electric field inside and outside the shell.

Solution: By symmetry, if any field exists inside the shell, it must be radial. Let us

construct a spherical Gaussian surface of radius r < R concentric with the shell,

see the cross sectional view in Fig. 21.18.

Fig. 21.18

+

+

+

+

+
+

+

+

R

r

Gaussian
sphere

Spherical
shell

Q

Based on Gauss’s law, the lack of charge inside the surface indicates that� →
E • d

→
A = E(4πr2)= 0, or E = 0. Accordingly, we conclude that there is no

electric field inside a uniformly charged spherical shell.

Outside the shell, we construct a spherical Gaussian surface of radius r > R

concentric with the charged shell as shown in Fig. 21.19.

Fig. 21.19

+

+

+

+

+
+

+

+

Gaussian
sphere

Spherical
shell

R

r

Q

Symmetry suggests that E = constant on that surface and
→
E is parallel to d

→
A ,

i.e.
� →

E • d
→
A = E(4πr2). Since the net charge qin inside the Gaussian surface is

equal to the total charge Q on the shell, the shell is equivalent to a point charge

located at the center. That is:

E = 1

4πε◦
Q

r2 = k
Q

r2 (r > R).
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21.4 Conductors in Electrostatic Equilibrium

Conductors contain free electrons that can move freely. When there is no net motion

of electrons within the conductor, the conductor is in electrostatic equilibrium and

has the following four properties:

(1) The electric field inside the conductor is zero (see Example 21.3).

(2) The excess charge on an isolated conductor lies on its outer surface (see Example

21.3).

(3) The electric field just outside a charged conductor at any point is perpendicular to

its surface and has a magnitude E = σ/ε◦, where σ is the surface charge density

at that point (see Example 21.4).

(4) The surface charge density is greatest at locations where the radius of curvature

of the surface is smallest (see Chap. 22).

We can elaborate more about the first property by considering the conducting

slab in electrostatic equilibrium on the left of Fig. 21.20, where the free electrons are

uniformly distributed throughout the slab, i.e.
→
E int = 0. When we place the slab in an

external electric field
→
Eext as in the right part of Fig. 21.20, the free electrons move

to the left. In time, more negative and positive charges accumulate on the left and

right surfaces, respectively. These two planes of charge create an increasing internal

electric field
→
E int inside the conductor. After awhile,

→
E int will compensate

→
Eext,

resulting in a zero net electric field inside the conductor, i.e.
→
Enet = →

Eext − →
E int = 0.

The time to reach this new electrostatic equilibrium is of the order 10−6 s.

net 0E = net 0E =extEBefore After

+
+
+
+

+

-
-
-
-
-

intE

Fig. 21.20 An external electric field
→
E ext creates an internal electric field

→
E int in the conductor such

that the net electric field
→
E net is zero

Example 21.11

A conducting sphere of radius R carries a net positive charge 2Q. A conducting

spherical shell of inner radius R1 (R1 > R) and outer radius R2 carries a net neg-

ative charge −Q. This shell is concentric with the conducting sphere. Find the
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magnitude of the electric field at a distance r away from the common center when:

(a) r < R, (b) R < r < R1, (c) R1 < r < R2, and (d) r > R2.

Solution: The charge distributions under consideration are characterized by being

spherically symmetrical around the common center c. This suggests that a spher-

ical Gaussian surface of radius r is to be constructed in each case such as S1, S2,

S3, and S4 that are displayed in Fig. 21.21. In addition, we use the fact that the

electric field inside a conductor is zero and all the excess charge will lie entirely

on the outer surface of the isolated conductor.

2Q

Q−

S1

S2

S4

S3

c

R
1R 2R

Fig. 21.21

(a) In this region the Gaussian sphere S1 of Fig. 21.21 satisfies the condition

r < R. Because there is no charge inside the conductor in this region, i.e. qin = 0;

then, E1 = 0.

(b) In this region the Gaussian sphere S2 of Fig. 21.21 satisfies the condi-

tion R < r < R1. Because qin = 2Q inside this surface and because
� →

E 2 • d
→
A =

E2(4πr2), we can use Gauss’s law to find:

E2 = 1

4πε◦
2Q

r2 = k
2Q

r2 (R < r < R1)
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(c) In this region, the Gaussian sphere S3 of Fig. 21.21 satisfies the condition

R1 < r < R2. Because the electric field inside an equilibrium conductor is zero,

i.e. E3 = 0; then, based on Gauss’s law, the net charge qin must be zero. From

this argument, we find that an induced charge −2Q must be established on the

inner surface of the shell to cancel the charge +2Q on the solid sphere. In addition,

because the net charge on the whole shell is −Q, we conclude that its outer surface

must carry an induced charge +Q.

(d) In this region, the Gaussian sphere S4 of Fig. 21.21 satisfies the condition

r > R2. Because qin = 2Q − Q = Q inside this surface and because
� →

E 4 • d
→
A =

E4(4πr2), we can use Gauss’s law to find:

E4 = 1

4πε◦
Q

r2 = k
Q

r2 (r > R2)

Figure 21.22 shows a graphical representation of the variation of the electric field

E with r. In addition, the figure shows the final distribution of the charge on the

two conductors.

Fig. 21.22

r

R
0

E

2Q

c

1R 2R

2 2

2Q
E k

r
=

4 2

Q
E k

r
=

2Q−

Q+

E

E

The expressions that we have arrived at for the electric fields established by simple

charge distributions are presented in Table 21.1.
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Table 21.1 Electric fields due to simple charge distributions

Charge distribution Electric field

Single point charge q E = k
q

r2 r > 0

Charge q uniformly distributed on
the surface of a conducting sphere
of radius R

E =
⎧⎨
⎩

k
q

r2 r ≥ R

0 r < R

Charge q uniformly distributed with
uniform charge density ρ over an
insulating sphere of radius R

E =
⎧⎨
⎩

k
q

r2 r ≥ R

k
q

R3 r r ≤ R

Infinitely long thin rod of a uniform
charge per unit length λ E = 2k

λ

r
r outside the line

Infinite plane sheet of charge
of uniform surface charge
density σ

E = σ

2ε◦
Everywhere outside the plane

Conductor having surface charge
density σ E =

⎧⎨
⎩

σ

ε◦
Just outside the conductor

0 Inside the conductor

Two oppositely charged conducting
plates with surface charge density of
magnitude σ

E =
⎧⎨
⎩

σ

ε◦
Any point betwee the plates

0 Outside the plates

21.5 Exercises

Section 21.1 Electric Flux

(1) A uniform electric field is directed from left to right along the positive x-axis.

If the magnitude of the field is 2 × 105 N/C, what flux passes through a circular

loop of area 0.5 m2 if the normal to loop is: (a) in the positive x-direction,

(b) in the negative x-direction, (c) in the positive y-direction, (d) in the negative

y-direction, and (e) in a direction that makes an angle 60◦ from the x-axis.

(2) The maximum flux through a rectangle of area 0.2 m2 is 5 × 105 N.m2/C. Find

the magnitude of the electric field.

(3) A cylinder of length L = 40 cm and radius R = 10 cm has its axis along the

x-axis, see Fig. 21.23. The electric field in this region is
→
E = (105 →

i ) N/C.
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Find the flux through: (a) the cylindrical wall, (b) the cap at the left end of the

cylinder, (c) the cap at the right end of the cylinder.

Fig. 21.23 See Exercise (3)

x

y

z

E
r

(4) An electric field
→
E = (α + βx)

→
i passes through a cube of side a, as shown

in Fig. 21.24. (a) Find the net electric flux through the cube. (b) Calculate this

flux given that α = 2 N/C, and a = 0.2 m for β = 5 N.m/C and β = 0.

Fig. 21.24 See Exercise (4)

x

y

z a
a

a

E

(5) A uniform electric field
→
E = α

→
i +β

→
j passes through a square surface of area

A. What is the flux through this area if the surface lies: (a) in the xy-plane?

(b) in the xz-plane? and (c) in the yz-plane? see Fig. 21.25.

Fig. 21.25 See Exercise (5)

x

y

z

E

A
A

A

(6) A pyramid has a horizontal square base of side a = 20 cm. The pyramid is

placed in a uniform electric field E of 70 N/C that is directed upwards, see

Fig. 21.26. (a) Find the electric flux through the pyramid’s base. (b) Find the

electric flux through the pyramid’s four slanted surfaces.
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Fig. 21.26 See Exercise (6)

a a

E

(7) A horizontal uniform electric field E penetrates a vertical cone of base radius r

and height h, see Fig. 21.27. (a) Find the electric flux through the left-hand side

of the cone. (b) Find the electric flux through the right-hand side of the cone.

(c) Find the electric flux through the base of the cone.

Fig. 21.27 See Exercise (7)

h

r

E
r

x

y

z

Section 21.2 Gauss’s Law

(8) A point charge q is located at the center of a charged ring of radius R. The

ring has a linear charge density λ, see Fig. 21.28. (a) Find the total electric flux

through the Gaussian sphere S1 of radius r < R. (b) Find the total electric flux

through the Gaussian sphere S2 of radius r > R.

(9) Figure 21.29 shows four closed surfaces S1, S2, S3, and S4 and four point

charges q, −q, 2q, and −2q. (a) Find the electric flux through each surface.

(b) Would the electric field lines produced by the point charge −2q have an

effect on the calculated fluxes? (c) Explain the reasoning behind your answer

for (b).
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Fig. 21.28 See Exercise (8) S2

q

S1

r

r

R

λ

Fig. 21.29 See Exercise (9) S1

S2

S3

S4q

2q−
q−

2q

(10) A point charge q = 25 µC is located at the center of a sphere of radius

R = 25 cm. A circular cut of radius r = 5 cm is removed from the surface of the

sphere, see Fig. 21.30. (a) Find the electric flux that passes through that cut. (b)

Repeat when the cut has a radius r = 25 cm. Is the answer q/2ε◦?

Fig. 21.30 See Exercise (10)

q

R

r

+

(11) A point charge q = 53.1 nC is located at the center of a cube of side a = 5 cm,

see Fig. 21.31. (a) Find the electric flux through each face of the cube. (b) Find

the flux through the four slanted surfaces of a pyramid formed from a vertex

on the center of the cube and one of its six square faces.
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Fig. 21.31 See Exercise (11)

x

y

z

q

a

a

a

+

(12) At an altitude h1 = 700 m above the ground, the electric field in a particular

region is E1 = 95 N/C downwards. At an altitude h2 = 800 m, the electric field

is E2 = 80 N/C downwards. Construct a Gaussian surface as a box of horizontal

area A and height lying between h1 and h2, to find the average volume-charge

density in the layer of air between these two elevations.

(13) A point P is at a distance a = 10 cm from an infinite rod, charged with a uniform

charge per unit length λ = 5 nC/m. (a) Find the electric flux through a sphere

of radius r = 5 cm centered at P, see left of Fig. 21.32. (b) Find the electric flux

through a sphere of radius r = 15 cm centered at P, see right of Fig. 21.32.

a λ
+ + + + ++- +

P
r a λ

+ + + + +++

P

-

r

Fig. 21.32 See Exercise (13)

(14) A point charge q is located at a distance δ just above the center of the flat face

of a hemisphere of radius R as shown in Fig. 21.33. (a) When δ is very small,

use the argument of symmetry to find an approximate value for the electric flux

�curved through the curved surface of the hemisphere. (b) When δ is very small,

use Gauss’s law to find an approximate value of the electric flux �flat through

the flat surface of the hemisphere.
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Fig. 21.33 See Exercise (14)

q

R
δ

Section 21.3 Applications of Gauss’s Law

(15) An infinite horizontal sheet of charge has a charge per unit areaσ = 8.85 µC/m2.

Find the electric field just above the sheet.

(16) A nonconductive wall carries a uniform charge density σ = 8.85 µC/cm2. Find

the electric field 7 cm away from the wall. Does your result change as the

distance from the wall increases such that it is much less than the wall’s dimen-

sions?

(17) Two infinitely long, nonconductive charged sheets are parallel to each other.

Each sheet has a fixed uniform charge. The surface charge density on the left

sheet is σ while on the right sheet is −σ, see Fig. 21.34. Use the superposition

principle to find the electric field: (a) to the left of the sheets, (b) between the

sheets, and (c) to the right of the sheets.

Fig. 21.34 See Exercise (17) +
+
+
+
+
+

L B R

σ σ−

(18) Repeat the calculations for Exercise 17 when: (i) both the sheets have posi-

tive uniform surface charge densities σ, and (ii) both the sheets have negative

uniform surface charge densities −σ.

(19) A thin neutral conducting square plate of side a = 80 cm lies in the xy-plane,

see Fig. 21.35. A total charge q = 5 nC is placed on the plate. Assuming that



726 21 Gauss’s Law

the charge density is uniform, find: (a) the surface charge density on the plate,

(b) the electric field just above the plate, and (c) the electric field just below the

plate.

Fig. 21.35 See Exercise (19)

y

z

x

a

a

(20) A long filament has a charge per unit length λ =−80 µC/m. Find the electric

field at: (a) 10 cm, (b) 20 cm, and (c) 100 cm from the filament, where distances

are measured perpendicular to the length of the filament.

(21) A uniformly charged straight wire of length L = 1.5 m has a total charge

Q = 5 µC. A thin uncharged nonconductive cylinder of height �= 2 cm and

radius r = 10 cm surrounds the wire at its central axis, see Fig. 21.36. Using

reasonable approximations, find: (a) the electric field at the surface of the cylin-

der and (b) the total electric flux through the cylinder.

Fig. 21.36 See Exercise (21)

+

+
+

r

+
+

+
+

L

Q

(22) A thin nonconductive cylindrical shell of radius R = 10 cm and length

L = 2.5 m has a uniform charge Q distributed on its curved surface, see

Fig. 21.37. The radial outward electric field has a magnitude 4 × 104 N/C at

a distance r = 20 cm from its axis (measured from the midpoint of the shell).
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Find: (a) the net charge on the shell, and (b) the electric field at a point r = 5 cm

from its axis.

Fig. 21.37 See Exercise (22)

r L

Q
R

E

(23) A long non-conducting cylinder of radius R has a uniform charge distribution

of density ρ throughout its volume. Find the electric field at a distance r from

its axis where r < R?

(24) A thin spherical shell of radius R = 15 cm has a total positive charge Q = 30 µC

distributed uniformly over its surface, see Fig. 21.38. Find the electric field at:

(a) 10 cm and (b) 20 cm from the center of the charge distribution.

Fig. 21.38 See Exercise (24)

+

+

+

+
++

+ +

R
Spherical

shell

Q

(25) Two concentric thin spherical shells have radii R1 = 5 cm and R2 = 10 cm. The

two shells have charges of the same magnitude Q = 3 µC, but different in sign,

see Fig. 21.39. Use the shown three Gaussian surfaces S1, S2, and S3 to find the

electric field in the three regions: (a) r < R1, (b) R1 < r < R2, and (c) r > R2.

(26) A particle with a charge q = −60 nC is located at the center of a non-conducting

spherical shell of volume V = 3.19 × 10−2 m3, see Fig. 21.40. The spherical

shell carries over its interior volume a uniform negative charge Q of volume

density ρ = −1.33 µC/m3. A proton moves outside the spherical shell in a

circular orbit of radius r = 25 cm. Calculate the speed of the proton.
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Fig. 21.39 See Exercise (25)
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Fig. 21.40 See Exercise (26)
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(27) A solid non-conducting sphere is 4 cm in radius and carries a 7.5 µC charge

that is uniformly distributed throughout its interior volume. Calculate the

charge enclosed by a spherical surface, concentric with the sphere, of radius

(a) r = 2 cm and (b) r = 8 cm.

(28) A solid non-conducting sphere of radius R = 20 cm has a total positive charge

Q = 30 µC that is uniformly distributed throughout its volume. Calculate the

magnitude of the electric field at: (a) 0 cm, (b) 10 cm, (c) 20 cm, (d) 30 cm,

and (e) 60 cm from the center of the sphere.

(29) If the electric field in air exceeds the threshold value Ethre = 3 × 106 N/C, sparks

will occur. What is the largest charge Q can a metal sphere of radius 0.5 cm

hold without sparks occurring?

(30) The charge density inside a non-conducting sphere of radius R varies as

ρ = α r (C/m3), where r is the radial distance from the center of the sphere.

Use Gauss’s law to find the electric field inside and outside the sphere.

(31) A solid sphere of radius R with a center at point C1 has a uniform volume

charge density ρ. A spherical cavity of radius R/2 with a center at point C2

is then scooped out and left empty, see Fig. 21.41. Point A is at the surface of

the big sphere and collinear with points C1 and C2. What is the magnitude and

direction of the electric field at points C1 and A?
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Fig. 21.41 See Exercise (31)

1C

2C

A

R

/2R

Section 21.4 Conductors in Electrostatic Equilibrium

(32) A non-conducting sphere of radius R and charge +Q uniformly distributed

throughout its volume is concentric with a spherical conducting shell of inner

radius R1 and outer radius R2. The shell has a net charge −Q, see Fig. 21.42.

Find an expression for the electric field as a function of the radius r when:

(a) r < R (within the sphere). (b) R < r < R1 (between the sphere and the

shell). (c) R1 < r < R2 (inside the shell). (d) r > R2 (outside the shell). (e) What

are the charges on inner and outer surfaces of the conducting shell?

Fig. 21.42 See Exercise (32)

c
R

1R
2R

QQ−

(33) A large, thin, copper plate of area A has a total charge Q uniformly distributed

over its surfaces. The same charge Q is uniformly distributed over the upper

surface of a glass plate, which is identical to the copper plate, see Fig. 21.43.

(a) Find the surface charge density on each face of the two plates. (b) Compare

the electric fields just above the center of the upper surface of each plate.
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Q
Copper plate Glass plate

Q

Fig. 21.43 See Exercise (33)

(34) A thin, long, straight wire carries a charge per unit length λ. The wire lies

along the axis of a long conducting cylinder carrying a charge per unit length

3λ. The cylinder has an inner radius R1 and an outer radius R2, see Fig. 21.44.

(a) Use a Gaussian surface inside the conducting cylinder to find the charge

per unit length on its inner and outer surfaces. (b) Use Gauss’s law to find the

electric field E outside the wire. (c) Sketch the electric field E as a function of

the distance r from the wire’s axis.

Fig. 21.44 See Exercise (34) λ3λ

R

R

1

2

(35) An uncharged solid conducting sphere of radius R contains two cavities.

A point charge q1 is placed within the first cavity, and a point charge q2 is

placed within the second one. Find the magnitude of the electric field for r > R,

where r is measured from the center of the sphere.
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Newton’s law of gravity and Coulomb’s law of electrostatics are mathematically

identical. Therefore, the general features of the gravitational force introduced in

Chap. 6 apply to electrostatic forces. In particular, electrostatic forces are conser-

vative. Consequently, it is more convenient to assign an electric potential energy

U to describe any system of two or more charged particles. This idea allows us to

define a scalar quantity known as the electric potential. It turns out that this concept

is of great practical value when dealing with devices such as capacitors, resistors,

inductors, batteries, etc, and when dealing with the flow of currents in electric circuits.

22.1 Electric Potential Energy

The electric force that acts on a test charge q placed in an electric field
→
E (created by

a source charge distribution) is defined by
→
F = q

→
E . For an infinitesimal displacement

d→s 1, the work done by the conservative electric field is:

dW = →
F • d→s = q

→
E • d→s (22.1)

According to Eq. 6.39, this amount of work corresponds to a change in the potential

energy of the charge-field system given by:

dU = −dW = −→
F • d→s = −q

→
E • d→s (22.2)

For a finite displacement of the charge from an initial point A to a final point B,

the change in electric potential energy �U = UB − UA of the charge-field system

1 When dealing with electric and magnetic fields, it is common to use this notation to represent an
infinitesimal displacement vector that is tangent to a path through space.

H. A. Radi and J. O. Rasmussen, Principles of Physics, 731
Undergraduate Lecture Notes in Physics, DOI: 10.1007/978-3-642-23026-4_22,
© Springer-Verlag Berlin Heidelberg 2013
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is given by integrating along any path that the charge can take between these two

points. Thus:

�U = UB − UA = −WAB = −q
B�

A

→
E • d→s (22.3)

This integral does not depend on the path taken from A to B because the electric force

is conservative.

For convenience, we usually take the reference configuration of the charge-field

system when the charges are infinitely separated. Moreover, we usually set the cor-

responding reference potential energy to be zero. Therefore, we assume that the

charge-field system comes together from an initial infinite separation state at ∞ with

U∞ = 0 to a final state B with UB. We also let W∞B represent the work done by the

electrostatic force during the movement of the charge. Thus:

UB = −W∞B = −q
B�

∞

→
E • d→s (22.4)

Although the electric potential energy at a particular point UB (or simply U) is

associated with the charge-field system, one can say that the charge in the electric

field has an electric potential energy at a particular point UB. You should always

keep in mind the fact that the electric potential energy is actually associated with the

charge plus the source charge distribution that establishes the electric field
→
E.

Moreover, when defining the work done on a certain charged particle by the

electric field, you are actually defining the work done on that certain particle by the

electric force due to all the other charges that actually created the electric field
→
E

in which that certain particle moved.

Example 22.1

In the air above a particular region near Earth’s surface, the electric field is

uniform, directed downwards, and has a value 100 N/C, see Fig. 22.1. Find the

change in the electric potential energy of an electron released at point A such that

the electrostatic force due to the electric field causes it to move up a distance

s = 50 m.

Solution: The change in the electric potential energy of the electron is related to

the work done on the electron by the electric field given by Eq. 22.3. Since the
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electron’s displacement is upwards and the electric field is directed downwards,

i.e. θ = 180◦, then we have:

�U = −q
B�

A

→
E • d→s = −(−e)

B�
A

E ds cos 180◦

= −eE
B�

A

ds = −eE(sB − sA) = −eEs

= −(1.6 × 10−19 C)(100 N/C)(50 m)

= −8 × 10−16 J

Fig. 22.1

E

s

A

B

e

F

-

-

Notice that the sign of the electron’s charge is used in this calculation. Thus, during

the 50 m ascent of the electron, the electric potential of the electron decreases by

8 × 10−16 J. Also, from Eq. 22.3, the work done by the electrostatic force on the

electron is:

WAB = −�U = 8 × 10−16 J

22.2 Electric Potential

The electric potential energy depends on the charge q. However, the electric potential

energy per unit charge U/q has a unique value at any point and depends only on the

electric field (or alternatively on the source-charge distribution). This quantity is

called the electric potential V (or simply the potential). Thus:

V = U

q
(22.5)
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This equation implies that the electric potential is a scalar quantity.

Spotlight

Electric potential is a scalar quantity that characterizes an electric field and is

independent of any charge that may be placed in the field.

The electric potential difference �V (or simply the potential difference)

between two points A and B in an electric field is defined as the difference in the elec-

tric potential energy per unit charge between the two points. Thus, dividing Eq. 22.3

by q leads to:

�V = VB − VA = �U

q
= −WAB

q
= −

B�
A

→
E • d→s (22.6)

It is clear that the electric potential difference between A and B depends only on

the source-charge distribution, and is equal to the negative of the work done by the

electrostatic force per unit charge. The SI unit of both the electric potential and

the electric potential difference is joule per coulomb, or volt (abbreviated by V).

That is:

1 V = 1 J/C (22.7)

From this unit, we see that the joule is one coulomb times 1 V (J = CV). Addition-

ally, the volt unit allows us to adopt a more convenient unit for the electric field.

From Eq. 22.6, the volt unit also has the units of electric field times distance. Then

we have:

1 N/C = 1 V/m (22.8)

Spotlight

Electric field can be expressed as the rate of change of electric potential with

position.

From now on, we shall express values of electric fields in volts per meter (V/m)

rather than newtons per coulomb (N/C).
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Suppose we move a particle of an arbitrary charge q from point A to point B

by applying a force on it and changing its kinetic energy. The applied force must

perform work WAB(app), while the electric field does work WAB. From Eq. 6.54, the

change in the kinetic energy of the particle is:

�K = WAB(app) + WAB (22.9)

Now suppose the kinetic energy of the particle does not change during the move.

Then, Eq. 22.9 reduces to:

WAB(app) = −WAB (22.10)

Since Eq. 22.6 gives q�V = −WAB, then we have:

WAB(app) = q�V (22.11)

In atomic and nuclear physics, we use a convenient unit of energy called electron-

volt (eV). One electron-volt (1 eV) is the energy equal to the work required to move

a single elementary charge e, such as that of an electron or a proton, through an

electric potential difference of exactly one volt (1 V). To find the value of this unit,

one can use Eq. 22.11 where q = 1.6 × 10−19 C and �V = 1 V, Thus:

1 eV = (1.6 × 10−19 C)(1 V) = (1.6 × 10−19 C)(1 J/C) = 1.6 × 10−19 J

(22.12)

An electron that strikes the screen of a typical TV set may have a speed of

4 × 107 m/s. This corresponds to a kinetic energy of 7.28 × 10−16 J, which is equiv-

alent to 4.55 keV. In other words, such an electron has to be accelerated from rest

through a potential difference of 4.55 kV to reach a speed of 4 × 107 m/s.

Equations 22.3 and 22.6 hold true for both discrete and continuous source dis-

tributions, and for both uniform and varying fields. In the following sections, we

calculate the electric potential for various cases.

22.3 Electric Potential in a Uniform Electric Field

Displacement Parallel to a Field

Let us calculate the potential difference between two points A and B separated by a

distance |→s | = d, where →s is a displacement along a uniform field
→
E , see Fig. 22.2.

Then, Eq. 22.6 gives:
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Fig. 22.2 A uniform electric

field pointing downwards and

d→s is along
→
E. The electric

potential at point B is lower

than that at point A

E

A

B

dd s

�V = VB − VA = −
B�

A

→
E • d→s = −

B�
A

(E cos 0◦)ds = −E
B�

A

ds (22.13)

Integrating ds along a straight line gives (sB − sA)= d. Thus:

�V = VB − VA = −Ed (Along the field) (22.14)

The negative sign means that the electric potential at point B is lower than that at

point A, i.e. VB < VA. In fact, electric field lines always point in the direction of

decreasing electric potential.

If a charge q moves along the field from point A to point B, then according to

Eq. 22.6, the change in the electric potential energy �U of the charge-field system

is given by �U = q�V . Then, substituting with Eq. 22.14, we get the following:

�U = q�V = −qEd (Along the field) (22.15)

(1) If q is positive (i.e. q = +|q|) and the charge moves in the direction of the field

from A to B, then �U = −|q|Ed is negative. This means that the positive charge-

field system loses electric potential energy. Also, since WAB = −�U, this means

that the electric field does positive work WAB on the positive charge during this

motion. Furthermore, if this positive charge is released from rest at point A, it

accelerates downwards, gaining kinetic energy �K = WAB when it reaches point

B. Thus:

�K = −�U = +|q|Ed (Along the field for positive q) (22.16)

(2) If q is negative (i.e. q = −|q|), and the charge moves in the direction of the field

from A to B, then �U = +|q|Ed is positive. This means that the negative charge-

field system gains electric potential energy. In order for the negative charge to

move along the field, an external agent must apply a force and do positive work

WAB(app) during that motion. For motion with zero acceleration from A to B,
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this positive work compensates the negative work WAB done on the negative

charge by the field.

Similar steps can be performed when the displacement →s is opposite to the field

from point A to point B, see Fig. 22.3, which leads to:

�V = VB − VA = Ed (Opposite the field) (22.17)

Fig. 22.3 Same as Fig. 22.2

except that d→s is opposite

to
→
E

E

dd s

A

B

If a charge q moves against the field from A to B, then according to Eq. 22.6, the

change in the electric potential energy �U of the charge-field system is given by

�U = q�V . By substitution with Eq. 22.17 we get the following:

�U = q�V = qEd (Opposite the field) (22.18)

(1) If q is positive (i.e. q = +|q|), and the charge moves against the field from A to B,

then �U = +|q|Ed is positive. This means that the positive charge-field system

gains electric potential energy. In order for the positive charge to move against

the field, an external agent must apply a force and do positive work WAB(app)

during that motion. For motion with zero acceleration from A to B, this positive

work compensates for the negative work WAB done on the positive charge by the

electric field.

(2) If q is negative (i.e. q = −|q|) and is released from rest at A, it will accelerate

upwards to B. In this case �V = VB−VA = +Ed, and �U = −|q|�V = −|q|Ed

(loss of electric potential energy). Since WAB = −�U, then WAB = +|q|Ed, i.e.

the electric field does positive work on the negative charge during its motion

from A to B. The gain in kinetic energy �K = WAB is thus:

�K = −�U = +|q|Ed (Opposite the field for negative q) (22.19)

This gain is the same as for a positive charge moving along the field.
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Arbitrary Displacement in the Field

Now, let us calculate the potential difference between two points A and B when the

displacement →s has an arbitrary direction with respect to the uniform field
→
E , see

Fig. 22.4a. Equation 22.6 gives:

�V = VB − VA = −
B�

A

→
E • d→s = −→

E •
B�

A

d→s (22.20)

E

A

B

d

C

s

E

Equipotential
 surfaces

(b)(a)

V1

V2

V3

Path of constant
potential

 

Fig. 22.4 (a) When the uniform electric field lines point down, the electric potential at point B is lower

than that at point A. Points B and C are at the same electric potential. (b) Portions of equipotential surfaces

that are perpendicular to the electric field
→
E

Integrating d→s along the path gives →s B − →s A = →s . Thus:

�V = VB − VA = −→
E • →s (22.21)

When a charge q moves from A to B, the change in the electric potential energy �U

of the charge-field system is given according to Eq. 22.6 by �U = q�V . Then, using

Eq. 22.21 we get:

�U = q�V = −q
→
E • →s (From A to B) (22.22)

From Fig. 22.4a, we notice that
→
E • →s = Es cos θ = Ed. Thus, any point in a plane

perpendicular to a uniform electric field has the same electric potential. We can see

this in Fig. 22.4a, where the potential difference VB − VA is equal to the potential

difference VC − VA; that is VC = VB. All points that have the same electric potential

form what is called an equipotential surface, see Fig. 22.4b.
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Example 22.2

The electric potential difference between two opposing parallel plates is 12 V,

while the separation between the plates is d = 0.4 cm. Find the magnitude of the

electric field between the plates.

Solution: We use Eq. 22.14, namely �V = VB−VA = −Ed, to find the magnitude

of the uniform electric field as follows:

E = |VB − VA|
d

= 12 V

0.4 × 10−2 m
= 3,000 V/m (or N/C)

Example 22.3

Figure 22.5 shows two oppositely charged parallel plates that are separated by

a distance d = 5 cm. The electric field between the plates is uniform and has a

magnitude E = 10 kV/m. A proton is released from rest at the positive plate, see

Fig. 22.5. (a) Find the potential difference between the two plates. (b) Find the

change in potential energy of the proton just before striking the opposite plate.

(c) Calculate the speed of the proton when it strikes the plate.

Fig. 22.5 +
+

+
+ A

d

E

B

0A

B

Proton

+ +

Solution: (a) Since the potential must be lower in the direction of the field, then

VA > VB in Fig. 22.5. According to Eq. 22.14 the potential difference between the

two plates along the field is:

�V = VB − VA = −Ed = −(10 × 103 V/m)(5 × 10−2 m) = −500 V

(b) Equation 22.15 gives the change in potential energy as:

�U = q�V = e�V = (1.6 × 10−19 C)(−500 V) = −8 × 10−17 J

The negative sign indicates that the potential energy of the proton decreases as

the proton moves in the direction of the field.
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(c) Using Eq. 22.16, we can find for the proton that:

�K = −�U

1
2 mpv

2
B − 0 = −�U

vB =
√

−2�U

mp
=

√
−2(−8 × 10−17 J)

1.67 × 10−27 kg
= 3.1 × 105 m/s

Example 22.4

Redo Example 22.3, but this time with an electron that is released from rest at the

negative plate, see Fig. 22.6.

Fig. 22.6 +
+

+
+

E

d

Electron

B
AB

0A
--

Solution: (a) Since the potential must be lower in the direction of the field,

then VB > VA in Fig. 22.6. Then, according to Eq. 22.17 the potential difference

between the two plates is:

�V = VB − VA = +Ed = +(10 × 103 V/m)(5 × 10−2 m) = +500 V

This means that VB = VA + 500 V as expected, since point B lies on the positive

plate.

(b) From Eq. 22.18, we find for the electron that:

�U = q�V = −e�V = −(1.6 × 10−19 C)(500 V) = −8 × 10−17 J

The negative sign indicates that the potential energy of the electron decreases as

the electron moves in the opposite direction of the field.

(c) From Eq. 22.19, we find for the electron that:

�K = −�U
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1
2 mev

2
B − 0 = −�U

vB =
√

−2�U

me
=

√
−2(−8 × 10−17 J)

9.11 × 10−31 kg
= 1.33 × 107 m/s

Although we are using the same constants of Example 22.3, with the same change

in potential energy of the electron as for the proton, the speed of the electron is

much greater than the speed of the proton because the electron’s mass is much

smaller.

22.4 Electric Potential Due to a Point Charge

To find the electric potential at a point located at a distance r from an isolated positive

point charge q, we begin with the general expression for potential difference:

VB − VA = −
B�

A

→
E • d→s (22.23)

where A and B are two points having position vectors →rA and →rB, respectively, see

Fig. 22.7. In this representation, the origin is at q. According to Eq. 20.4, the electric

field at a distance r from the point charge is
→
E = kq →̂r /r2 = Er

→̂r , where →̂r is a unit

vector directed from the charge to point P. The quantity
→
E • d→s , can be written as:

→
E • d→s = Er

→̂r • d→s = k
q

r2
→̂r • d→s (22.24)

Fig. 22.7 The potential

difference between points A

and B due to a point charge q

depends only on the radial

coordinates rA and rB

E

q

d s

Ar

Br

r

A

B

d r

+

From Fig. 22.7, we see that →̂r • d→s = 1 × ds × cos θ = dr. Then,
→
E • d→s =

Er dr, and Eq. 22.23 can be written as:
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VB − VA = −
rB�

rA

Er dr = −kq
rB�

rA

r−2 dr = −kq
[
−r−1

]rB

rA

Therefore: VB − VA = kq

[
1

rB
− 1

rA

]
(22.25)

This result does not depend on the path between A and B, but depends only on the

initial and final radial coordinates rA and rB.

It is common to choose a reference point where VA = 0 at rA = ∞. With this

reference choice, the electric potential at any arbitrary distance r from a point charge

q will be given by:

V = k
q

r
(22.26)

The sign of V depends on q. If r → 0, then V → +∞ or V → −∞ depending on

q. Figure 22.8 shows a plot for V in the xy-plane.

Fig. 22.8 A computer-

generated plot for the electric

potential V(r) of a single

point-charge in the xy-plane.

The predicted infinite value of

V(r) is not plotted

x
y

V

When many point charges are involved, we can get the resulting electric potential

at point P from the superposition principle. That is:

V = k
∑
n

qn

rn
, (n = 1, 2, 3, . . .) (22.27)

where rn is the distance from the point P to the charge qn.

Electric Potential Energy of a System of Point Charges

The electric potential energy of a system of two point charges q1 and q2 can be

obtained first by having both charges placed at rest and set infinitely apart. Then, by
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bringing q1 by itself from infinity and putting it in place as shown in Fig. 22.9a, we

do no work for such a move. The electric potential at point P which is at a distance

r12 from q1 is given by Eq. 22.26 as VP = kq1/r12. Later, by bringing q2 without

acceleration from infinity to point P at a distance r12 from q1, as shown in Fig. 22.9b,

we must do work W∞P(app) for such a move, since q1 exerts an electrostatic force

on q2 during the move.

(b)(a)

2q

1
q

12r

P 1

12
P

q
V k

r
12r

1 2

12

q q
U k

r
1

q

Fig. 22.9 (a) The potential VP at a distance r12 from a point charge q1. (b) The potential energy of two

point charges is U = kq1q2/r12

We can calculate W∞P(app) by using �K = W∞P(app)+ W∞P = 0, i.e.

W∞P(app) = −W∞P. When we replace q2 by the general charge q in Eq. 22.6, we

find that:

VP − V∞ = UP − U∞
q2

= −W∞P

q2
(22.28)

Setting V∞ as well as U∞ to zero (our reference point at ∞), we get:

VP = UP

q2
= W∞P(app)

q2
⇒ UP = W∞P(app) = q2VP (22.29)

Substituting with VP = kq1/r12, we can generalize the electric potential energy of a

system of two point charges q1 and q2 separated by a distance r12 as follows:

U = k
q1 q2

r12
(22.30)

If the charges have the same sign, we have to do positive work to overcome their

mutual repulsion, and then U is positive. If the charges have opposite signs, we have



744 22 Electric Potential

to do negative work against their mutual attraction to keep them stationary, and then

U is negative.

When the system consists of more than two charges, we calculate the potential

energy of each pair and add them algebraically. For instance, the total potential energy

of three charges q1, q2, and q3 is:

U = k

(
q1 q2

r12
+ q1 q3

r13
+ q2 q3

r23

)
(22.31)

Example 22.5

Two charges q1 = 2 µC and q2 = −4 µC are fixed in their positions and separated

by a distance d = 10 cm; see Fig. 22.10a. (a) Find the total electric potential at the

point P in Fig. 22.10a. (b) Find the change in potential energy of the two charges

when a third charge q3 = 6 µC is brought from ∞ to P, see Fig. 22.10b. (c) What

is the total electric potential energy of the three charges?

d d

d1
q 2q

d d

d1
q 2

q

3qP

(b)(a)

+

+

+- -

Fig. 22.10

Solution: (a) For two charges, Eq. 22.27 gives:

VP = k
(q1

d
+ q2

d

)
= (9 × 109 N.m2/C2)

(
2 × 10−6 C

0.1 m
+ −4 × 10−6 C

0.1 m

)

= −1.8 × 105 V

(b) When we replace q3 by the charge q of Eq. 22.6, and bring q3 from infinity

to point P, this equation gives:

�U = q3(VP − V∞) = (6 × 10−6 C)(−1.8 × 105 V − 0) = −1.08 J
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(c) The total electric potential energy of the three charges is:

U = k
(q1 q2

d
+ q1 q3

d
+ q2 q3

d

)

= (9 × 109 N.m2/C2)
[(2)(−4) + (2)(6) + (−4)(6)] × 10−12 C2

0.1 m
= −1.8 J

22.5 Electric Potential Due to a Dipole

As introduced in Chap. 20, an electric dipole consists of a positive charge q+ = +q

and an equal-but-opposite negative charge q− = −q separated by a distance 2a. Let

us find the electric potential at a point P in the xy-plane as shown in Fig. 22.11a. We

assume that V+ is the electric potential produced at P by the positive charge, and that

V− is the electric potential produced at P by the negative charge.

q q

O x

(x,y)P
y

(a,0)( a,0)

r
r

q q

O x

y

y

2a

r

r
rr

r

x a
x a

(b)(a)

+-- +

Fig. 22.11 (a) The electric potential V at point P(x, y) due to an electric dipole located along the x-axis

with a length 2a. Point P is at a distance r from the midpoint O of the dipole, where OP makes an angle θ

with the dipole’s x-axis. (b) When P is very far, the lines of length r+ and r− are approximately parallel

to the line OP

The total electric potential at P is thus:

V = V+ + V− = k
q+
r+

+ k
q−
r−

= kq

(
1

r+
− 1

r−

)
= kq

(
r− − r+
r+ r−

)
(22.32)

From the geometry of Fig. 4.11a, we find that r2+ = (x − a)2 + y2 and r2− = (x + a)2 +
y2. Accordingly, Eq. 22.32 becomes:

V = kq

(
1√

(x − a)2 + y2
− 1√

(x + a)2 + y2

)
(22.33)
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Note that V = ∞ at P(x = a, y = 0) and V = −∞ at P(x = −a, y = 0). Figure 22.12

shows a plot of the general shape of V in the xy-plane.

Fig. 22.12 A computer-

generated plot of the electric

potential V in the xy-plane for

an electric dipole. The

predicted infinite values of V

are not plotted
x

y
V

Because naturally occurring dipoles have very small lengths, such as those pos-

sessed by many molecules, we are usually interested only in points far away from

the dipole, i.e. r � 2a. Considering these conditions, we find from Fig. 22.11b that:

r− − r+ � 2a cos θ, and r− r+ � r2 (22.34)

When substituting these approximate quantities in Eq. 22.32, we find that:

V = kq
2a cos θ

r2 (r � 2a) (22.35)

As introduced in Chap. 20, the product of the positive charge q and the length of

the dipole 2a is called the magnitude of the electric dipole moment, p = 2aq. The

direction of →p is taken to be from the negative charge to the positive charge of the

dipole, i.e. →p = p
→
i . This indicates that the angle θ is measured from the direction

of →p . Using this definition, we have:

V = k
p cos θ

r2 (r � 2a) (22.36)

Example 22.6

Find the electric potential along the axis of the electric dipole at the four points

A, B, C, and D in Fig. 22.13.
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-q +q

O
x

y

(a,0)(-a,0)

ABCD
- +

Fig. 22.13

Solution: We use Eq. 22.32 with r+ and r− as the distance from each point to the

positive and negative charges, respectively:

(1) For point A in Fig. 22.13, we have x > a. Therefore, r+ = x − a and r− =
a + x. The electric potential VA is:

VA = kq

(
1

r+
− 1

r−

)
= kq

(
1

x − a
− 1

a + x

)
= 2k qa

x2 − a2
(VA positive)

� 2k qa

x2 (x � a)

(2) For point B in Fig. 22.13, we have 0 < x < a. Therefore r+ = a − x and

r− = a + x. The electric potential VB is:

VB = kq

(
1

r+
− 1

r−

)
= kq

(
1

a − x
− 1

a + x

)
= 2kq

a2 − x2 x (VB positive)

(3) For point C in Fig. 22.13, we have −a < x < 0. Therefore r+ = a − x and

r− = a + x. The electric potential VC is:

VC = kq

(
1

r+
− 1

r−

)
= kq

(
1

a − x
− 1

a + x

)
= 2kq

a2 − x2 x (VC negative)

(4) For point D in Fig. 22.13, we have x < −a. Therefore r+ = a − x and

r− = −x − a. The electric potential VD is:

VD = kq

(
1

r+
− 1

r−

)
= kq

(
1

a − x
+ 1

a + x

)
= − 2kqa

x2 − a2
(VD negative)

� −2kqa

x2 (x � −a)

22.6 Electric Dipole in an External Electric Field

Consider an electric dipole of electric dipole moment →p is placed in a uniform

external electric field
→
E , as shown in Fig. 22.14. Do not get confused between the
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field produced by the dipole and this external field. In addition, we assume that the

vector →p makes an angle θ with the external field
→
E .

-q

+q
2a

o

−F

Eθ θ⊗

(b)(a)

E

F

p
p

-

+

Fig. 22.14 (a) An electric dipole has an electric dipole moment →p in an external uniform electric

field
→
E . The angle between →p and

→
E is θ. The line connecting the two charges represents their rigid

connection and their center of mass is assumed to be midway between them. (b) Representing the electric

dipole by a vector →p in the external electric field
→
E and showing the direction of the torque →τ into the

page by the symbol ⊗

Figure 22.14 shows a force
→
F , of magnitude qE in the direction of

→
E , is exerted on

the positive charge, and a force −→
F , of the same magnitude but in opposite direction,

is exerted on the negative charge. The resultant force on the dipole is zero, but since

the two forces do not have the same line of action, they establish a clockwise torque
→
τ about the center of mass of the two charges at o. The magnitude of this torque

about o is:

τ = (2a sin θ)F (22.37)

Using F = qE and p = 2aq, we can write this torque as:

τ = (2aq sin θ)E = pE sin θ (22.38)

The vector torque →
τ on the dipole is therefore the cross product of the vectors →p

and
→
E . Thus:

→
τ = →p × →

E (22.39)

The effect of this torque is to rotate the dipole until the dipole moment →p is aligned

with the electric field
→
E .
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Potential energy can be associated with the orientation of an electric dipole in an

electric field. The dipole has the least potential energy when it is in the equilibrium

orientation, which occurs when →p is along
→
E . On the other hand, the dipole has the

greatest potential energy when →p is antiparallel to
→
E . We chose the zero-potential-

energy configuration when the angle between →p and
→
E is 90◦.

According to Eq. 22.3, �U = UB − UA =−WAB, we can find the electric

potential energy of the dipole by calculating the work done by the field from the

initial orientation θ = 90◦, where UA ≡ U(90◦)= 0, to any orientation θ, where

UB ≡ U(θ). In addition, we use the relation W = �
τ dθ, to find U(θ) as follows:

U(θ) − U(90◦) = −W90◦→θ = −
θ�

90◦
τ dθ (22.40)

Letting U(θ)≡ U, U(90◦)= 0, τ = pE sin θ, and integrating we get:

U = −pE cos θ (22.41)

This relation can be written in vector form as follows:

U = −→p •
→
E (22.42)

Equation 22.42 shows the least and greatest value of U as follows:

180°

90°

p

p

p

maxτ

τ

E

E

E

22.7 Electric Potential Due to a Charged Rod

For a Point on the Extension of the Rod

Figure 22.15 shows a rod of length L with a uniform positive charge density λ and a

total charge Q. In this figure, the rod lies along the x-axis and point P is taken to be

at the origin of this axis, located at a distance a from the left end. When we consider

a segment dx on the rod, the charge on this segment will be dq = λ dx.



750 22 Electric Potential

x
0

y

La

P dx

dq
+ + + + + + + + + + + +

x

Fig. 22.15 The electric potential V at point P due to a uniformly charged rod lying along the x-axis. The

electric potential due to a segment of charge dq at a distance x from P is k dq/x. The total electric potential

is the algebraic sum of all the segments of the rod

The electric potential dV at P due to this segment is given by:

dV = k
dq

x
= k

λ dx

x
(22.43)

We obtain the total electric potential at P due to all the segments of the rod by

integrating from one end of the rod (x = a) to the other (x = a + L) as follows:

V =
�

dV =
a+L�
a

k
λ dx

x
= kλ

a+L�
a

x−1 dx = kλ| ln x|a+L
a = kλ {ln(a + L) − ln a}

Therefore:

V = kλ ln

(
a + L

a

)
= kQ

L
ln

(
a + L

a

)
(22.44)

For a Point on the Perpendicular Bisector of the Rod

A rod of length L has a uniform positive charge density λ and a total charge Q. The

rod is placed along the x-axis as shown in Fig. 22.16. Assuming that P is a point on

the perpendicular bisector of the rod and is located a distance a from the origin of

the x-axis, then the charge of a segment dx on the rod will be dq = λ dx.

The electric potential dV at P due to this segment is:

dV = k
dq

r
= k

λ dx

r
(22.45)

The total electric potential at P due to all segments of the rod is given by two times

the integral of dV from the middle of the rod (x = 0) to one of its ends (x = L/2).

Thus:
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Fig. 22.16 A rod of length L

with a uniform positive charge

density λ and an electric

potential dV at point P due to

a charge segment

x
0

a

L

P

dx

dq

+ + + + + + + + + + + +
x

r

y

V = 2
x=L/2�
x=0

dV = 2kλ

L/2�
0

dx

r
(22.46)

To perform the integration of this expression, we relate the variables x and r. From

the geometry of Fig. 22.16, we use the fact that r =√
x2 + a2. Therefore, Eq. 22.46

becomes:

V = 2kλ

L/2�
0

dx

(x2 + a2)1/2 (22.47)

From the table of integrals in Appendix B, we find that:

� dx

(x2 + a2)1/2 = ln(x +
√

x2 + a2) (22.48)

Thus:
V = 2kλ

∣∣∣ln(x +
√

x2 + a2)

∣∣∣L/2

0

= 2kλ

[
ln(L/2 +

√
(L/2)2 + a2) − ln(a)

]

Therefore:
V = 2kλ ln

(
L/2 + √

(L/2)2 + a2

a

)
(22.49)

When we use the fact that the total charge Q = λL, we get:

V = 2kQ

L
ln

(
L/2 + √

(L/2)2 + a2

a

)
(22.50)
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For a Point Above One End of the Rod

When a point P is located at a distance a from one of the rod’s ends, see Fig. 22.17,

we can perform similar calculations to find that:

V = kQ

L
ln

(
L + √

L2 + a2

a

)
(22.51)

Fig. 22.17 A setup similar to

Fig. 22.16 except P is above

one end

x
0

a

L

P

dx

dq

+ + + + + + + + + + + +

r

y

x

22.8 Electric Potential Due to a Uniformly Charged Arc

Assume that a rod has a uniformly distributed total positive charge Q. Assume now

that the rod is bent into an arc of radius R and central angle φ rad, see Fig. 22.18a.

To find the electric potential at the center P of this arc, we first let λ represent the

linear charge density of this arc, which has a length Rφ. Thus:

λ = Q

Rφ
(22.52)

For an arc element ds subtending an angle dθ at P, we have:

ds = R dθ (22.53)

Therefore, the charge dq on this arc element will be given by:

dq = λ ds = λ R dθ (22.54)

To find the electric field at P, we first calculate the differential electric potential

dV at P due to the element ds of charge dq, see Fig. 22.18b, as follows:

dV = k
dq

R
= kλ dθ (22.55)
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P

dq

θ
θ

R

++
++

+
+

P

Q

(b)(a)

+ +
+

R

Q

R

R

ds
++

s

d

++
++

+
+

+ +
+

++

Fig. 22.18 (a) A circular arc of radius R, central angle φ, and center P has a uniformly distributed

positive charge Q. (b) The figure shows how to calculate the electric potential dV at P due to an arc

element ds having a charge dq

The total electric potential at P due to all elements of the arc is thus:

V =
�

dV = kλ

φ�
0

dθ = kλφ

Using Eq. 22.52, we get:

V = kλφ = k
Q

R
(22.56)

This expression is identical to the formula of a point charge. The reason for this is

that the distance between P and each charge element on the arc does not change and

its orientation is irrelevant.

22.9 Electric Potential Due to a Uniformly Charged Ring

Assume that a ring of radius R has a uniformly distributed total positive charge Q,

see Fig. 22.19. Additionally, assume that a point P lies at a distance a from the center

of the ring along its central perpendicular axis, as shown in the same figure.

To find the electric potential at P, we first calculate the electric potential dV at P

due to a segment of charge dq as follows:

dV = k
dq

r
(22.57)

where r =√
R2 + a2 is a constant distance for all elements on the ring.
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Fig. 22.19 A ring of radius R

having a uniformly distributed

positive charge Q. The figure

shows how to calculate the

electric potential dV at an

axial point P due to a segment

of charge dq on the ring

a

P

z

dq

r

R

Q

Thus, the total electric potential at P is:

V =
�

dV =
� k dq√

R2 + a2
= k√

R2 + a2

�
dq (22.58)

Since
�

dq represents the total charge Q over the entire ring, then the total electric

potential at P will be given by:

V = kQ√
R2 + a2

(22.59)

22.10 Electric Potential Due to a Uniformly Charged Disk

Assume that a disk of radius R has a uniform positive surface charge density σ, and

a point P lies at a distance a from the disk along its central perpendicular axis, see

Fig. 22.20.

Fig. 22.20 A disk of radius R

has a uniform positive surface

charge density σ. The ring

shown has a radius r and a

radial width dr

r

dr
R

P

z
Charge per
unit areaRing

Disk

a

To find the electric potential at P, we divide the disk into concentric rings, then

calculate the electric potential at P for each ring by using Eq. 22.59, and summing

up the contribution of all the rings.
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Figure 22.20 shows one such ring, with radius r, radial width dr, and surface area

dA = 2πrdr. Since σ is the charge per unit area, then the charge dq on this ring is:

dq = σdA = 2πrσdr (22.60)

Using this relation in Eq. 22.59, and replacing V with dV, R with r, and Q with

dq = 2πrσdr, we can calculate the electric potential resulting from this ring as

follows:

dV = k√
r2 + a2

(2πrσdr) = πkσ
2rdr√
r2 + a2

(22.61)

To find the total electric potential, we integrate this expression with respect to the

variable r from r = 0 to r = R. This gives:

V =
�

dV = πkσ

R�
0

(r2 + a2)−1/2(2r dr) (22.62)

To solve this integral, we transform it to the form
�

undu = un+1/(n + 1) by setting

u = r2 + a2, and du = 2r dr. Thus, Eq. 22.62 becomes:

V = πkσ

R�
0

(r2 + a2)−1/2(2r dr) = πkσ

u=R2+a2�
u=a2

u−1/2du

= πkσ

∣∣∣∣u1/2

1/2

∣∣∣∣
u=R2+a2

u=a2
= πkσ

[
(R2 + a2)1/2

1/2
− a

1/2

] (22.63)

Rearranging the terms, we find that:

V = 2π kσ
[√

R2 + a2 − a
]

(22.64)

Using k = 1/4πε◦, where ε◦ is the permittivity of free space, it is sometimes prefer-

able to write this relation as:

V = σ

2ε◦

[√
R2 + a2 − a

]
(22.65)
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22.11 Electric Potential Due to a Uniformly Charged Sphere

A solid sphere of radius R has a uniform volume charge density ρ and carries a total

positive charge Q. First, we find the electric potential in the region r ≥ R by using

the electric field obtained in Example 21.9. In this region, we found that E is radial

and has a magnitude:

Er = k
Q

r2 (r ≥ R) (22.66)

This is the same as the electric field due to a point charge, and hence the electric

potential at any point of radius r in this region is given by:

Vr = k
Q

r
(r ≥ R) (22.67)

The potential at a point on the surface of the sphere (r = R) is:

VR = k
Q

R
(22.68)

In the region 0 ≤ r ≤ R inside the sphere, we use the result of the electric field obtained

in Example 21.9. In this region, we found that
→
E is radial and has a magnitude:

Er = k
Q

R3 r (0 ≤ r ≤ R) (22.69)

For a point that has a radius r in the region 0 ≤ r ≤ R, we can find the potential

difference between this point and any point on the surface with a radius R by using
→
E • d→s = Er dr in Eq. 22.6. Thus:

Vr − VR = −
r�

R

→
E • d→s = −

r�
R

Er dr = −k
Q

R3

r�
R

r dr

= −k
Q

R3

∣∣∣∣ r2

2

∣∣∣∣
r=r

r=R
= k

Q

2R3 (R2 − r2)

(22.70)

Using VR = kQ/R in the last result we reach to the following relation:

Vr = k
Q

2R

(
3 − r2

R2

)
(0 ≤ r ≤ R) (22.71)

At r = 0, we have V0 = 3kQ/2R, and at r = R, we get VR = kQ/R as expected.

Figure 22.21 sketches the electric potential in the two regions 0 ≤ r ≤ R and r ≥ R.
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Fig. 22.21 A sketch of the

electric potential V (r) as a

function of r in the two regions

0 ≤ r ≤ R and r ≥ R. The curve

for the region 0 ≤ r ≤ R is

parabolic and joins smoothly

with the curve for the region

r ≥ R, which is hyperbola

R

r
R0

V
2

22R 3r
Q r

V k
R

= −

0
3k Q
2R

V =

0
2
3
V

r
Q

V k r=

r

22.12 Electric Potential Due to a Charged Conductor

Assume that a solid conducting sphere of radius R carries a net positive charge Q

as shown in Fig. 22.22a. We found in Chap. 21 that the charge on this equilibrium

conductor must reside on its outer surface. Furthermore, the electric field inside the

conductor is zero and the electric field just outside its surface is perpendicular to the

surface.

+++
++

+
+++++

+
+

+
++

+
+ +

E

Charged conductor

Nonuniform surface
charge density

R

R
(b)(a)

0

+ +

+
+

+++

+

r
Q

V k
r

=
V

R
Q

V k
R

=

Charged
conductor

A BE
Uniform
surface
charge
density

r

Fig. 22.22 (a) A sketch of the electric potential V (r) as a function of r in the two regions 0 ≤ r ≤ R

and r ≥ R for a charged spherical conductor. When r = R, the formulas in the regions match. (b) For a

nonsymmetrical conductor, the surface charge density is greatest at the points where the radius of curvature

of the surface is least

Consider two arbitrary points A and B on the surface of this spherical conductor,

see Fig. 22.22a. Since
→
E ⊥ d→s along the path AB on the surface of that conductor,

then
→
E • d→s = 0. Using this result along with Eq. 22.6, we find that:
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VB − VA = −
B�

A

→
E • d→s = 0 (22.72)

During equilibrium, the electric potential V is constant everywhere on the surface of

this charged spherical conductor and equal to VR = kQ/R, or VR = 4πkRσ in terms

of the surface charge density σ.

Furthermore, because the electric field is zero inside the conductor, the electric

potential would be constant everywhere inside the conductor and is equal to its value

at the surface.

Outside this spherical conductor, the electric potential is Vr = kQ/r for r ≥ R.

Figure 22.22a plots V against r and shows the dependence of V (r) on r for the whole

range of r.

If the conductor is not symmetric as in Fig. 22.22b, the electric potential is con-

stant everywhere on its surface, but the surface charge density is not uniform. Since

V = const. and V ∝ Rσ, i.e. Rσ = const., the surface charge density increases as

the radius of curvature decreases.

22.13 Potential Gradient

We defined the potential difference between two points A and B as the negative of

the work done by the electric field
→
E per unit charge in moving the charge from A

to B, see Eq. 22.6. Thus:

VB − VA = −
B�

A

→
E • d→s (22.73)

If we write VB − VA =
� B

A
dV = −

� B

A

→
E • d→s , then we must have:

dV = −→
E • d→s (22.74)

If the electric field has only one component Ex along the x-axis, then
→
E • d→s = Ex dx.

The last equation becomes dV = −Ex d x, or:

Ex = −dV

dx
(22.75)
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Thus, the x component of the electric field is equal to the negative of the derivative

of the electric potential with respect to x.

If the field is radial, i.e. V = V (r) as introduced in Sect. 22.4, then
→
E • d→s = Er dr

and we can express Eq. 22.74 as:

Er = −dV

dr
(22.76)

Generally,
→
E = Ex

→
i + Ey

→
j + Ez

→
k and d→s = dx

→
i + dy

→
j + dz

→
k . Then:

dV = −→
E • d→s = −Ex dx − Ey dy − Ez dz (22.77)

When V = V (x, y, z), the chain rule of differentiation gives:

dV = ∂V

∂x
dx + ∂V

∂y
dy + ∂V

∂z
dz (22.78)

By comparing the last two equations, we get the potential gradients:

Ex = −∂V

∂x
Ey = −∂V

∂y
Ez = −∂V

∂z
(22.79)

Example 22.7

From the formulas of the electric potential given by Eqs. 22.26, 22.44, 22.59, and

22.65, find the formulas of the electric fields.

Solution: To get the electric field from the electric potential, we use Eqs. 22.76

or 22.79 depending on the system coordinates.

(1) From the point-charge formula given by Eq. 22.26, we have a radial electric

field. Thus:

Er = −dV

dr
= − d

dr

(
k

q

r

)
= −kq

dr−1

dr
= k

q

r2 (Identical to Eq. 20.4)

(2) From the charged-rod formula given by Eq. 22.44, our variable is the dis-

tance a from the end of the rod. Thus:

Ea = −dV

da
= − d

da

{
kλ ln

(
a + L

a

)}
= −kλ

d

da
{ln(a + L) − ln a}

= −kλ

{
1

a + L
− 1

a

}
= kλL

a(a + L)
(Identical to Eq. 20.26)
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(3) From the charged-ring formula given by Eq. 22.59, our variable is the

distance a from the center of the ring. Thus:

Ea = −dV

da
= − d

da

{
kQ√

R2 + a2

}
= −kQ(− 1

2 )(R2 + a2)−3/2(2a)

= kQa

(R2 + a2)3/2 (Identical to Eq. 20.50)

(4) From the charged-disk formula given by Eq. 22.65, our variable is the

distance a from the center of the disk. Thus:

Ea = −dV

da
= − d

da

{
σ

2ε◦

[√
R2 + a2 − a

]}
= − σ

2ε◦

[( 1
2

)
(R2 + a2)−1/2(2a) − 1

]

= σ

2ε◦

[
1 − a√

R2 + a2

]
(Identical to Eq. 20.56)

The expressions that we have arrived at for the electric potentials established by

simple charge distributions are presented in Table 22.1.

Table 22.1 Electric potential due to simple charge distributions

Charge distribution Electric potential

Two oppositely charged conducting
plates separated by a distance d

�V = VB − VA = − Ed Along the field

�V = VB − VA = Ed Opposite the field

Single point charge q V = k
q

r
r > 0

Charged ring of radius R with a uni-
formly distributed total charge Q V = kQ√

R2 + a2
a ≥ 0

Disk of radius R having a uniform
surface charge density σ V = σ

2ε◦

[√
R2 + a2 − a

]
a > 0

Charge q uniformly distributed on
the surface of a conducting sphere
of radius R

V =

⎧⎪⎪⎨
⎪⎪⎩

k
q

r
r ≥ R

k
q

R
r ≤ R
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22.14 The Electrostatic Precipitator

Electrostatic precipitators are highly efficient filtration devices used to remove par-

ticles from a flowing gas (such as air). They do this using the force of an induced

electrostatic charge. Such devices remove particulate matter from combustion gases,

and as a result reduce air pollution. Most precipitators on the market today are capable

of eliminating more than 99% of the ash from smoke.

A schematic diagram of an electrostatic precipitator is shown in Fig. 22.23.

Applied between the central wire and the duct walls, where smoke is flowing up

the duct, is a large voltage of several thousand volts (50–100 kV). To generate an

electric field that is directed toward the wire, the wire is maintained at a negative

electric potential with respect to the walls. Such a large electric field produces a

discharge around the wire, which causes the air near the wire to contain electrons,

positive ions, and negative ions such as O−
2 .

Polluted air

Cleaned air

weight

Dirt out
Dirt

Insulator
Without Precipitator

Fig. 22.23 (a) A schematic diagram of an electrostatic precipitator. The high negative electric potential

on the central wire creates a discharge in the vicinity of the wire, causing dirt to fall down. (b) Pollution

from a power-plant’s chimney not equipped with an electrostatic precipitator

Polluted air enters the duct from the bottom and moves near the coiled wire. The

discharge creates electrons and negative ions, which accelerate toward the outer wall

due to the force of the electric field. Consequently, the dirt particles become charged

by collisions and ion capture. Because most of the charged dirt particles are negative,
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they are drawn to the walls by the electric field. Periodic shaking of the duct loosens

the particles, which are then collected at the bottom.

22.15 The Van de Graaff Generator

When a charged conductor is connected to the inside of a hollow conductor, all the

charge is transferred to the outer surface of the hollow conductor regardless of any

charge already retained by the conductor. The generator invented by Robert Van de

Graaff makes use of this principle, where a “conveyor belt” carries out the charge

continuously, see the schematic diagram of Fig. 22.24a.

http://www.explainthatstuff.com/electricity.html

(a) (b)

A

B

C

DE

F

Fig. 22.24 (a) The charge in the Van de Graaff generator is deposited at E and transferred to the dome

at F. (b) By touching the dome, each hair strand becomes charged and repels strands around it

This generator consists of a hollow metallic dome A supported by an insulating

stand B mounted on a grounded metal base C and a non-conducting belt D running

over two non-conducting pulleys. The belt is charged as a result of the discharge

produced by the metallic needle at E, which is maintained at a positive electric

potential of about 104 V. The positive charge on the moving belt is transferred to the

dome by the needle at F, regardless of the dome’s electric potential. It is possible to

increase the potential of the dome until electrical ionization occurs in the air. Since the

ionization breakdown of air occurs at an electric field of about 3 × 106 V/m, a sphere

of 1 m can be raised to maximum of Vmax = ER = (3 × 106 V/m)(1 m)= 3 × 106 V.

The dome’s electric potential can be increased further by placing the dome in vacuum

and by increasing the radius of the sphere.



22.16 Exercises 763

22.16 Exercises

Section 22.1 Electric Potential Energy

(1) A charge q = 2.5 × 10−8 C is placed in an upwardly uniform electric field of

magnitude E = 5 × 104 N/C. What is the change in the electric potential energy

of the charge-field system when the charge is moved (a) 50 cm to the right? (b)

80 cm downwards? (c) 250 cm upwards at an angle 30◦ from the horizontal?

(2) Redo question 1 to calculate the work done on the charge q by the electric field.

(3) Redo question 1 to calculate the work done on the charge q by an external agent

such that the charge moves in each case without changing its kinetic energy.

Section 22.2 Electric Potential

(4) How much work is done by an external agent in moving a charge q =
−9.63 × 104 C from a point A where the electric potential is 10 V to a point

B where the electric potential is −4 V? How many electrons are there in this

charge? Is this number related to any of the known physical constants?

Section 22.3 Electric Potential in a uniform Electric Field

(5) The electric potential difference between the accelerating plates in the electron

gun of a TV tube is 5,550 V, while the separation between the plates is d = 1.5 cm.

Find the magnitude of the uniform electric field between the plates.

(6) An electron moves a distance d = 2 cm when released from rest in a uniform

electric field of magnitude E = 6 × 104 N/C. (a) What is the electric potential

difference through which the electron has passed? (b) Find the electron’s speed

after it has moved that distance?

(7) Two large parallel metal plates are oppositely charged with a surface charge

density of magnitude σ = 1.2 nC/m2, see Fig. 22.25. (a) Find the electric field

between the plates. (b) If the electric potential difference between these two

plates is 10 V, what is the distance between the plates?

(8) A uniform electric field of magnitude 3 × 102 N/C is directed in the positive x

direction as shown in Fig. 22.26. In this figure, the coordinates of point A are

(0.3,−0.2) m and the coordinates of point B are (−0.5, 0.4) m. Calculate the

potential difference VB − VA using: (a) the path A → C → B. (b) the direct path

A → B.
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Fig. 22.25 See Exercise (7)

+
+

+
+ E

σ−σ+

Fig. 22.26 See Exercise (8) y

x

E

A

B C

(9) An insulated rod has a charge Q = 20 µC and a mass m = 0.05 kg. The rod is

released from rest at a location A in a uniform electric field of magnitude 104 N/C

directed perpendicular to the field, see Fig. 22.27 and neglect gravity. (a) Find

the speed of the rod when it reaches location B after it has traveled a distance

d = 0.5 m. (b) Does the answer to part (a) change when the rod is released at an

angle θ = 45◦ relative to the electric field?

Fig. 22.27 See Exercise (9)

E+
+

+
+

+
+

+
+

+
+

+
+

A B

B0A=

d

m

Q

m

Q

Section 22.4 Electric Potential Due to a Point Charge

(10) (a) What is the electric potential at a distances 1 and 2 cm, from a proton? (b)

What is the potential difference between these two points?
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(11) Redo Exercise 10 for an electron.

(12) At a distance r from a particular point charge q, the electric field is 40 N/C and

the electric potential is 36 V. Determine: (a) the distance r, (b) the magnitude

of the point charge q.

(13) Two point charges q1 = +2 µC and q2 = −6 µC are separated by a distance

L = 12 cm, see Fig. 22.28. Find the point at which the resultant electric potential

is zero.

Fig. 22.28 See Exercise (13)

+ -
1q

2q

L

(14) Two charges q1 = −2 µC and q2 = +2 µC are fixed in their positions and sep-

arated by a distance d = 10 cm, see the top part of Fig. 22.29. (a) What is the

electric field at the origin due these two charges? (b) What is the electric poten-

tial at the origin and the electric potential energy of the two charges? (c) Find

the change in potential energy of the two charges when a third charge q3 = 2 µC

is brought from ∞ to O, see the bottom part of Fig. 22.29.

Fig. 22.29 See Exercise (14)

x

d

1q 2q

3q

x

d

1
q

2
q

O

O
+-

- ++

(15) Three equal charges q1 = q2 = q3 = 6 nC are located at the vertices of an equi-

lateral triangle of side a = 6 cm, see Fig. 22.30. Find the electric potential at

point P, which is at the center of the base of the triangle.

Fig. 22.30 See Exercise (15)
+

a1q
2q

3q

a a

P
++
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(16) Three negative point charges are placed at the vertices of an isosceles tri-

angle as shown in Fig. 22.31. Given that a = √
2 cm, q1 = q3 = −2 nC, and

q2 = −4 nC, find the electric potential at point P (which is midway between q1

and q3).

Fig. 22.31 See Exercise (16)
1q

2q 3q
a

a
P

-

- -

Section 22.5 Electric Potential Due to a Dipole

(17) An electric dipole is located along the x-axis with its center at the origin. The

dipole has a negative charge −q at (−a, 0) and a positive charge +q at (+a, 0),

see Fig. 22.11. Show that the electric potential on the y-axis is zero for any value

of y.

(18) Assume that a third positive charge +q is placed at the origin of the dipole of

Fig. 22.11, so that the new configuration will be as show in Fig. 22.32. Show

that the electric potential for far away points (such as P) on the dipole axis is

given by:

V (x) = kq

x

(
1 + 2a

x

)
(x � a)

+a-a

P

0

q+q− q+

x

x+- +

Fig. 22.32 See Exercise (18)
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(19) The permanent electric dipole moment of the ammonia molecule NH3 is

p = 4.9 × 10−30 C.m. Find the electric potential due to an ammonia molecule

at a distance 52 nm away along the axis of the dipole.

Section 22.6 Electric Potential Due to a Charged Rod

(20) A non-conductive rod has a uniform positive charge density +λ, a total charge

Q along its right half, a uniform negative charge density −λ, and a total charge

−Q along its left half, see Fig. 22.33. (a) What is the electric potential at point

A? (b) What is the electric potential at point B?

Fig. 22.33 See Exercise (20)

x
0

+ + + + +

 y

 y

+
 
+Q -Q

2 L

A

B

/ 2L

Section 22.7 Electric Potential Due to a Uniformly Charged Arc

(21) A non-conductive rod has a uniformly distributed charge per unit length −λ.

The rod is bent into a circular arc of radius R and central angle 120◦, see

Fig. 22.34. Find the electric potential at the center of the arc.

Fig. 22.34 See Exercise (21)

R R

P

120°

−λ

(22) A non-conductive rod has a uniformly distributed charge per unit length λ. Part

of the rod is bent into a semicircular arc of radius R and the rest is left as two

straight rod segments each of length R as shown in Fig. 22.35. Find the electric

potential at point P.
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Fig. 22.35 See Exercise (22)

P

R

λ
λλ

R R

Section 22.8 Electric Potential Due to a Uniformly Charged Ring

(23) A uniformly charged insulated rod of charge Q = −8 µC and length L = 15.0 cm

is bent into the shape of a circle. Find the electric potential at the center of the

circle. If the rod is bent into the shape of a semicircle, find the electric field at

its center.

(24) A ring of radius R has a uniformly distributed total positive charge Q, see

Fig. 22.19. Find the point on the axis of the ring where the electric potential is

half the value of the electric potential at the center.

(25) An annulus of inner radius R1 and outer radius R2 has a uniform surface charge

per unit area σ. Calculate the electric potential at the point P which lies at a

distance a from the center of the annulus along its central axis, see Fig. 22.36.

Fig. 22.36 See Exercise (25)

a
P

R1

R2

z

σ

Section 22.9 Electric Potential Due to a Uniformly Charged Disk

(26) The disk of Fig. 22.20 has a radius R = 4 cm. If its surface charge density is

2 µC/m2 from r = 0 to R/2 and 1.5 µC/m2 from r = R/2 to R. Find the electric

potential at point P on the central axis of the disk, at a distance a = R/2 from

its center.
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(27) Show that if the disk of Fig. 22.20 has a radius R and a fixed charge Q, the

potential on the z-axis reduces to that of a point charge at the origin in the limit

R/a → 0, i.e. far away from the disk along the z-axis.

(28) Assume that a disk of radius R has a non-uniform surface charge density σ = αr,

where α is a constant and r is the distance from the center of the disk, see

Fig. 22.37. Find the electric potential at point P on the central axis of the disk,

at a distance a from its center. (Hint: use the electric potential produced by an

element in the form of a ring of radius r and thickness dr.)

Fig. 22.37 See Exercise (28)

r
dr

R

P

a

z
Charge per
unit area Ring

Diskrσ α=

Section 22.10 Potential Due to a Uniformly Charged Sphere

(29) A charge Q is distributed uniformly throughout a spherical volume of radius R,

see Fig. 22.21. (a) Find the point where the electric potential is half the value of

the electric potential at the center. (b) What is the potential difference between

a point on the surface and the sphere’s center?

(30) The charge density inside a non-conductive sphere of radius R varies as

ρ = αr (C/m3), where α is a constant and r is the radial distance from the

center of the sphere. The electric fields inside and outside the sphere are radial

by symmetry and given by:

E = αr2/4ε◦ for r ≤ R

E = αR4/(4ε◦ r2) for r ≥ R

(a) Find the electric potential inside the sphere. (b) Find the electric potential

outside the sphere.



770 22 Electric Potential

Section 22.11 Electric Potential Due to a Charged Conductor

(31) A spherical conductor has a radius R = 10 cm and a positive charge of 20 µC.

Find the electric potential at: (a) 0 cm, (b) 5 cm, (c) 10 cm, and (d) 15 cm from

its center.

(32) An initially uncharged spherical conductor has a radius R = 20 cm. (a) How

many electrons should be removed from the sphere to produce an electrical

potential of 3 × 106 V at its surface? (b) At that state, what is its surface charge

density?

(33) A metal sphere of radius a has a charge q and is placed at the center of a hollow

metal sphere of inner radius b and outer radius c, which carries a charge Q, see

Fig. 22.38. (a) Use Gauss’s law to show that:

Er = k(q + Q)/r2 r > c

Er = 0 b < r < c

Er = kq/r2 a < r < b

Er = 0 0 < r < a

(b) Show that the electric potential in all ranges is given by:

Vr = k(q + Q)/r r ≥ c

Vr = k(q + Q)/c b ≤ r ≤ c

Vr = k(q + Q)/c + kq(1/r − 1/b) a ≤ r ≤ b

Vr = k(q + Q)/c + kq(1/a − 1/b) 0 ≤ r ≤ a

(c) Consider the case where the sphere has a radius a = 15 cm and carries

a charge q = 10 nC. Additionally, consider the shell to be very thin when

c = b = 30 cm, see Fig. 22.39. Find the electric potential on the surface of the

sphere if the shell carries a charge Q = −15 nC.

Fig. 22.38 See Exercise (33)
Q Spherical

shell

Sphereq
a

b
c
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Fig. 22.39 See Exercise (33)
Q

Spherical 
shell

Sphereq
a

b

(34) A conducting sphere of radius a has a charge q and is placed at the center of

a thin hollow conducting sphere of radius b that carries a charge Q = −q, see

Fig. 22.39 of part c of the previous exercise. (a) Show that the electric potential

difference between the sphere and the shell is:

�V = Va − Vb = kq

(
1

a
− 1

b

)

(b) Show that the electric field between the sphere and the shell is:

Er = Va − Vb

(1/a − 1/b)

1

r2 a < r < b

(35) Two metal spheres of radii a and b are very far apart, but connected by a thin

wire. Their combined charge is Q. Ignoring any charge on this thin wire, find

(a) the charge on each sphere, and (b) the electric potential on each sphere.

(36) The electric field outside a long cylindrical conductor of radius R is directed

radially toward the cylindrical axis and has a magnitude Er = 100/r, see

Fig. 22.40. Find the value of the electric potential difference �V = VB − VA,

if rA = 40 cm and rB = 120 cm.

Fig. 22.40 See Exercise (36)
R

E

A B

-λ

d s
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Section 22.12 Potential Gradient

(37) The electric potential over a certain region of space is given by V = (3x2 +
6y2 − 4z) V. (a) Find the expressions for the x, y, and z components of the

electric fields over this region. (b) What are the values of the three components

at a point P that has the coordinates (−2, 2, 2) m?

(38) The electric potential of a dipole at large distances is given in polar coordinates

by V (r)= kp cos θ/r2, where the angle θ is measured from the direction of

electric dipole moment vector →p , see Eq. 22.36. Find the electric field due to

the dipole at a point on the dipole axis.

Section 22.14 The Van de Graaff Generator

(39) Suppose the dome of a Van de Graaff generator has a radius R = 0.3 m and

surrounded by dry air with ionization breakdown that occurs at an electric field

of 3 × 106 V/m. (a) What is the maximum potential of the dome? (b) What is

the maximum charge on the dome? (c) What is the magnitude of the electric

potential and electric field 2 m away from the dome’s center?

(40) Assume that the potential difference between the dome A and the point on the

belt facing the needle F of the Van de Graaff generator shown in Fig. 22.41

is 2 × 106 V. If the belt D delivers a positive charge to the dome A at a rate

of 4 × 10−3 C/s, what horsepower must be consumed to drive the belt against

electrical forces?

Fig. 22.41 See Exercise (40)

A

B
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Capacitors and Capacitance 23

In this chapter we introduce capacitors, which are one of the simplest circuit elements.

Capacitors are charge-storing devices that can store energy in the form of an electric

potential energy, and are commonly used in a variety of electric circuits.

Apart from being energy-storing devices, capacitors can be used to accumulate

charges relatively slowly during the charging process, or to minimize voltage varia-

tions in electronic power supplies, or to detect electromagnetic waves, such as when

tuning a radio receiver.

We shall first study the properties of capacitors and dielectrics, and follow that

by studying capacitors in combination, and finally studying capacitors as electric

charge-storing devices.

23.1 Capacitor and Capacitance

We can use a device called capacitor to store energy in the form of an electric

potential. Beyond serving as storehouses for electric potential energy, capacitors

have many uses in our electronic and microelectronic age.

Figure 23.1a shows the basic elements of an air-filled capacitor. It consists of

two isolated conductors of any arbitrary shape, each of which carries an equal but

opposite charge of magnitude Q.

Figure 23.1b shows a more convenient and practical arrangement of an air-filled

capacitor, called a parallel-plate capacitor, consisting of two parallel conducting

plates of area A separated by a distance d of air. We represent a capacitor of any

geometry by the symbol (� �), which is based on the structure of a parallel plate

capacitor.

H. A. Radi and J. O. Rasmussen, Principles of Physics, 773
Undergraduate Lecture Notes in Physics, DOI: 10.1007/978-3-642-23026-4_23,
© Springer-Verlag Berlin Heidelberg 2013
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E

Q−Q+

(b)(a)
d

Area A

E

Q+ Q−

Fig. 23.1 (a) A capacitor made up of two conductors carrying an equal but opposite charge of magnitude

Q. (b) A parallel-plate capacitor made up of two plates of area A separated by a distance d. Each plate

carries an equal but opposite charge of magnitude Q

Experiments show that the magnitude of the charge on a capacitor is directly

proportional to the potential difference between its conductors; i.e. Q ∝ �V ; which

can be written as Q = C �V . Thus:

C = Q

�V
(23.1)

The proportionality constant C is called the capacitance of the capacitor and depends

on the shape and separation of the conductors. Furthermore, the charge Q and the

potential difference �V are always expressed in Eq. 23.1 as positive quantities to

produce a positive ratio C = Q/�V . Hence:

Spotlight

The capacitance C of a capacitor is defined as the ratio of the magnitude of

the charge on either conductor to the magnitude of the potential difference

between the conductors.

The SI unit of the capacitance is coulomb per volt, or farad (abbreviated by F).

That is:

1 F = 1 C/V (23.2)

The farad is a very large unit of capacitance. In practice, typical devices have capac-

itances ranging from microfarads (1 µF = 10−6 F), nanofarads (1 n F = 10−9 F), to

picofarads (1 p F = 10−12 F).
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23.2 Calculating Capacitance

For a capacitor with a charge of magnitude Q, we can calculate the potential

difference �V using the technique described in the preceding chapter. Then we

can use the expression C = Q/�V to calculate the capacitance for the capacitor

under consideration.

A Parallel-Plate Capacitor

Figure 23.2a shows an uncharged parallel-plate capacitor of equal area A separated

by a distance d. The capacitor is connected in a circuit containing a battery B that

has a potential difference �V and an open switch S. When the switch is closed,

the battery establishes an electric field in the wires and consequently charges flow

in the circuit to charge the capacitor with a charge of magnitude Q, see Fig. 23.2b.

Therefore, some of the stored chemical energy in the battery is transformed to the

capacitor in the form of an electric field
→
E . Figure 23.2c shows the circuit schematic

diagram, where we use the symbol to represent the battery, the symbol � � to

represent the capacitor C, and the symbol to represent the closed switch S. An

open switch is represented by the symbol .

S S
S

B
B B

d d

A
A

VΔ

VΔ

E

(b)(a) (c)

Q−Q+
C

VΔ

Fig. 23.2 (a) A parallel-plate capacitor is connected to a battery B and an open switch S. (b) When S

is closed, each capacitor plate will carry equal but opposite charges of magnitude Q. (c) A schematic

diagram of the circuit with symbols representing the elements used

To find the relation between the capacitance and the geometry of this parallel-plate

capacitor, we first note that the magnitude of the surface charge density on either
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plate is σ = Q/A. Then according to Example 21.6, the magnitude of the electric

field between the plates (assuming it uniform) is:

E = σ

ε◦
= Q

ε◦ A
(23.3)

Since the positive potential difference �V across the battery and the plates are

identical, then according to Eq. 22.17 we have:

�V = Ed = Qd

ε◦ A
(23.4)

Substituting this result into Eq. 23.1, we get:

C = Q

�V
= Q

Qd/ε◦ A

Thus, the capacitance of the parallel-plate capacitor is:

C = ε◦ A

d
(Parallel-plate capacitor) (23.5)

A Cylindrical Capacitor

Figure 23.3a shows a cylindrical capacitor of length � composed of a solid cylindrical

conductor of radius a having a charge Q and a coaxial cylindrical conducting shell

of radius b having a charge −Q. Thus, the magnitude of the linear charge density on

either the cylinders is λ = Q/�. We assume that �� b and hence neglect the fringing

(non-uniformity) of the electric field at the cylinders’ ends.

Figure 23.3b shows a cross-sectional view of the cylindrical capacitor. The electric

field in the region between the cylinders is radial and perpendicular to the axis of

the cylinders. In Chap. 21, we showed using Gauss’s law that the electric field of

a cylindrical charge distribution having a linear charge density λ is radial and is

given by:

Er = 2k
λ

r
(k = 1/4πε◦)

The same formula applies here since the charge on the outer shell does not contribute

to any cylindrical Gaussian surface having a < r < b.
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(a) (b)

E
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shell
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Fig. 23.3 (a) A cylindrical capacitor in the form of a cylindrical solid conductor surrounded by a coaxial

shell. (b) A cross-sectional view of the capacitor showing a Gaussian cylinder of radius a < r < b

The potential difference Vb − Va between the cylinders is given by:

Vb − Va = −
b�

a

→
E • d →s = −

b�
a

Er d r = −2 k λ

b�
a

d r

r
= −2 kλ ln

(
b

a

)
(23.6)

Therefore, the magnitude of the potential difference between the cylinders is

�V = |Vb − Va| = 2kλ ln (b/a). Substituting this result into Eq. 23.1 and using the

fact that λ = Q/�, we get:

C = Q

�V
= Q

2k(Q/�) ln (b/a)

Thus, the capacitance of a cylindrical capacitor of length � is:

C = �

2k ln (b/a)
= 2πε◦

�

ln (b/a)
(Cylindrical capacitor) (23.7)

In addition, the capacitance per unit length of this configuration is:

C

�
= 1

2k ln (b/a)
= 2πε◦

1

ln (b/a)
(Cylindrical capacitor) (23.8)

A Spherical Capacitor

Figure 23.4a shows a three-dimensional spherical capacitor consisting of a solid

spherical conductor of radius a having a charge Q and a concentric spherical shell

of radius b having a charge −Q.
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Fig. 23.4 (a) A spherical capacitor consists of a spherical solid conductor surrounded by a concentric

spherical shell. (b) A cross-sectional view across the center of the spheres showing a Gaussian sphere of

radius a < r < b

Figure 23.4b shows a cross-sectional view of the spherical capacitor. As shown

in Chap. 21, the electric field outside a spherically symmetric charge distribution is

radial and is given by:

Er = k
Q

r2

This result applies only to the field between the spheres since the charge on the

outer spherical shell does not contribute to any spherical Gaussian surface having

a < r < b, see Fig. 23.4b.

The potential difference Vb − Va between the spheres is given by:

Vb − Va = −
b�

a

→
E • d →s = −

b�
a

Er dr = −k Q
b�

a

dr

r2

= k Q

∣∣∣∣1

r

∣∣∣∣
b

a
= k Q

(
1

b
− 1

a

) (23.9)

Therefore, the magnitude of the potential difference between the spheres is �V =
|Vb − Va| = kQ (b − a)/ab. Substituting this result into Eq. 23.1, we obtain:

C = Q

�V
= Q

kQ (b − a)/ab

Thus, the capacitance of the spherical capacitor is:

C = ab

k (b − a)
= 4πε◦

ab

(b − a)
(Spherical capacitor) (23.10)
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An Isolated Sphere

The capacitance of a single isolated spherical conductor of radius R can be obtained

by assuming that the missing second conducting sphere has an infinite radius.

The electric field lines that leave or enter the isolated spherical conductor must

therefore end at infinity. For practical purposes, the walls of the room in which the

spherical conductor is housed can serve as our missing sphere of infinite radius. This

proves that any single conductor has a capacitance.

To find the capacitance of the isolated spherical conductor, we rearrange Eq. 23.10

to be as follows:

C = a

k (1 − a/b)

Then we let b → ∞ and replace a by R in this formula to find the following relation:

C = R

k
= 4πε◦ R (Isolated sphere) (23.11)

Note that all the formulas derived so far for the capacitance [Eqs. 23.5, 23.7, 23.10,

and 23.11] involve the constants 1/k or ε◦ multiplied by a quantity that has the

dimension of a length. Thus, the units of k and ε◦ may be expressed as m/F and F/m,

respectively.

Example 23.1

The plates of a parallel-plate capacitor are separated in air by a distance d = 1 mm.

(a) Find the capacitance of this capacitor if its area is A = 1 cm2. (b) What must

be the plate area if its capacitance is to be 1 F?

Solution: (a) From Eq. 23.5, we have:

C = ε◦ A

d
= (8.85 × 10−12 F/m)(1 × 10−4 m2)

(1 × 10−3 m)
= 8.85 × 10−13 F = 0.885 pF

(b) From Eq. 23.5, we have:

A = Cd

ε◦
= (1 F)(1 × 10−3 m)

(8.85 × 10−12 F/m)
= 1.13 × 108 m2

This is an area of a square that has a side of more than 10.6 km. Therefore,

the farad is indeed a large unit. However, modern technology has permitted the
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construction of a 1 F capacitor of a very modest size. This capacitor is used as a

backup power supply (up to many months) for computer memory chips in case

of a power failure.

Example 23.2

Show that the capacitance of the cylindrical capacitor shown in Fig. 23.3a

approaches the capacitance of a parallel-plate capacitor if the separation d between

the two cylinders is very small.

Solution: When d = b − a is very small, then d/a must also be very small. If we

use the approximation ln (1 + x) ≈ x for x 
 1, in the natural logarithm of the

denominator of Eq. 23.7, we find that:

ln

(
b

a

)
= ln

(
a + d

a

)
= ln

(
1 + d

a

)
≈ d

a
(When d/a 
 1)

Then, using the surface area of the inner cylinder A = 2πa�, we find that Eq. 23.7

approaches Eq. 23.5 as follows:

C = 2πε◦
�

ln (b/a)
≈ 2πε◦

�

d/a
= ε◦

2πa�

d
= ε◦ A

d

Example 23.3 (Spherical Capacitor)

(a) How much charge is stored in a spherical capacitor consisting of two concen-

tric spheres of radii a = 20 cm and b = 21 cm if the potential difference between

them is 200 V? (b) Show that if the separation d between the two spheres is small

compared to their radii, then the capacitance is given by the parallel-plate capac-

itance formula ε◦ A/d. (c) Does the answer to part (b) apply to part (a)? (d) Find

the capacitance of the inner sphere of part (a) if it is isolated.

Solution: (a) For concentric spheres, Eq. 23.10 is used to calculate the capacitance

as follows:

C = ab

k (b − a)
= (0.2 m)(0.21 m)

(9 × 109 m/F)(0.21 m − 0.2 m)
= 4.67×10−10 F = 0.467 nF

Then, by using Eq. 23.1, the magnitude of the charge on each sphere will be:

Q = C�V = (4.67 × 10−10 F)(200 V)= 93.4 nC
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(b) When the separation d = b − a is small, we can write the surface area of

each sphere as A ≈ 4πa2 ≈ 4πb2 ≈ 4πab. Then, we have:

C = 4πε◦
ab

(b − a)
= ε◦

4πab

d
≈ ε◦ A

d

(c) Since the separation d in part (a) is very small compared to the radii of the

spheres, then according to part (b) the capacitance is:

C ≈ ε◦ A

d
= 4πa2ε◦

d
= 4π(0.2 m)2(8.85 × 10−12 F/m)

(1 × 10−2 m)
= 4.45×10−10 F

This is very close to the answer 4.67 × 10−10 F obtained in part (a).

(d) Substituting with R = a = 20 cm in Eq. 23.11, we find that:

C = 4πε◦ R = 4π(8.85 × 10−12 F/m)(0.2 m) = 2.22 × 10−11 F

23.3 Capacitors with Dielectrics

An Electrical Description of Dielectrics

Capacitance was found to increase when a non-conducting material (such as oil,

rubber, plastic, glass, or waxed paper) is inserted between the capacitor’s plates. These

non-conducting materials are called dielectrics. If the dielectric completely fills the

space between the plates, the capacitance is found to increase by a dimensionless

factor κ (the Greek alphabet Kappa), called the dielectric constant.

Fixed Charge

Consider a parallel-plate capacitor without a dielectric to have a capacitance C◦, a

charge Q◦, and potential difference �V◦, i.e. C◦ = Q◦/�V◦, see Fig. 23.5a. When

a dielectric is inserted between the plates, see Fig. 23.5b, the potential difference

between the plates is found to decrease to a value �V related to �V◦ by the relation:

�V = �V◦
κ

(23.12)

Note that, κ > 1 because �V <�V◦.
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Fig. 23.5 (a) A capacitor

with capacitance C◦ has a

charge Q◦ when the potential

difference between the plates is

�V◦. (b) When the capacitor’s

charge is maintained, inserting

a dielectric reduces the

potential difference to �V,

where �V <�V◦
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Q+ ° Q− °
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After inserting the dielectric, the capacitance C of the capacitor can be obtained

from Eq. 23.1 as follows:

C = Q◦
�V

= Q◦
�V◦/κ

= κ
Q◦

�V◦
(23.13)

Using C◦ = Q◦/�V◦, we find that:

C = κ C◦ (23.14)

This indicates that the capacitance increases by a factor κ when the dielectric com-

pletely fills the space between the plates of the capacitor. Using Eq. 23.5, C◦ = ε◦ A/d,

the capacitance becomes:

C = κ ε◦ A

d
= εA

d
(23.15)

where ε = κ ε◦ and is known as the permittivity of the dielectric.

On the other hand, if
→
E◦ is the electric field without the dielectric, then a reduction

of the potential difference from �V◦ to �V = �V◦/κ means that the electric field

decreases from
→
E◦ to

→
E = →

E◦/κ. That is:

→
E =

→
E◦
κ

(23.16)
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Fixed Potential Difference

Now, consider a parallel-plate capacitor without a dielectric, having a capacitance

C◦, a charge Q◦, and connected to a battery that has a potential difference �V◦, i.e.

C◦ = Q◦/�V◦, see Fig. 23.6a. If the dielectric is inserted between the plates while

the potential difference is held constant by keeping the capacitor connected to the

battery, see Fig. 23.6b, then the capacitance has to increase as before by the relation

C = κC◦. Consequently, the magnitude of the charge on the capacitor has to increase

by a factor κ according to the relation:

Q = κQ◦ (23.17)

The extra charge comes from the battery attached to the capacitor.

B

Q+ °
Q− °

Dielectric

(b)(a)

C° C

VΔ ° VΔ °

Q+ Q−

B

Fig. 23.6 (a) A capacitor with capacitance C◦ has a charge Q◦ when connected to a battery that has

a potential difference �V◦. (b) When the potential difference is maintained by the battery, inserting a

dielectric increases the charge to Q, where Q = κQ◦

An Atomic Description of Dielectrics

The molecules of some dielectrics have randomly oriented permanent electric dipole

moments as shown in Fig. 23.7a. The presence of an external electric field
→
E◦ in such

materials (called polar dielectrics), will exert a torque on the dipoles, causing them

to partially align with the field, as shown in Fig. 23.7b. We can now describe the
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dielectric as being polarized, and the degree of alignment depends generally on the

strength of
→
E◦.

(a)

+
-

+-

+-

+
-

+ -

+-

+
-

+
-

+
-

+
-

+
-

+
-

+-

+-

+-

+-

+-

+-

+-

+-

+-

+-

+-

+-

σ+ ° σ σ
σ σ σ− °

(b) (c)

E° E°

E

+ ° − °
Dielectric Dielectric

Dielectric

i− i+

iE

Fig. 23.7 (a) A dielectric that has randomly oriented molecules. (b) The partial alignment of molecules

in the presence of an external electric field
→
E◦ due to a charged parallel plate capacitor with a surface

charge density of magnitude σ◦. (c) The formation of an induced charge density +σi and −σi on either

sides of the capacitor sets up an induced electric field
→
Ei. The resultant electric field

→
E inside the dielectric

has the same direction as
→
E◦ but is less in magnitude

Even when the dielectric material is non-polar, the applied external electric field
→
E◦ tends to separate the centers of the positive and negative charges of the molecules,

producing induced electric dipole moments. Therefore, the induced electric dipole

moments tend to align with the external electric field, and the dielectric is polarized.

The net effect on the dielectric is the formation of an induced positive and negative

charge density +σi and −σi on the right and left faces of the dielectric, respectively,

see Fig. 23.7c. Therefore, an induced electric field
→
Ei will be established in a direction

opposite to the external electric field
→
E◦. Accordingly, the net electric field

→
E in the

dielectric will have a magnitude given by:

E = E◦ − Ei (23.18)

In the case of the parallel-plate capacitor shown in Fig. 23.7c, we use the relations

E◦ = σ◦/ε◦, Ei = σi/ε◦, and E = E◦/κ = σ◦/ε, to get:

σ◦
κε◦

= σ◦
ε◦

− σi

ε◦
(23.19)

or

σi = κ − 1

κ
σ◦ (Parallel-plate capacitor) (23.20)
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where σi < σ◦ because κ > 1. When the dielectric is replaced by a conductor, for

which E = 0, then Ei = E◦ and hence σi = σ◦. This means that the induced charge

on the conductor is equal in magnitude but opposite in sign to that on the plates of

the parallel-plate capacitor.

Equation 23.15 indicates that the capacitance C increases drastically when d

diminishes. However, d is limited by the electric discharge that could occur through

the dielectric medium. Every dielectric material has a specific dielectric strength

Emax, which is the maximum value of the electric field that the dielectric can with-

stand without electrical breakdown. Above this value the dielectric breaks down

and forms a conducting path between the capacitor’s plates. The largest potential

difference �Vmax that can be applied to a dielectric without exceeding the dielectric

strength is called the breakdown potential difference. In fact, insulating materials

have κ > 1 and their Emax is greater than that of air.

Table 23.1 displays approximate dielectric constants κ and dielectric strengths

Emax of some materials at room temperature.

Table 23.1 Approximate values of the dielectric constants and dielectric strengths of some materials at

room temperature

Material κ Emax (106 V/m ≡ kV/mm)

Vacuum 1.00000 –

Air (1 atm) 1.00059 3

Teflon 2.1 60

Silicon oil 2.5 15

Mylar 3.2 7

Nylon 3.4 14

Paraffin-impregnated paper 3.5 11

Paper 3.7 16

Pyrex glass 5.6 14

Distilled Water 80 –

Types of Capacitors

Low-voltage capacitors are usually made of metallic foil interlaced with thin sheets

of a dielectric material, made of either paraffin-impregnated paper or Mylar. The

metallic foil and dielectric are rolled into a cylinder to form a small package, see

Fig. 23.8a.
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Metallic foilPaper

Oil

Electrolyte Contacts

Case

(a) (b) (c) (d)

Plates

Metalllic foil + oxide layer

Fig. 23.8 (a) A low-voltage capacitor whose plates are separated by paper as a dielectric. (b) A high-

voltage capacitor consisting of a number of plates separated by insulating oil as a dielectric. (c) An

electrolytic capacitor used to store a large amount of charge. (d) A variable air capacitor

High-voltage capacitors are usually made of a number of interwoven metallic

plates immersed in silicon oil, see Fig. 23.8b.

Large-charge storage capacitors consist of a metallic foil in contact with an elec-

trolyte. When a voltage is applied between the foil and the electrolyte, a very thin

layer of metal oxide is formed on the foil, and that layer serves as a dielectric, see

Fig. 23.8c. Because the dielectric layer is very thin, the capacitance obtained with

this type is very large. Such capacitors are assigned a polarity, which is indicated by

positive and negative signs. If the polarity of the applied voltage is reversed, the oxide

layer is removed, and the capacitor starts conducting electricity instead of storing

charge.

Variable capacitors whose capacitance may vary are widely used in tuning circuits

of radio receivers. They are constructed from a set of fixed parallel-plates connected

together to form one plate of the capacitor, while the second set of movable plates

are connected together to form the other plate. The plates are separated by air as a

dielectric, see Fig. 23.8d.

Example 23.4

The parallel plates in Fig. 23.9a have an area A = 0.2 m2 and separation distance

d = 0.01 m. The original potential difference between them is �V◦ = 300 V which

decreases to �V = 100 V when a dielectric sheet fills the space between the plates,

see Fig. 23.9b. (a) Calculate the capacitance C◦, the magnitude of the charge Q◦,
and the magnitude of the electric field E◦. (b) Calculate the final capacitance C and

the dielectric constant κ. (c) Find the magnitudes of the induced charge density

σi, the induced electric field Ei, and the final electric field E.
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Fig. 23.9

Solution: (a) Using the parallel-plate capacitor Eq. 23.5, we get:

C◦ = ε◦ A

d
= (8.85 × 10−12 F/m)(0.2 m2)

0.01 m
= 1.77 × 10−10 F = 177 pF

Then, when using Eq. 23.1, the magnitude of the charge on each plate will be

the following:

Q◦ = C◦ �V◦ = (1.77 × 10−10 F)(300 V)= 5.31 × 10−8 C = 53.1 nC

Finally, we use Eq. 22.17 to find the magnitude of the uniform electric field E◦ as

follows:
E◦ = �V◦

d
= 300 V

0.01 m
= 3 × 104 V/m

Alternatively, we can use the relation E◦ = σ◦/ε◦ to find E◦. First, we calculate

σ◦ as follows:

σ◦ = Q◦
A

= 5.31 × 10−8 C

0.2 m2 = 2.655 × 10−7 C/m2

Then we find the value of E◦ as follows:

E◦ = σ◦
ε◦

= 2.655 × 10−7 C/m2

8.85 × 10−12 F/m
= 3 × 104 C/F.m = 3 × 104 V/m

(b) We first use Eq. 23.1 to find C as follows:

C = Q◦
�V

= 5.31 × 10−8 C

100 V
= 5.31 × 10−10 F = 531 pF
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Then, by using equation C = κC◦, we find that:

κ = C

C◦
= 5.31 × 10−10 F

1.77 × 10−10 F
= 3

(c) The induced charge density σi can be obtained from Eq. 23.20 as follows:

σi = κ − 1

κ
σ◦ = (3 − 1)(2.655 × 10−7 C/m2)

(3)
= 1.77 × 10−7 C/m2

The magnitude of the induced electric field is therefore:

Ei = σi

ε◦
= 1.77 × 10−7 C

8.85 × 10−12 F/m
= 2 × 104 V/m

The magnitude of the final electric field can be obtained from Eq. 23.16 as follows:

E = E◦
κ

= 3 × 104 V/m

3
= 104 V/m

Alternatively, we can find E from Eq. 23.18 as follows:

E = E◦ − Ei = 3 × 104 V/m − 2 × 104 V/m = 104 V/m

Example 23.5

Assume that the parallel-plate capacitor of Fig. 23.10a has a plate area A = 0.2 m2,

separation distance d = 10−2 m, and original potential difference �V◦ = 300 V.

A dielectric slab of thickness a = 5 × 10−3 m and dielectric constant κ = 2.5 is

inserted between the plates as shown in Fig. 23.10b. (a) Find the magnitudes of

the final electric field E in the slab, the final potential difference �V between the

plates, and the final capacitance C with the dielectric slab in place. (b) Find an

expression for C in terms of C◦, a, d, and κ.

Solution: (a) From Example 23.4, we have E◦ = 3 × 104 V/m. Therefore, the

magnitude of the final electric field in the slab can be obtained from Eq. 23.16 as

follows:

E = E◦
κ

= 3 × 104 V/m

2.5
= 1.2 × 104 V/m

By applying Eq. 22.6, we can find �V by integrating against the electric field

along a straight line from the negative plate (−) to the positive plate (+). Within
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the dielectric, we must note that
→
E • d →s = −E ds, the path length is a, and the

magnitude of the field is E. But within the right and left gaps, the total path length

is d − a and the magnitude of the field is E◦. Thus, Eq. 22.6 yields:

�V = V+ − V− = −
+�
−

→
E • d →s =

+�
−

E ds = E◦ (d − a) + Ea

= (3 × 104 V/m)(10−2 m − 5 × 10−3 m) + (1.2 × 104 V/m)(5 × 10−3 m)

= 210 V

From Example 23.4, we found that Q◦ = 5.31 × 10−8 C and from Eq. 23.1 we

can find the value of C as follows:

C = Q◦
�V

= 5.31 × 10−8 C

210 V
= 2.53 × 10−10 F = 0.253 nF

Note that we cannot use the relation C = κ C◦, because it is true only if the

dielectric material fills the space between the capacitor’s plates.
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Fig. 23.10

(b) We start with the proven formula of part (a); that is:

�V = E◦(d − a) + Ea

Then, using �V = Q◦/C, E◦ = σ◦/ε◦ = Q◦/ε◦ A, C◦ = ε◦ A/d, and E = E◦/κ =
σ◦/ε, we can find an expression for C by performing the following steps:
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Q◦
C

= Q◦
ε◦ A

(d − a) + Q◦
κε◦ A

a

1

C
= d − a

ε◦ A
+ a

κε◦ A

C = ε◦ A[
(d − a) + a

κ

] ⇒ C = d[
(d − a) + a

κ

] ε◦ A

d

C = d[
(d − a) + a

κ

]C◦

In the second step, (d −a)/ε◦ A is the inverse of the capacitance of an air capacitor

of separation d − a, and a/κε◦ A is the inverse of the capacitance of a capacitor

of separation a but filled with a dielectric.

23.4 Capacitors in Parallel and Series

Capacitors in a circuit may be used in different combinations, and we can sometimes

replace a combination of capacitors with one equivalent capacitor. In this section,

we introduce two basic combinations of capacitors that allow such a replacement.

Capacitors in a Parallel Combination

Figure 23.11a shows two capacitors of capacitances C1 and C2, that are connected in

parallel with a battery B. Figure 23.11b shows a circuit diagram for this combination

of capacitors. The potential difference �V between the battery’s terminals is the

same as the potential difference across each capacitor. Figure 23.11c shows a single

capacitance Ceq that is equivalent to this combination and has the same effect on

the circuit. This means that when the potential difference �V is applied across the

equivalent capacitor, it will store the same magnitude of the maximum total charge

Q as stored in the combination being replaced.

When the circuit is first connected, electrons are transferred between the wires and

the plates. This transfer leaves the top plates of the two capacitors positively charged,

and the bottom plates negatively charged. If the magnitude of the maximum charges

stored on the two capacitors are Q1 and Q2, then we must have:

Q = Q1 + Q2 (23.21)
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1C 2C 1C
1Q

2C
2Q 1 2Q Q Q= +

eqC

(a) (c)(b)

Δ V Δ V Δ VB

Fig. 23.11 (a) Two capacitors of capacitances C1 and C2 are connected in parallel to a battery B that

has a potential difference �V . (b) The circuit diagram for this parallel combination. (c) The equivalent

capacitance Ceq replaces the parallel combination

For the two capacitors in Fig. 23.11b, we have:

Q1 = C1�V and Q2 = C2�V (23.22)

Substituting in Eq. 23.21, we get:

Q = (C1 + C2)�V (23.23)

The equivalent capacitor with the same total charge Q and applied potential differ-

ence �V has a capacitance Ceq given by:

Ceq = Q

�V
= C1 + C2 (Parallel combination) (23.24)

We can extend this treatment to n capacitors connected in parallel as:

Ceq = C1 + C2 + C3 + · · · + Cn (Parallel combination) (23.25)

Thus, the equivalent capacitance of a parallel combination of capacitors is simply

the algebraic sum of the individual capacitances and is greater than any one of them.

Example 23.6

In Fig. 23.11, let C1 = 6 µF and C2 = 3 µF, and �V = 18 V. Find the equivalent

capacitance as well as the charges on C1 and C2.

Solution: The equivalent capacitance of the parallel combination is:

Ceq = C1 + C2 = 6 µF + 3 µF = 9 µF
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The magnitudes of the charges Q1 and Q2 on the two capacitors are:

Q1 = C1�V = (6 µ F)(18 V) = 108 µC

Q2 = C2�V = (3 µF)(18 V)= 54 µC

Capacitors in a Series Combination

Figure 23.12a shows two capacitors of capacitances C1 and C2 that are connected in

series with a battery B. Figure 23.12b shows a circuit diagram for this combination

of capacitors.

When the circuit is first connected, the electrons are transferred out of the upper

plate of C1 (leaving it with an excess of positive charge) into the lower plate of C2.

As this negative charge accumulates on the lower plate of C2, an exact amount of

negative charge is forced off the upper plate of C2 (leaving it with an excess positive

charge) into the lower plate of C1. As a result, all the upper plates acquire a positive

charge +Q, and the lower plates acquire a negative charge −Q. Figure 23.11c shows

a single capacitance Ceq that is equivalent to this combination and has the same effect

on the circuit. This means that when the potential difference �V is applied across

the equivalent capacitor, it must have a positive charge +Q on its upper plate and a

negative charge −Q on its lower plate.

1C

2C
eqC

(a) (b) (c)

Δ V Δ V Δ V

+Q

+Q
-Q

-Q

1C

2CΔ V2

Δ V1 +Q

-Q

1Q Q=

2Q Q=B

Fig. 23.12 (a) Two capacitors are connected in series to a battery B that has a potential difference

�V . (b) The circuit diagram for this series combination. (c) An equivalent capacitance Ceq replacing

the original capacitors set up in a series combination

The potential difference �V is divided to �V1 and �V2 across the capacitors C1

and C2, respectively. Thus:

�V = �V1 + �V2 (23.26)
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For the two capacitors in Fig. 23.12b, we have:

�V1 = Q1

C1
= Q

C1
and �V2 = Q2

C2
= Q

C2
(23.27)

Substituting in Eq. 23.26, we get:

�V = Q

C1
+ Q

C2
(23.28)

The equivalent capacitor Ceq has the same charge Q and applied potential difference

�V ; thus:

�V = Q

Ceq
= Q

C1
+ Q

C2
(23.29)

Canceling Q, we arrive at the following relationship:

1

Ceq
= 1

C1
+ 1

C2
(Series combination) (23.30)

We can extend this treatment to n capacitors connected in series as:

1

Ceq
= 1

C1
+ 1

C2
+ 1

C3
+ · · · + 1

Cn
(Series combination) (23.31)

Thus, the equivalent capacitance of a series combination of capacitors is simply the

algebraic sum of the reciprocals of the individual capacitances and will always be

less than any one of them.

Example 23.7

In Fig. 23.12, let C1 = 6 µF and C2 = 3 µF, and �V = 18 V. Find Ceq, Q, �V1,

and �V2.

Solution: The equivalent capacitance of the series combination is:

1

Ceq
= 1

C1
+ 1

C2
= 1

6 µF
+ 1

3 µF
= 1

2 µF
⇒ Ceq = 2 µF

Consequently: Q = Ceq �V = (2 µF)(18 V)= 36 µC

�V1 = Q

C1
= 36 µV

6 µF
= 6 V and �V2 = Q

C2
= 36 µV

3 µF
= 12 V
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Example 23.8

For the combination of capacitors shown in Fig. 23.13a, assume that C1 = 2 µF,

C2 = 4 µF, and C3 = 3 µF, and �V = 12 V. (a) Find the equivalent capacitance

of the combination. (b) What is the charge on C1?

Δ V
1C 2C

3C

(a) (b) (c)

Δ V

3C

Δ V

12C

123C
123Q

12 123Q Q=

3 123Q Q=

Fig. 23.13

Solution: (a) Capacitors C1 and C2 in Fig. 23.13a are in parallel and their equiv-

alent capacitance C12 is:

C12 = C1 + C2 = 2 µF + 4 µF = 6 µF

From Fig. 23.13b, we find that C12 and C3 form a series combination and their

equivalent capacitance C123 is given by:

1

C123
= 1

C12
+ 1

C3
= 1

6 µF
+ 1

3 µF
= 1

2 µF
⇒ C123 = 2 µF

(b) We first find the charge Q123 on C123 in Fig. 23.13c as follows:

Q123 = C123�V = (2 µF)(12 V) = 24 µC

This same charge exists on each capacitor in the series combination of Fig. 23.13b.

Therefore, if Q12 represents the charge on C12, then Q12 = Q123 = 24 µC. Accord-

ingly, the potential difference across C12 is:

�V12 = Q12

C12
= 24 µC

6 µF
= 4 V

This same potential difference exists across C1, i.e. �V1 = �V12. Thus:

Q1 = C1�V1 = (2 µF)(4 V) = 8 µC
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23.5 Energy Stored in a Charged Capacitor

When the switch S of Fig. 23.14a is closed, the process of charging the capacitor

starts by transferring electrons from the left plate (leaving it with an excess of positive

charge) to the right plate. In the process of charging this capacitor, the battery must

do work at the expense of its stored chemical energy.

S

B
VΔ

CS

B
VΔ

C

(a) (b)

-q+q

S

B
VΔ

C

(c)

-Q+Q

Intermediate state Final state

Fig. 23.14 (a) A circuit consisting of a battery B, a switch S, and a capacitor C. (b) An intermediate

state when the magnitude of the charge on the capacitor is q. (c) A final state when q = Q.

In principle, the charging process occurs as if positive charges were pulled

off from the right plate and transferred directly to the left plate. Suppose that, at

a given instant during the charging process, as shown in Fig. 23.14b, the charge on

the capacitor is q, i.e. q = C�V . Moreover, according to Eq. 22.11, the differential

applied work necessary to transfer a differential charge dq from the plate having

charge −q to the plate having a charge +q is given by:

dW (app) = dq �V = q

C
dq (23.32)

The total work required to charge the capacitor from a charge q = 0 to a final charge

q = Q, see Fig. 23.14c, is thus:

W (app) =
Q�
0

q

C
dq = 1

C

Q�
0

q dq = Q2

2 C
(23.33)

According to Eqs. 22.6 and 22.10, this work done by the battery is stored as

electrostatic potential energy U in the capacitor. Thus:

U = Q2

2C
(Electric potential energy) (23.34)
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From Eq. 23.1, we can write this stored electric potential energy in the following

forms:

U = 1
2 C(�V )2 (Electric potential energy) (23.35)

or

U = 1
2 Q�V (Electric potential energy) (23.36)

It is important to note that Eqs. 23.34 to 23.36 hold for any capacitor, regardless of

its shape.

When we neglect the fringing effect (nonuniform
→
E ) in a parallel-plate capacitor

filled with a dielectric, we know that the electric field has the same value at any point

between the plates. Thus, the potential energy per unit volume between the plates,

known as the energy density uE, should also be uniform. Then we can find uE by

dividing the electric potential energy U by the volume Ad between the plates:

uE = U

Ad
= C(�V )2

2 Ad
(23.37)

Using C = κ ε◦ A/d and �V = Ed for parallel-plate capacitors, we get:

uE = 1
2κε◦ E2 (Electric energy density) (23.38)

Although this equation is derived for a parallel-plate capacitor, it holds true for any

source of electric field. When the electric field
→
E exists at any point in a dielectric

material of dielectric constant κ, the potential energy per unit volume at this point is

given by Eq. 23.38. When κ = 1, this relation reduces to uE = 1
2ε◦ E2.

Example 23.9

A capacitor C1 = 4 µF is charged by an initial potential difference �Vi = 12 V,

see Fig. 23.15a. The charging battery is then removed, as shown in Fig. 23.15b,

and the capacitor is connected to the uncharged capacitor C2 = 2 µF, as shown

in Fig. 23.15c. (a) Find the final potential difference �Vf as well as Q1f and Q2f .

(b) Find the stored energy before and after the switch is closed.

Solution: (a) The original charge is now shared by C1 and C2, so:

Q1i = Q1f + Q2f
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1C 2C

(b) (c)

Δ Vi

S

Q1i

1C 2CΔ Vf

S

Q1f Q 2 f

1C 2C

(a)

Δ Vi

S

Q1i

Fig. 23.15

Using of the relation Q = C�V in each term of this equation, we get:

C1�Vi = C1�Vf + C2�Vf

Thus:

�Vf = C1

C1 + C2
�Vi = (4 µF)

4 µF + 2 µF
(12 V) = 8 V

and:
Q1f = C1�Vf = (4 µF)(8 V) = 32 µC

Q2f = C2�Vf = (2 µF)(8 V) = 16 µC

(b) The initial potential energy is:

Ui = 1
2 C1(�Vi)

2 = 1
2 (4 µF)(12 V)2 = 288 µJ

The final potential energy is:

Uf = 1
2 C1(�Vf)

2 + 1
2 C2(�Vf)

2 = 1
2 (4 µF + 2 µF)(8 V)2 = 192 µJ

Although Ui > Uf , this is not a violation of the conservation of energy principle.

The missing energy is transferred as thermal energy into the connecting wires and

as radiated electromagnetic waves.

23.6 Exercises

Section 23.1 Capacitor and Capacitance

(1) A capacitor has a capacitance of 15 µF. How much charge must be removed to

lower the potential difference between its conductors to 10 V?
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(2) Two identical coins carry equal but opposite charges of magnitude 1.6 µC. The

capacitance of this combination is 20 pF.What is the potential difference between

the coins?

(3) A capacitor with a charge of magnitude 10−4 C has a potential difference of

50 V. What charge value is needed to produce a potential difference of 15 V?

Section 23.2 Calculating Capacitance

(4) A computer memory chip contains a large number of capacitors, each of which

has a plate area A = 20 × 10−12 m2 and a capacitance of 50 f F (50 femtofarads).

Assuming a parallel-plate configuration, find the order of magnitude of the sep-

aration distance d between the plates of such a capacitor.

(5) A parallel-plate capacitor has a plate area A = 0.04 m2 and a vacuum separation

d = 2 × 10−3 m. A potential difference of 20 V is applied between the plates of

the capacitor. (a) Find the capacitance of the capacitor. (b) Find the magnitude

of the charge and charge density on the plates of the capacitor. (c) Find the

magnitude of the electric field between the plates.

(6) An electric spark occurs if the electric field in air exceeds the value 3 × 106 V/m.

Find the maximum magnitude of the charge on the plates of an air-filled parallel-

plate capacitor of area A = 30 cm2 such that a spark is avoided.

(7) A parallel-plate capacitor has circular plates, each with a radius r = 5 cm.

Assume a vacuum separation d = 1 mm exists between the plates, see Fig. 23.16.

How much charge is stored on each plate of the capacitor when their potential

difference has the value �V = 50 V.

Fig. 23.16 See Exercise (7)

r

d

VΔ

(8) Figure 23.17 shows a set of two parallel sheets of a conductor connected

together to form one plate of a capacitor, while the second set is connected
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together to form the other plate of the capacitor. Assume that the effective area

of adjacent sheets is A and that the air separation is d. From the figure, confirm

that the number of adjoining sheets of positive and negative charges is 3 and the

capacitor has a capacitance C = 3ε◦ A/d.

Fig. 23.17 See Exercise (8)

1 2

Area A
1 2

d

(9) If each set in Exercise 8 consists of n plates, see Fig. 23.18, then show that the

capacitance of the capacitor will be given by:

C = (2n − 1)ε◦ A

d

Fig. 23.18 See Exercise (9) 1 2 3 n. . .

1 2 3 n. . .

Area A

d

(10) A variable air capacitor used in radio tuning consists of a set of n fixed semi-

circular plates, each of radius r, and located a distance d from a neighboring

plate of an identical yet rotatable set, see Fig. 23.19. Show that when one set

is rotated by an angle θ, the capacitance is:

C = (2n − 1)ε◦(π − θ) r2

2d
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Fig. 23.19 See Exercise (10)

dθ

r

(11) A coaxial cable of length �= 5 m consists of a solid cylindrical conductor sur-

rounded by a cylindrical conducting shell. The inner conductor has a radius

a = 2.5 mm and carries a charge Q, while the surrounding shell has a radius

b = 8.5 mm and carries a charge −Q, see Fig. 23.20. Assume that Q =
+8 × 10−8 C and that air fills the gap between the conductors. (a) What is

the capacitance of this cable? (b) What is the magnitude of the potential dif-

ference between the two cylinders?

Fig. 23.20 See Exercise (11)
ab

QQ−

(12) An isolated spherical conductor carries a charge Q = 4 nC, see Fig. 23.21. The

potential difference between the sphere and its surroundings is �V = 100 V.

What is the capacitance formed from the sphere and its surroundings?

Fig. 23.21 See Exercise (12) Q
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(13) A capacitor consists of two concentric spheres of radii a = 30 cm and b = 36 cm,

see Fig. 23.22. Assume the gap between the conductors is filled with air. (a)

What is the capacitance of this capacitor? (b) How much charge is stored in the

capacitor if the potential difference between the two spheres is �V = 50 V?

Fig. 23.22 See Exercise (13) Q−

a

Q b

(14) Find the capacitance of Earth by assuming that the “missing second conducting

sphere” has an infinite radius. The radius of Earth is R = 6.37 × 106 m.

(15) A spherical drop of mercury has a capacitance of 2.78 f F. If two such drops

combine into one, what would its capacitance be?

Section 23.3 Capacitors with Dielectrics

(16) Two parallel plates of area A = 0.01 m2 are separated by a distance d = 5 ×
10−3 m. The region between these plates is filled with a dielectric material of

κ = 3, and the plates are given equal but opposite charges of 2 µC. (a) What is

the capacitance of this capacitor? (b) Find the potential difference between the

plates.

(17) An air-filled parallel-plate capacitor of 15 µF is connected to a 50 V battery;

then the battery is removed. (a) Find the charge on the capacitor. (b) If the air

is replaced with oil having κ = 2.2, find the new values of the capacitance and

the potential difference between the plates.

(18) A parallel-plate capacitor has an area A = 4 cm2. (a) Find the maximum stored

charge on the capacitor if air fills the space between the plates. (b) Redo part

(a) when paper is used instead of the air (use the dielectric strengths given in

Table 23.1).
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(19) The charged air capacitor shown in Fig. 23.23 is first placed at a pressure of 1 atm

and found to have a potential difference �V = 10,376 V. Then, the capacitor is

placed in a vacuum chamber and the air is removed. The potential difference is

found to rise to �V◦ = 10,382 V. Determine the dielectric constant of the air.

VΔ °VΔ

C°C
+Q - Q +Q - Q

Before After

V
ac

uu
m

A
ir

Fig. 23.23 See Exercise (19)

(20) A parallel-plate capacitor having an area A = 0.2 m2, and a plate separation

d = 1 mm filled with air as an insulator, is connected to a battery that has

a potential difference �V◦ = 12 V, see Fig. 23.24. While the battery is still

connected to the capacitor, a sheet of glass (κ = 4.5) is inserted to fill the space

between the plates, see the figure. (a) Determine both the initial capacitance

(C◦) and the initial charge (Q◦), then find C and Q after inserting the glass.

(b) If σi is the magnitude of the induced surface charge density on the glass

and σ◦ is the magnitude of the charge density of the plates before the insertion

of the glass, then show that:

σi = (κ − 1)σ◦

(c) Find the values of σi and the induced electric field Ei.

Section 23.4 Capacitors in Parallel and Series

(21) Two capacitors, C1 = 2 µF and C2 = 3 µF, are connected in parallel to a battery

that has a potential difference �V = 9 V. (a) Find the equivalent capacitance of

the combination. (b) Find the charge on each capacitor. (c) Find the potential

difference across each capacitor.
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Fig. 23.24 See Exercise (20)

VΔ °B

Q+ ° Q− °

G
la

ss

C° C
Q+ Q−

Before After

VΔ ° B

(22) The two capacitors of exercise 21 are now connected in series to the same battery

(i.e. with a potential difference �V = 9 V). (a) Find the equivalent capacitance

of the combination. (b) Find the charge on each capacitor. (c) Find the potential

difference across each capacitor.

(23) For the combination of capacitors shown in Fig. 23.25, assume that C1 = 1 µF,

C2 = 2 µF, C3 = 3 µF, and �V = 6 V. (a) Find the equivalent capacitance of

the combination. (b) Find the charge on each capacitor. (c) Find the potential

difference across each capacitor.

Fig. 23.25 See Exercise (23)

3C

1C

2C

ΔV

(24) Three capacitors, C1 = 6 µF, C2 = 4 µF, and C3 = 12 µF, are connected in four

different ways, as shown in Fig. 23.26. In all configurations, the potential dif-

ference is 22 V. How many coulombs of charge pass from the battery to each

combination?

(25) When the three capacitors C1 = 2 µF, C2 = 1 µF, and C3 = 4 µF are connected

to a source of a potential difference �V, as shown Fig. 23.27, the charge Q2 on

C2 is found to be 10 µC. (a) Find the values of the charges on the two capacitors

C1 and C3. (b) Determine the value of �V .
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1C

2C 3C

1C 2C 3C 1C

2C

3C

(a) (b)

3C
1C

2C

(c) (d)

Δ VΔ V Δ VΔ V

Fig. 23.26 See Exercise (24)

Fig. 23.27 See Exercise (25)

1C

2C 3C

VΔ

(26) For the circuit shown in Fig. 23.28, C1 = 3 µF, C2 = 6 µF, C3 = 6 µF, C4 =
12 µF, and �V = 12 V. (a) Find the equivalent capacitance of the combination.

(b) Find the potential difference across each capacitor.

Fig. 23.28 See Exercise (26)

2C

1C 3C

4C
VΔ

(27) For each of the combinations shown in Fig. 23.29, find a formula that represents

the equivalent capacitance between the terminals A and B.

(28) Assume that in Exercise 27, C = 12 µF and �VBA = 12 V. For each combina-

tion, find the magnitude of the total charge that the source between A and B

will distribute on the capacitors.
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C

C

C C C

C

C

C

A

A

B B

A

B

C

C

C

C

C
C

A B

C C

C

C

(a) (b) (c) (d)

Fig. 23.29 See Exercise (27)

(29) Two capacitors, C1 = 25 µF and C2 = 40 µF, are charged by being connected to

batteries that have a potential difference �V = 50 V, see part (a) of Fig. 23.30.

They are then disconnected from their batteries and connected to each other,

with each positive plate connected to the other’s negative plate; see part (b) of

Fig. 23.30. (a) Find the equivalent capacitance between A and B. (b) What is

the charge Q on the equivalent capacitor? (c) What is the potential difference

�VBA between A and B? (d) Find the final charge on each capacitor.

Δ V

Q2
C2

Δ V

Q1
C1 C1

C2

Ceq

Q
A B A B

Q1 f

Q2 f

(a) (b)

Fig. 23.30 See Exercise (29)

(30) A parallel-plate capacitor has an area A and separation d. A slab of copper of

thickness a is inserted midway between the plates, see part (a) of Fig. 23.31.

Show that the capacitor is equivalent to two capacitors in series, each having a

plate separation (d − a)/2, as shown in part (b) of the figure, and show that the

capacitance after inserting the slab is given by:

C = ε◦ A

d − a
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Fig. 23.31 See Exercise (30)

d aCopper

(d-a) / 2

(d-a) / 2

(a) (b)

A A

(31) Show that the capacitance of the capacitor in Fig. 23.10b can be obtained by

finding the equivalent capacitance of two capacitors in series, one capacitor with

a dielectric of thickness a and the second an air-filled capacitor of thickness

d − a.

(32) A parallel-plate capacitor of plate area A and separation d is filled in two different

ways with two dielectrics κ1 and κ2 as shown in parts (a) and (b) of Fig. 23.32.

Show that the capacitances of the two capacitors of parts (a) and (b) are:

C = ε◦ A

d

κ1 + κ2

2
and C = 2ε◦ A

d

κ1 κ2

κ1 + κ2
respectively,

A / 2 A / 2

d
1κ 2κ

1κ

2κ

(a) (b)

d/2

d/2
d

Fig. 23.32 See Exercise (32)

Section 23.6 Energy Stored in a charged Capacitor

(33) How much energy is stored in one cubic meter of air due to an electric field of

magnitude 100 V/m?

(34) The two capacitors shown in Fig. 23.33 are uncharged when the switch S is

open. Assume that C1 = 4 µF, C2 = 6 µF, and �V = 10 V. The two capacitors

become fully charged when the switch S is closed. (a) Find the energy stored
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in these two capacitors. (b) Does the stored potential energy in the equivalent

capacitor equal the total stored energy in the two capacitors?

Fig. 23.33 See Exercise (34)

1C 2C

S

VΔ

(35) Redo Example 23.9 when C1 = C2 = 5 µF, and �Vi = 10 V. Does the initial

and final stored potential energy remains the same?

(36) A capacitor is charged to a potential difference �V . How much should you

increase �V so that the stored potential energy is increased by 20%?

(37) Calculate the electric field, the energy density, and the stored potential energy

in the parallel-plate capacitor of Exercise 7.

(38) A parallel-plate capacitor has a capacitance of 4 µF when a mica sheet with

dielectric constant κ = 5 fills the space between the plates. The capacitor is

charged by a battery that has a potential difference 50 V, and is later discon-

nected. How much work must be done to slowly pull the dielectric from the

capacitor?

(39) For the circuit shown in Fig. 23.34, C1 = 2 µF, C2 = 3 µF, C3 = 6 µF, C4 =
1 µF, and C5 = 2 µF. (a) Find the potential difference between A and B needed

to give C3 a charge of 20 µC. (b) Under these considerations, what is the electric

potential energy stored in the combination?

Fig. 23.34 See Exercise (39) A

C1

B

C2

C3

C4

C5
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(40) Confirm the relationships shown in Fig. 23.35, where �V◦ is shortened by V◦
and �V is shortened by V.

Q+
°

⇒

⇒

Q−
°

0 0

Q+ ° Q− °
Dielectric

C° C

Voltmeter Voltmeter

V° V

E° E
C°

V°

E°

u°

Fixed charge
Before inserting the dielectric

Fixed charge
After inserting the dielectric

Relationships

C Cκ= °
(Fixed)Q°

V
V κ= °

E
E κ= °

/u u κ= °

Fixed voltage
Before inserting the dielectric

Q
°

(Fixed)

Fixed voltage
After inserting the dielectric

Relationships

B

Q+ ° Q− °
C°

E°

V°

C
Q+ Q−

BV°

E

(Fixed)

C°

Q
°

V°

E°

u°

(Fixed)

C

Q

V°

E

u

C Cκ= °

Q Qκ=
°

(Fixed)V°

E E= °

u uκ= °

κ

κ

Dielectric

C

V

E

u

(Fixed)Q
°

Fig. 23.35 See Exercise (40)
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In this chapter we analyze simple electric circuits that contain devices such as bat-

teries, resistors, and capacitors in various combinations. We begin by introducing

steady-state electric circuits and the concept of a constant rate of flow of electric

charges, known as direct current (dc). We also introduce Kirchhoff’s two rules,

which are used to simplify and analyze more complicated circuits. Finally, we con-

sider circuits containing resistors and capacitors, in which currents can vary with

time.

24.1 Electric Current and Electric Current Density

Electric Current

When there is a net flow of charge across any area, we say there is an electric

current (or simply current) across that area. To maintain a continuous current, we

must maintain a net force on the mobile charge in some way. The net force may

result, for example, from an electrostatic field. We assume that an electric field
→
E is

maintained within a conductor such that the charged particle q is acted on by a force
→
F = q

→
E . We refer to this force as the particle’s driving force.

To define the current, we consider positive charges moving perpendicularly onto

a surface area A as shown in Fig. 24.1.

Spotlight

The current I across an area A is defined as the net charge flowing perpendic-

ularly to that area per unit time.

H. A. Radi and J. O. Rasmussen, Principles of Physics, 809
Undergraduate Lecture Notes in Physics, DOI: 10.1007/978-3-642-23026-4_24,
© Springer-Verlag Berlin Heidelberg 2013



810 24 Electric Circuits

Thus, if a net charge �Q flows across an area A in a time �t, the average current

Iav across the area is:

Iav = �Q

�t
(24.1)

A

I

+

+
+

+

+
+ A

Fig. 24.1 Charged particles in motion perpendicular onto an area A. The current I represents the time

rate of flow of charges and has by convention the direction of the motion of positive charges

When the rate of flow varies with time, we define the instantaneous current (or the

current) I as:

I = dQ

dt
(24.2)

The SI unit of the current is ampere (abbreviated by A). That is:

1 A = 1 C

1 s
(24.3)

Thus, 1 A is equivalent to 1 C of charge passing through the surface area in 1 s.

Small currents are more conveniently expressed in milliamperes (1 mA = 10−3 A)

or microamperes (1 µA = 10−6 A).

Currents can be due to positive charges, or negative charges, or both. In conductors,

the current is due to the motion of only negatively charged free electrons (called

conduction electrons). By convention, the direction of the current is the direction

of the flow of positive charges. Therefore, the direction of the current is opposite to

the direction of the flow of electrons, see Fig. 24.2b. A moving charge, positive or

negative, is usually referred to as a mobile charge carrier.

A A A

I1 I2

+

+
-

-

+

+
-

-

I2I1I = +
(a) (b) (c)

Fig. 24.2 Direction of current due to (a) positive charges, (b) negative charges, and (c) both positive and

negative charges
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Electric Current Density

The current across an area can be expressed in terms of the motion of the charge carri-

ers. To achieve this we consider a portion of a cylindrical rod that has a cross-sectional

area A, length �x, and carries a constant current I, see Fig. 24.3. For convenience we

consider positive charge carriers each having a charge q, and the number of carriers

per unit volume in the rod is n. Therefore, in this portion, the number of carriers is

n A�x and the total charge �Q is:

�Q = (n A�x) q (24.4)

Fig. 24.3 A portion of a

straight rod of uniform

cross-sectional area A,

carrying a constant current I.

The mobile charge carriers are

assumed to be positive and

move with an average speed vd td

x

IA

d+

d+
d+

Suppose that all the carriers move with an average speed vd (called the drift speed).

Therefore, during a time interval �t, all carriers must achieve a displacement

�x = vd �t in the x direction. Now, let us choose �t such that the carriers in the

cylindrical portion move through a displacement whose magnitude is equal to the

length of the cylinder, see Fig. 24.3. During such a time interval, all the charge carri-

ers in this cylindrical portion must pass through the circular area A at the right end.

Accordingly, we write the last relation as:

�Q = (n A vd �t) q (24.5)

Therefore, the current I = �Q/�t in the rod will be given by:

I = n q vd A (24.6)

The charge carriers in a solid conductor are all free electrons. If the conductor

is isolated, these electrons move with speeds of the order of 106 m/s, and because

of their collisions with the scatterers (atoms or molecules in the conductor), they

move randomly in all directions. This results in a zero drift velocity and hence no net
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charge transport, which means zero current. When an electric field
→
E is established

across the conductor, this field exerts an electric force
→
F =−e

→
E on each electron,

producing a current. Of course, the electrons do not move in a straight line along

the conductor, but their resultant motion is complicated and zigzagged, see Fig. 24.4.

Regardless of the collisions of these electrons, they move slowly along the conductor

in a direction opposite to
→
E with a drift velocity →

vd, see Fig. 24.4.

Fig. 24.4 A schematic

representation of the random

zigzag motion and the drift of

a free electron with an average

speed vd in a conductor, due to

the effect of an external

electric field
→
E

d

I

E

Scatterer
Conductor

J-
-

The current density J is defined as the current per unit area, i.e.:

J = I

A
(24.7)

Using the relation I = n q vd A, we get:

J = n q vd (24.8)

where the SI unit of the current density is A/m2. Equation 24.8 is valid only if J is

uniform and the direction of I is perpendicular to the cross-sectional area A. Generally,

the current density is a vector quantity that has the direction of q →
vd, for both signs

of q; that is:

→
J = n q →

vd (24.9)

The amount of current that passes through an element of area dA, can be written

as
→
J • d

→
A , where d

→
A is the vector area of the element. The current that passes

throughout the entire area A is thus:

I =
� →

J • d
→
A (24.10)

If the current density is uniform across the area and parallel to d
→
A , then this equation

leads to Eq. 24.7.
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Example 24.1

Estimate the drift speed of the conduction electrons in a copper wire that is 2 mm

in diameter and carries a current of 1 A. Comment on your result. The density of

copper is 8.92 × 103 kg/m3.

[Hint: Assume that each copper atom contributes one free conduction electron to

the current.]

Solution: To get the drift speed vd, we need to find the free-electron density n.

To get n, we need to know the volume occupied by one kmol of copper. From

the periodic table of elements, see Appendix C, the molar mass of copper is

M(Cu)= 63.546 kg/kmol. Recall that the mass of one kmol of 63.5Cu contains

Avogadro’s number of atoms (NA = 6.022 × 1026 atoms/kmol). Thus:

Volume of 1 kmol = Mass of 1 kmol

Density
⇒ V = M

ρ

Number of copper atoms/m3 = Avogadro’s number

Volume of 1 kmol
⇒ n = NA

V
= NA ρ

M

Therefore:

n = NA ρ

M
= (6.022 × 1026 atoms/kmol)(8.92 × 103 kg/m3)

63.546 kg/kmol

= 8.45 × 1028 atoms/m3

Since the density of free-electrons is equal to the density of copper atoms, then

we use Eq. 24.6 to find the drift speed as follows:

vd = I

ne A
= 1 C/s

(8.45 × 1028 electrons/m3)(1.6 × 10−19 C)(π × (10−3 m)2)

= 2.35 × 10−5 m/s = 8.46 cm/h (Very small speed)

You might ask why, even though vd is so small, that regular light bulbs light up

very quickly when one turns on its circuit switch? The answer is that the electric

field travels along the connecting wires of the circuit at almost the speed of light,

so electrons everywhere in the wires all begin to drift at once with a small drift

speed.
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Example 24.2

One end of the copper wire in example 1 is welded to one end of an aluminum

wire with a 4 mm diameter. The composite wire carries a steady current equal to

that of Example 24.1 (i.e. I = 1 A). (a) What is the current density in each wire?

(b) What is the value of the drift speed vd in the aluminum? [Aluminum has one

free electron per atom and density 2.7 × 103 kg/m3]

Solution: (a) Except near the junction, the current density in a copper wire of

radius rCu = 1 mm and aluminum wire of radius rAl = 2 mm are:

JCu = I

ACu
= I

πr2
Cu

= 1 A

π × (10−3 m)2 = 3.18 × 105 A/m2

JAl = I

AAl
= I

πr2
Al

= 1 A

π × (2 × 10−3 m)2 = 7.96 × 104 A/m2

(b) From the periodic table of elements, see Appendix C, the molar mass of

aluminum is M(Al)= 26.98 kg/kmol. As in Example 24.1, we find:

n = NA ρ

M
= (6.022 × 1026 atoms/kmol)(2.7 × 103 kg/m3)

26.98 kg/kmol

= 6.03 × 1028 atoms/m3

vd = I

ne A
= 1 C/s

(6.03 × 1028 electrons/m3)(1.6 × 10−19 C)(π × (2 × 10−3 m)2)

= 8.25 × 10−6 m/s = 2.97 cm/h

24.2 Ohm’s Law and Electric Resistance

As a result of maintaining a potential difference �V across a conductor, an elec-

tric field
→
E and a current density

→
J are established in the conductor. For materials

with electrical properties that are the same in all directions (isotropic materials), the

electric field is found to be proportional to the current density. That is:

→
E = ρ

→
J (Ohm’s law) (24.11)

where the constant ρ1 is called the resistivity of the conductor. Materials that obey

this relation are said to obey Ohm’s law:

1 Not to be confused with ρ referring to mass density or charge density.
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Spotlight

For many materials and most metals, the ratio of the magnitude of the electric

field to the magnitude of the current density is a constant and does not depend

on the electric field producing the current.

Since it is difficult to measure
→
E and

→
J directly, we need to put Ohm’s law into a

more practical form. This can be obtained by considering a portion of a straight con-

ductor that has a uniform cross-sectional area A and length L, as shown in Fig. 24.5.

In addition, a potential difference �V = Vb − Va between the ends of the conductor

(denoted by a and b) will create a straight electric field and current, as also shown in

Fig. 24.5. Since charge carriers in conductors are electrons, they will drift from face

a to face b, against the field
→
E .

Fig. 24.5 A potential

difference �V = Vb − Va

across a conductor of

cross-sectional area A and

length L sets up a field
→
E and

current I

bV aV
E

L

I
A

ab

d - -
q e

J

Recall that for uniform electric fields we have:

�V = E L (24.12)

Using this relation to eliminate E from the scalar form of Eq. 24.11, we get:

�V

L
= ρJ (24.13)

Also, using J = I/A, the potential difference �V can be written as:

�V =
(

ρ
L

A

)
I (24.14)

The quantity in brackets is called the electrical resistance (or simply resistance) of

the conductor and is denoted by the symbol R; that is:

R = ρ
L

A
⇒ R ∝ ρ (24.15)
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We can define the resistance R as a proportionality constant to the relation �V ∝ I

and write the equivalent Ohm’s law as:

�V = I R

{
Equivalent form

of Ohm’s law

}
(24.16)

The SI unit of resistance is ohm (abbreviated by �). That is:

1 � = 1 V

1 A
(24.17)

This means that if one applies a potential difference of 1 V across a conductor and this

causes 1 A to flow, then the resistance of the conductor is 1 �. Note that according to

Eq. 24.15, the SI unit of resistivity is ohm-meter (�.m). Also, since �V = Vb − Va,

we note that the direction of the current is in the direction of decreasing potential.

The inverse of resistivity is called the conductivity σ , thus:

σ = 1

ρ
(24.18)

where the SI unit of σ is (�.m)−1. The resistance of a conductor can also be written

in terms of the conductivity as follows:

R = 1

σ

L

A
(24.19)

Equations 24.15 and 24.19 hold true only for isotropic conductors. Additionally,

the resistance in Eq. 24.15 depends on the geometry of the resistor through the length

L, area A, and resistivity ρ, which is a constant for a specific metallic conductor

(assuming a constant temperature).

A material obeying Ohm’s law is called an ohmic material or a linear material. If a

material does not obeys Ohm’s law, the material is called a non-ohmic or a nonlinear

material.

Variation of Resistance with Temperature

The variation of resistivity with temperature is mostly linear over a broad range. Since

R ∝ ρ, then for most engineering purposes a good empirical linear approximation

for ρ and R can be written as:

ρ = ρ◦[1 + α(T − T◦)] or R = R◦[1 + α(T − T◦)] (24.20)
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where ρ is the resistivity at temperature T (in degrees Celsius), ρ◦ is the resistivity at

a reference temperature T◦ (usually selected to be 20 ◦C), and α is the temperature

coefficient of resistivity. The same applies for the resistance. The coefficient α is

selected such that Eq. 24.20 matches best with experimental measurements for the

selected range of temperatures. From Eq. 24.20, we find that:

α = 1

ρ◦
�ρ

�T
= 1

R◦
�R

�T
with

⎧⎪⎪⎨
⎪⎪⎩

�ρ = ρ − ρ◦
�R = R − R◦
�T = T − T◦

(24.21)

Table 24.1 lists the resistivity ρ and the temperature coefficient of resistivity α

for some materials at 20 ◦C.

Table 24.1 The resistivity and temperature coefficient of resistivity for various materials at 20◦ Celsius

Material Resistivity ρ (�.m) Temperature coefficient of resistivity α [(C◦)−1]
Silver 1.59 × 10−8 3.8 × 10−3

Copper 1.7 × 10−8 3.9 × 10−3

Gold 2.44 × 10−8 3.4 × 10−3

Aluminum 2.82 × 10−8 3.9 × 10−3

Tungsten 5.6 × 10−8 4.5 × 10−3

Iron 10 × 10−8 5.0 × 10−3

Platinum 11 × 10−8 3.98 × 10−3

Lead 22 × 10−8 3.9 × 10−3

Nichromea 1.50 × 10−6 0.4 × 10−3

Carbon 3.5 × 10−5 −0.5 × 10−3

Germanium 0.46 −48 × 10−3

Silicon 640 −75 × 10−3

Glass 1010–1014

Hard rubber ∼1013

Sulfur 1015

Fused quartz 75 × 1016

a A nickel–chromium alloy commonly used in heating elements

Most electric circuits use elements called resistors to control the current flowing

through the circuit. Values of the resistance are normally indicated by color-coding

as shown in Tables 24.2 and 24.3.
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Table 24.2 Color-coding for

resistors
Color Number Multiplier

Black 0 1

Brown 1 101

Red 2 102

Orange 3 103

Yellow 4 104

Green 5 105

Blue 6 106

Violet 7 107

Gray 8 108

White 9 109

Gold – 10−1

Silver – 10−2

Table 24.3 Tolerance-coding Color Number Multiplier Tolerance

Gold – 10−1 5%

Silver – 10−2 10%

Colorless – – 20%

How to Read the Color-coding

• First find the tolerance band; it will typically be gold (5%) or silver (10%), and

sometimes colorless (20%), see the example shown in Fig. 24.6. In this example,

the color is Gold, so 5% tolerance.

Fig. 24.6

1st digit
2nd digit

Multiplier

Tolerance

Quality
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• Starting from the other end, identify the first band, write down the number associ-

ated with that color; in this example Blue is ‘6’.

• Now read the next color, in this example it is Red, so write down a ‘2’ next to the

six (You should have ‘62’ so far).

• Now read the third color, which indicates the multiplier exponent band, and write

that down as the power of ten for the multiplier of the resistance value. In this

example the multiplier is Yellow which represents ‘four’, so we get ‘62 × 104 �’.

• If the resistor has one extra band past the tolerance band, it is a quality band. Read

the number as the % Failure rate per 1,000 h. In this example it is Red, so that we

can expect a 2% failure rate per 1,000 h.

All Ohmic resistors have a linear-potential-difference relationship over a broad

band of applied potential differences. The slope of the I versus �V curve in the linear

region yields a value for 1/R, see Fig. 24.7.

Fig. 24.7

V

I

Slope 1/ R

Example 24.3

At 20 ◦C, a copper wire has a diameter of 4 mm, a length of 10 m, a resistivity

of 1.7 × 10−8 �.m, a temperature coefficient of resistivity of 3.9 × 10−3 (C◦)−1,

and carries a current of 1 A. (a) What is the current density in the wire? (b) What

is the magnitude of the electric field applied to the wire? (c) What is the potential

difference between the two ends of the wire? (d) What is the resistance of the

wire? (e) When the wire is used in a thermometer for measuring the melting point

of indium, the resistance calculated in part (d) increases to 0.0207 �. Find the

melting point temperature of indium.

Solution: (a) The current density in a copper wire of radius 2 mm is:

J = I

A
= I

πr2 = 1 A

π × (2 × 10−3 m)2 = 7.96 × 104 A/m2
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(b) From Eq. 24.11, the electric field is given by:

E = ρ J = (1.7 × 10−8 �.m)(7.96 × 104 A/m2) = 1.353 × 10−3 V/m

(c) Using Eq. 24.12, the potential difference will be given by:

�V = E L = (1.353 × 10−3 V/m)(10 m) = 1.353 × 10−2 V

(d) From Eq. 24.15, the resistance of the wire is:

R = ρ
L

A
= 1.7 × 10−8 �.m

10 m

π × (2 × 10−3 m)2 = 0.0135 �

(e) Solving Eq. 24.21 for �T and then using: (1) the calculated resistance

R◦ = 0.0135 � at the reference temperature T◦ = 20 ◦C, (2) the value of α, and

(3) the final resistance R = 0.0207 �, we obtain:

�T = �R

αR◦
= R − R◦

αR◦
= 0.0207 − 0.0135 �

[3.9 × 10−3 (C◦)−1](0.0135 �)
= 136.8 C◦

Since T◦ = 20 ◦C, we find that the melting point of indium is:

T = T◦ + �T = 20 ◦C + 136.8 C◦ = 156.8 ◦C

Example 24.4

A cylindrical shell of length L = 20 cm is made of aluminum and has an inner

radius a = 2 mm and an outer radius b = 4 mm, see Fig. 24.8. Assume that the

shell has a uniform current density J = 2 × 105 A/m2 in the direction of the wire’s

length. (a) What is the current through the shell? (b) What is the resistance of the

shell and the potential difference �V ?

Solution: (a) Since the current density is uniform across any plane perpendicular

to the length of the shell, we can use the relation I = J A to find the current. First,

we calculate the cross-sectional area of the shell as follows:

A = πb2 − πa2 = π [b2 − a2]
= π [(4 × 10−3 m)2 − (2 × 10−3 m)2] = 3.77 × 10−5 m2

Then, we use this result to find I as follows:

I = J A = (2 × 105 A/m2)(3.77 × 10−5 m2) = 7.54 A
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ab

Uniform Current density

S

I

VL

JJ

Fig. 24.8

(b) From Table 24.1, the resistivity of aluminum is 2.82 × 10−8 �.m. We use

Eq. 24.15 to find the resistance of the shell, and then use Eq. 24.16 to find the

potential difference �V as follows:

R = ρ
L

A
= 2.82 × 10−8 �.m

0.2 m

3.77 × 10−5 m2
= 1.5 × 10−4 �

�V = I R = (7.54 A)(1.5 × 10−4 �) = 1.13 × 10−3 V

Example 24.5

A conducting rod of radius a = 2 mm is concentric with a conducting cylindri-

cal shell that has a radius b = 4 mm and length L = 2.94 cm, see Fig. 24.9a. The

space between the rod and the shell is tightly packed with silicon of resistivity

ρ = 640 �.m. A battery of potential difference �V = 12 V is connected in such a

way that the current through the silicon flows in the radial direction. (a) Find the

resistance of the silicon between the rod and the shell. (b) Find the radial current

in the circuit. (c) Find the radial current density and electric field at the inner and

outer surfaces of the silicon.
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Radial direction
of the currenta

b

a

b

Conducting wire

Conducting shell

Silicon

dr

(a) (b)

Silicon

bJ

aJ

S I

V

L

r

Fig. 24.9

Solution: (a) Cylindrical symmetry of the silicon suggests a radial flow of the cur-

rent density
→
J . Equation 24.15 cannot be used directly because the cross section

through which the charge travels varies from 2 π a L (at the inner cylindrical face)

to 2 π b L (at the outer cylindrical face). Therefore, we consider a cylindrical

silicon shell element of an inner radius r, height L, face area A = 2 π r L, and

thickness d r, see Fig. 24.9b. This shell element has a resistance d R. In this case,

Eq. 24.15 will take the following form:

d R = ρ
d r

2 π r L

To find the total resistance across the entire silicon, we must integrate the

previous expression from r = a to r = b. Thus:

R =
b�

a

d R =
b�

a

ρ
d r

2 π r L
= ρ

2 π L

b�
a

d r

r
= ρ

2 π L
ln

(
b

a

)

Now, substituting with the given values, we get:

R = ρ

2 π L
ln

(
b

a

)
= 640 �.m

2 π (2.94 × 10−2 m)
ln

(
4 mm

2 mm

)
= 2.4 × 103 �

(b) Knowing the resistance R and the potential difference �V , we use Ohm’s

law given by Eq. 24.16 to find the total current in the silicon (which is the current

in the circuit) as follows:
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I = �V

R
= 12 V

2.4 × 103 �
= 5 × 10−3 A = 5 mA

(c) At the inner and outer faces of the silicon, namely 2 π a L and 2 π b L,

respectively, we use Eq. 24.7 to find the corresponding current density as follows:

Ja = I

Aa
= I

2 π a L
= 5 × 10−3 A

2 π(2 × 10−3 m)(2.94 × 10−2 m)
= 13.53 A/m2

Jb = I

Ab
= I

2 π b L
= 5 × 10−3 A

2π(4 × 10−3 m)(2.94 × 10−2 m)
= 6.77 A/m2

Finally, we use Ohm’s law given by Eq. 24.11 to find the corresponding electric

fields at the inner and outer faces of the silicon as follows:

Ea = ρJa = (640 �.m)(13.53 A/m2) = 8.659 × 103 V/m

Eb = ρJb = (640 �.m)(6.77 A/m2) = 4.333 × 103 V/m

24.3 Electric Power

When a battery is used to establish an electric current in a light bulb, the battery trans-

forms its stored chemical energy to kinetic energy of the electrons. These electrons

flow through the filament of the light bulb, and result in an increase in the temperature

of the filament. It is important to calculate the rate of this energy transfer.

Figure 24.10 shows a battery of potential difference �V connected to a simple

circuit (our system) containing a resistor of resistance R. The resistor is usually rep-

resented by the symbol . Unless noted otherwise, we assume that the connecting

wires have zero resistance.

Fig. 24.10 A simple circuit

containing one battery and one

resistor

a b

a' b'

Resistor

I

I

V

R
S
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Now, imagine a positive charge dQ flowing clockwise from point a through the

battery and the resistor, and back to the same point a. In a time interval dt a quantity

of charge dQ enters point a, and an equal quantity leaves point b. Thus, the electric

potential energy of the system increases by the amount dU = dQ �V , see Eq. 22.18,

while the stored chemical potential energy of the battery decreases by the same

amount. On the other hand, as the charge enters the resistor at b′ and an equal

quantity leaves a′ (which is identical to a) over the same time dt, the system loses

this energy through collisions with the molecules of the resistor. The net result is

that some of the chemical energy of the battery has been delivered to the resistor as

internal energy associated with molecular vibration (rise in temperature). This rise in

temperature will ultimately transfer to the surroundings through thermal radiation.

The rate at which the system loses energy as the charges pass through the

resistor is:

dU

dt
= dQ �V

dt
= dQ

dt
�V = I �V (24.22)

where I is the current. This rate is equal to the rate at which the resistor gains internal

energy, and is defined as the power P:

P = I �V (24.23)

Using the relation �V = I R for a resistor of resistance R, the electric power P deliv-

ered in the resistor can be written in the following form:

P = I �V = I2 R = (�V )2

R
(24.24)

Because P = I �V , the same amount of power P can be transported either at high I

and low �V , or at low I and high �V .

Example 24.6

A 220 V potential difference is maintained across an electric heater that is made

from a nichrome wire of resistance 20 �. (a) Find the current in the wire and the

power rating of the heater. (b) At an estimated price of 0.35 LE (Egyptian pound)

per kilowatt-hour of electricity, what is the cost of operating the heater for 2 h?
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Solution: (a) Using �V = I R, we get:

I = �V

R
= 220 V

20 �
= 11 A

Using the power expression P = I2 R, we find that:

P = I2 R = (11 A)2(20 �) = 2,420 W

(b) The amount of energy transferred in time �t is P �t. Thus:

P �t = (2,420 W)(2 h) = 4,840 Wh = 4.84 kWh

If energy is purchased at 35 piaster per kilowatt-hour then the cost is:

Cost = (4.84 kWh)(0.35 LE/kWh) = 1.69 LE

24.4 Electromotive Force

We previously introduced the battery as a device that produces a potential difference

and causes charges to move. In fact, it is a device that works as an energy converter.

A battery is often called a source of electromotive force or, a source of emf (this

unfortunate historical name describes a potential difference in volts, but not a force).

Spotlight

The emf E of a battery is the maximum possible potential difference that the

battery can provide between its terminals, usually the voltage at zero current.

Figure 24.11a shows a device (a battery) with an emf E that is used in a simple

circuit containing a resistor of resistance R. The battery keeps one terminal (labeled

with the sign +) at a higher electric potential than the other (labeled with the sign

−). Therefore, within the battery, the conventional positive charge carriers move

from a region of low electric potential (at the negative terminal) to a region of higher

electric potential (at the positive terminal).

Because a real battery is made of matter, there is a resistance against the flow of

charge within the battery. This resistance is called the battery’s internal resistance

and is usually denoted by r. For an ideal battery with zero internal resistance, the
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Fig. 24.11 (a) A simple circuit containing a resistor connected to a battery. (b) A circuit diagram of a

source of emf E (the battery) of internal resistance r, connected to a resistor of resistance R. (c) Graphical

representation of the electric potential at different points

potential difference between its terminals is equal to its emf E (directed from the −
terminal to the + terminal). For real batteries, this is not the case.

We now consider the circuit diagram in Fig. 24.11b, which is the same as the real

emf device of Fig. 24.11a, except we represent the battery with a dashed rectangular

box containing an ideal emf E in series with an internal resistance r. Let us start at

point a (where the potential is Va), and move clockwise to point b (where the potential

is Vb), and measure the electric potential at different locations. When we move from

the negative terminal to the positive terminal, the potential increases by the amount

of the emf E. However, as we move through the internal resistance r in the direction

of the current I, the potential drops by an amount Ir. Thus, the potential difference

between the terminals of the battery �V = Vb − Va is:

�V = E− Ir (�V = E for an open-circuit) (24.25)

We always assume that the wires in the circuit have no resistance, unless otherwise

indicated. This means that the potentials of points a and a′ are the same. The same

applies to points b and b′. Thus:

Vb − Va = Vb′ − Va′ = �V (24.26)

But according to Ohm’s law, given by Eq. 24.16, Vb′ − Va′ must equal IR. Thus,

Vb − Va = Vb′ − Va′ = IR. Combining this expression with Eq. 24.25, we find that:

E = IR + Ir (24.27)
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Solving for the current, we get:

I = E
R + r

(24.28)

Note that the current I depends on the resistance R of the external resistor (which

is called the load) and the internal resistance r of the battery. Since R � r in most

circuits, we can usually neglect r.

Example 24.7

A device is connected to a battery that has an emf E = 9 V and internal resistance

r = 0.02 �. Find the current in the circuit and the terminal voltage of the battery

when the device is a: (a) light bulb that has a resistance R = 4 �, see Fig. 24.12a.

(b) conducting wire having zero resistance, i.e. the battery is short circuited by

this conductor, see Fig. 24.12b.

(a) (b)

I

ra b

a' b'
I

ra b

a' b'

R

Fig. 24.12

Solution: (a) Equation 24.28 gives us the value of the current as:

I = E
R + r

= 9 V

4 � + 0.02 �
= 2.24 A

From Eq. 24.25, the terminal voltage of the battery will be given by:

�V = E− Ir = 9 V − (2.24 A)(0.02 �) = 8.96 V

(b) When we use a conducting wire, it is as if we have a device of R = 0. This

results in a current and terminal voltage of the battery as follows:

I = E
r

= 9 V

0.02 �
= 450 A
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�V = E− Ir = 9 V − (450 A)(0.02 �) = 0

Such large values for the current I would result in a very quick depletion of the

battery as all of its stored energy would be quickly transferred to the conducting

wire in the form of heat energy. The term “short circuit” is applied to such cases,

and they can cause fire or burns.

Example 24.8

A battery that has an emfE 1 = 9 V and internal resistance r 1 = 0.02 � is connected

to a second battery of E 2 = 12 V and r 2 = 0.04 �, such that their like terminals are

connected, see Fig. 24.13. Find the current in the circuit and the terminal voltage

across each battery.

Fig. 24.13

I

r 1a b

b'a'

r 2

S

1

2

Solution: The two batteries are oppositely directed around the circuit. Since E 2 >

E 1, then the net emf Enet in this circuit will be in the counterclockwise direction,

i.e.:

Enet = E 2 − E 1 = 12 − 9 V = 3 V (Counterclockwise direction)

Consequently, the current I in this circuit will also be in the counterclockwise

direction as indicated in Fig. 24.13. This current is opposite to the discharging

current that the E 1 = 9 V battery should produce when connected to circuits con-

taining only resistors. Actually, this current will charge the E 1 = 9 V battery.

The total resistance of this circuit is only due to the presence of the internal

resistances r1 and r2 of the two batteries. Therefore, Eq. 24.28 gives us the value

of the current as follows:

I = E 2 − E 1

r1 + r2
= 12 V − 9 V

0.02 � + 0.04 �
= 3 V

0.06 �
= 50 A
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Depending on the direction of the current in each battery, the terminal voltages

across the batteries are:

�V = Vb − Va = E1 + Ir1 = 9 V + (50 A)(0.02 �)

= 10 V (Gain from a to b)

�V = Vb′ − Va′ = E2 − Ir2 = 12 V − (50 A)(0.04 �)

= 10 V (Drop from a′ to b′)

24.5 Resistors in Series and Parallel

Resistors in a circuit may be used in different combinations, and we can sometimes

replace a combination of resistors with one equivalent resistor. In this section, we

introduce two basic combinations of resistors that allow such a replacement.

Resistors in a Series Combination

Figure 24.14a shows two resistors R1 and R2 that are connected in series with a

battery B. Figure 24.14b shows a circuit diagram for this combination of resistors.

B

(a) (b) (c)

Δ V Δ V Δ V
Δ V2

Δ V1 R 1

R 2

R
es

is
to

r 
1

R
es

is
to

r 
2

I

I

I

I

R eq

I

a a

b

c c

S S

S

Fig. 24.14 (a) Two resistors are connected in series to a battery B that has a potential difference �V . (b)

The circuit diagram for this series combination. (c) An equivalent resistance Req replacing the original

resistors set up in a series combination

When the circuit is connected, the amount of charge that passes through R1 must

also pass through R2 in the same time interval. Otherwise, charge will accumulate on

the wire between resistors. Thus, for series combination of resistors, the current I is

the same in both resistors. Figure 24.14c shows a single resistor Req that is equivalent

to this combination and has the same effect on the circuit. This means that when the
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potential difference �V is applied across the equivalent resistor, it must produce the

same current I as in the series combination.

The potential difference �V is divided to �V1 and �V2 across the resistors R1

and R2, respectively. Thus:

�V = �V1 + �V2 (24.29)

For the two resistors in Fig. 24.14b, we have:

�V1 = Vc − Vb = IR1 and �V2 = Vb − Va = IR2 (24.30)

Substituting in Eq. 24.29, we get:

�V = IR1 + IR2 (24.31)

The equivalent resistor Req has the same applied potential difference �V and the

same circuit current I flowing through it; thus:

�V = IReq = IR1 + IR2 (24.32)

Canceling I, we arrive at the following relationship:

Req = R1 + R2 (Series combination) (24.33)

We can extend this treatment to n resistors connected in series as:

Req = R1 + R2 + · · · + Rn (Series combination) (24.34)

Thus, the equivalent resistor of a series combination of resistors is simply the alge-

braic sum of the individual resistances and will always be greater than any one of

them.

Example 24.9

In Fig. 24.14, let R1 = 6 �, R2 = 3 �, and �V = 18 V. Find I in the circuit and the

potential differences �V1 and �V2.

Solution: The equivalent resistance of the series combination is:

Req = R1 + R2 = 6 � + 3 � = 9 �
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Using Ohm’s law, given by Eq. 24.16, we find:

I = �V

Req
= 18 V

9 �
= 2 A

�V1 = IR1 = (2A)(6 �) = 12 V

�V2 = IR2 = (2 A)(3 �) = 6 V

Resistors in a Parallel Combination

Figure 24.15a shows two resistors of resistances R1 and R2 that are connected in

parallel with a battery B. Figure 24.15b shows a circuit diagram for this combination

of resistors. The potential difference�V between the battery’s terminals is the same as

the potential difference across each resistor. Figure 24.15c shows a single resistance

Req that is equivalent to this combination and has the same effect on the circuit.

a
(a) (b) (c)

Δ V Δ V Δ VR 1 R 2

R
es

is
to

r 
1

R
es

is
to

r 
2

I

I

R eq

I

a

b
I1 2I I1 2I

b

S S

B

S

Fig. 24.15 (a) Two resistors of resistances R1 and R2 are connected in parallel to a battery B that has a

potential difference �V . (b) The circuit diagram for this parallel combination. (c) The equivalent resistance

Req replacing the parallel combination

When the current I reaches junction b, it will split into two parts, I1 in R1 and I2

in R2. Because electric charge is conserved, the current I that enters junction b must

equal the total current leaving that junction; that is:

I = I1 + I2 (24.35)

Because the potential difference �V across the resistors is the same, then from

Fig. 24.15b, we have:
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�V = I1R1 and �V = I2R2 (24.36)

Substituting into Eq. 24.35, we get:

I = �V

R1
+ �V

R2
=

(
1

R1
+ 1

R2

)
�V (24.37)

An equivalent resistor with the same applied potential difference �V and total current

I has a resistance Req given by �V = I Req. Thus:

I = �V

Req
(24.38)

Substituting in Eq. 24.37 and canceling �V , we arrive at the following relationship:

1

Req
= 1

R1
+ 1

R2
(Parallel combination) (24.39)

We can extend this treatment to n resistors connected in parallel as:

1

Req
= 1

R1
+ 1

R2
+ · · · + 1

Rn
(Parallel combination) (24.40)

Thus, the equivalent resistance of a parallel combination of resistors is simply the

algebraic sum of the reciprocal of the individual resistances and is less than any one

of them.

Example 24.10

In Fig. 24.15, let R1 = 6 �, R2 = 3 �, and �V = 18 V. Find the three currents I,

I1, and I2 in the circuit.

Solution: The equivalent resistance of the parallel combination is:

1

Req
= 1

R1
+ 1

R2
= 1

6 �
+ 1

3 �
= 1

2 �

Then : Req = 2 �

Now we calculate the three currents in the circuit as follows:

I = �V

Req
= 18 V

2 �
= 9 A I1 = �V

R1
= 18 V

6 �
= 3 A I2 = �V

R2
= 18 V

3 �
= 6 A
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Example 24.11

In Fig. 24.16, let R1 = 3 �, R2 = 6 �, R3 = 1 �, R4 = 7 �, and �Vda = Va − Vd =
30 V. (a) What is the equivalent resistance between points a and d? (b) Evaluate

the current passing through each resistor.

Δ V R 1 R 2

I

a b

I1 2IR 3

R 4

I

Δ V R 12

I
R 3

R 4

I

Δ V R eq

I

cd

b

c

a

d

a

d

I

S SS

Fig. 24.16

Solution: (a) We can simplify the circuit by the rule of adding resistances in series

and in parallel in steps. The resistors R1 and R2 are in parallel and their equivalent

resistance R12 between b and c is:

1

R12
= 1

R1
+ 1

R2
= 1

6 �
+ 1

3 �
= 1

2 �

Then : R12 = 2 �

Now R3, R12, and R4 are in series between points a and d. Hence, their equivalent

resistance Req is:

Req = R3 + R12 + R4 = 1 � + 2 � + 7 � = 10 �

(b) The current I that passes through the equivalent resistor also passes through

R3 and R4. Thus, using Ohm’s law, we find that:

I = �Vda

Req
= 30 V

10 �
= 3 A (Current through the battery, R3 and R4)

Since �Vcb = IR12 = I1R1 = I2R2, then we find I1 and I2 as follows:

I1 = IR12

R1
= (3 A)(2 �)

3 �
= 2 A and I2 = IR12

R2
= (3 A)(2 �)

6 �
= 1 A
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24.6 Kirchhoff’s Rules

Not all circuits can be reduced to simple series and parallel combinations. A technique

that is applied to loops in complicated circuits consists of two principles called

Kirchhoff’s Rules.

Kirchhoff’s Rules:

1. Junction rule

At any junction in a circuit, the sum of the ingoing currents must equal the sum

of the outgoing currents. That is:

∑
Iin =

∑
Iout (24.41)

2. Loop rule

For any closed loop in a circuit, the sum of the potential differences across all

elements must be zero. That is:

∑
closed loop

�V = 0 (24.42)

The first rule merely states that no charge can accumulate at a junction. This rule is

based on the principle of conservation of charge within any system. The second rule

follows from the law of conservation of energy but is expressed in terms of potential

energy.

When we apply Kirchhoff’s second rule to a loop, we should note the following

sign conventions:

(1) When a resistor is traversed in the direction of the current, the potential differ-

ence �V is −IR (Fig. 24.17a).

(2) When a resistor is traversed in the direction opposite the current, the potential

difference �V is +IR (Fig. 24.17b).

(3) When a source of emf is traversed in the direction of its emf (from − to +), the

potential difference �V is +E (Fig. 24.17c).

(4) When a source of emf is traversed in a direction opposite to its emf (from +
to −), the potential difference �V is −E (Fig. 24.17d).
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(c)

a b

Δ V = +
(b)

a bR

I

Δ V = + I R

(a)

Ra b

I

Δ V = I R

(d)

a b

Δ V =

Fig. 24.17 The potential differences �V = Vb − Va across a resistor of resistance R and a battery of emf

E (assumed to have zero internal resistance), when each element is traversed from a to b

Example 24.12

Apply Kirchhoff’s loop on the circuit of Example 24.8 to find the current in the

circuit, see Fig. 24.13.

Solution: Applying Kirchhoff’s loop rule to the loop abb′a′a of Fig. 24.13, and

traversing the loop clockwise, we obtain the following expression:

Loop abb′a′a: E1 + Ir1 + Ir2 − E2 = 0

9 V + (0.02 �)I + (0.04 �)I − 12 V = 0

Then: I = 50A

Of course, we do not need Kirchhoff’s rules to solve this simple loop circuit.

We are just using it to practice applying the loop rule.

Example 24.13

In Fig. 24.18, let R1 = 2 �, R2 = 6 �, R3 = 4 �, E1 = 10 V, and E2 = 14 V. Find

the currents I1, I2, and I3 in the circuit.

Solution: We cannot simplify the circuit by the rule of adding resistances in series

and in parallel. Thus, we must use Kirchhoff’s rules. By applying Kirchhoff’s

junction rule to the junction f, we get:

(1) Junction f : I1 = I2 + I3

We have three loops in this circuit, but we need only two loop equations to

determine the three unknown currents. Applying Kirchhoff’s loop rule to the loops
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abcfa and fcdef and traversing these loops clockwise, we obtain the following

equations (after temporarily omitting the units, since they are all consistent SI

units):

Fig. 24.18 R 1

R 2

a b

R 3

c

de

f

I1

2I

I3

S

S1

2

(2) Loop abcfa: I1R1 + I2R2 − E1 = 0 ⇒ 2I1 + 6I2 − 10 = 0

(3) Loop fcdef : E1 − I2 R2 + I3 R3 +E2 = 0 ⇒ 24 − 6 I2 + 4 I3 = 0

Substituting Eqs. (1) into (3) gives:

24 − 10 I2 + 4 I1 = 0

Dividing this equation by 2 gives:

(4) 12 − 5 I2 + 2 I1 = 0

Subtracting Eqs. (4) from (2) gives:

(2 I1 + 6 I2 − 10) − (12 − 5 I2 + 2 I1) = 0 ⇒ I2 = 2 A

Using this value of I2 in Eq. (4) gives I1 a value of:

12 − 5 × 2 + 2 I1 = 0 ⇒ I1 = −1 A

Finally, from Eq. (1) we have:

I3 = I1 − I2 = −1 A − 2 A = −3 A

Thus (I1 = −1A, I2 = 2A, I3 = −3A)
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We notice that I1 and I2 are both negative. This means that the currents are opposite

to the direction we chose. However, the numerical values are correct.

Example 24.14

In Fig. 24.19, let R1 = 2 �, R2 = 4 �, E1 = 6 V, E2 = 3 V, and C = 2 µF. Find the

steady currents I1, I2, and I3 and the charge Q.

Fig. 24.19

R 2

a b

R 1

c d

ef

2I

I3

R 1 R 1

gh

C

I1

I = 0

R 1

+ Q

- Q
1

2

1

2

Solution: Applying Kirchhoff’s junction rule at point b, we get:

(1) Junction b: I1 = I2 + I3

The application of the loop rule to the loops abgha and bcfgb gives:

Loop abgha: − I1 R1 − E2 − I2 R2 − I1 R1 + E1 = 0

−2 I1 − 3 − 4 I2 − 2 I1 + 6 = 0

(2) − 4 I1 − 4 I2 + 3 = 0

Loop bcfgb: − I3 R1 − E1 − I3 R1 + I2 R2 + E2 = 0

−2 I3 − 6 − 2 I3 + 4 I2 + 3 = 0

(3) −4 I3 + 4 I2 − 3 = 0

Substituting Eqs. (1) into (3) gives:

(4) −4 I1 + 8 I2 − 3 = 0

Subtracting Eqs. (4) from (2) gives:

(−4 I1 − 4 I2 + 3) − (−4 I1 + 8 I2 − 3) = 0 ⇒ I2 = 0.5 A
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Using this value of I2 in Eq. (4) gives I1 a value of:

−4 I1 + 8(0.5) − 3 = 0 ⇒ I1 = 0.25 A

Finally, from Eq. (1) we have:

I3 = I1 − I2 = 0.5 − 0.25 A = 0.25 A

Applying Kirchhoff’s loop rule to the loop cdefc gives:

Loop cdefc: Q/C − E2 + E1 = 0 ⇒ Q = (E2 − E1)C = − 6 µC

24.7 The RC Circuit

In all previous analyses, we considered steady-state situations where the current

remains constant. However, when a circuit contains a resistor and a capacitor (called

an R C circuit), the current in that circuit is found to vary with time until a steady

current is reached.

Charging a Capacitor

Consider the simple R C series circuit shown in Fig. 24.20a. We assume that the

capacitor is initially uncharged when the switch S is open, see Fig. 24.20a, b. Once

the switch S is closed at time t = 0, charge begins to flow, setting up a current I in

the circuit, until the capacitor is fully charged and the current becomes zero.

B

(a) (b)

S S R

C

t < 0

Resistor

Capacitor

(c)

I

S R

C
+ q

- q
t > 0

Fig. 24.20 (a) A capacitor in series with a resistor, switch, and battery. (b) The circuit diagram before

the switch is closed (t < 0). (c) The circuit diagram at time t > 0 after the switch is closed at t = 0

Assume that the current in the circuit at time t > 0 is I and the magnitude of

the charge on the capacitor is q (Fig. 24.20c). Applying Kirchhoff’s loop rule and

traversing the circuit clockwise, we get:
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E− IR − q

C
= 0 (At time t > 0) (24.43)

Since the capacitor is uncharged at t = 0, then substituting q = 0, into this equation

indicates that the current, denoted by I◦, is maximum:

I◦ = E
R

(Current at time t = 0) (24.44)

At t = 0, the potential difference across the battery appears entirely on the resistor.

At t = ∞, when the capacitor is fully charged to its maximum value Q, the current is

zero and the potential difference across the battery appears entirely on the capacitor.

Therefore, Eq. 24.43 gives:

Q = C E (Maximum charge at t = ∞) (24.45)

To find the charge as a function of time, we substitute I = dq/dt into Eq. 24.43 and

rearrange the equation as follows:

dq

dt
= E

R
− q

R C
= −q − C E

R C

dq

q − C E
= − dt

R C

Substituting with C E = Q in this expression and integrating from the initial charge

q = 0 at t = 0 to an arbitrary charge q at time t, we get:

q�
0

dq

q − Q
= −

t�
0

dt

R C
⇒ ln

q − Q

−Q
= − t

R C

By using the definition of the natural logarithm, we can rewrite the last expres-

sion as:

q = Q(1 − e−t/RC), Q = C E (24.46)

This relation conforms with the facts that we already know, i.e. that q = 0 at t = 0

and that q = Q = C E at t = ∞. Using I = dq/dt, we differentiate the charge q in

Eq. 24.46 to find the current I as a function of time as follows:

I = I◦ e−t/RC, I◦ = E
R

(24.47)

This relation shows that I = I◦ = E/R at t = 0 as obtained in Eq. 24.44 and I = 0 at

t = ∞ as expected.
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The quantity R C in the exponents of Eqs. 24.46 and 24.47 is called the time con-

stant τ of the circuit. Therefore, the quantity τ = R C represents the time interval dur-

ing which the charge on the capacitor increases to Q(1 − e−1)= 0.632 Q, i.e., ∼ 63%

increase. Similarly, after a time interval τ , the current decreases to 1/e of its initial

value; that is, I = e−1I◦ = 0.368I◦ (∼37% decrease).

Figure 24.21 shows the variation of the capacitor charge q and the circuit current

I as a function of time.
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Fig. 24.21 (a) A plot of the charge q on the capacitor of Fig. 24.20 versus time t. (b) A plot of the current

I in the same figure versus time t. The two curves are for R = 2 k�, C = 1 µF, and E = 10 V

Discharging a Capacitor

Let us consider the circuit shown in Fig. 24.22a, in which we have a capacitor of

capacitance C carrying an initial charge Q, a resistor of resistance R, and an open

switch S. When the switch is closed at time t = 0, the capacitor begins to discharge

through the resistor. If the current in the circuit at time t > 0 is I and the magnitude

of the charge on the capacitor is q (Fig. 24.22b), then by applying Kirchhoff’s loop

rule and traversing the circuit clockwise, we get:

+IR− q

C
= 0 (At time t) (24.48)

To find the charge as a function of time, we substitute with I = −dq/dt (the rate

of decrease of charge on the capacitor) into Eq. 24.48 and rearrange the equation as

follows:
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Fig. 24.22 (a) A capacitor

with an initial charge Q is

connected to a resistor and an

open switch (t < 0). (b) A

circuit diagram showing the

charge and current at t > 0,

after the switch is closed at

time t = 0

S R

C
+ Q

- Q
t < 0

(a)

S R

C
+ q

- q
t > 0

(b)

I

dq

dt
= − q

R C
dq

q
= − dt

R C

Integrating this expression from the initial charge q = Q at t = 0 to an arbitrary charge

q at time t, we get:

q�
Q

dq

q
= −

t�
0

dt

R C
⇒ ln

q

Q
= − t

R C

By using the definition of the natural logarithm, we can rewrite the last expression

as:

q = Qe−t/RC = Qe−t/τ (24.49)

Using I = −dq/dt, we differentiate q in Eq. 24.49 to find the current I as a function

of time as follows:

I = I◦ e−t/RC = I◦ e−t/τ , I◦ = Q

RC
(24.50)

We must note that the discharging current in Fig. 24.22 is opposite to the direction

of the charging current in Eq. 24.20.

Example 24.15

In the circuit of Fig. 24.23a, let R = 2 k�, E= 10 V, and C = 1 µF. The capacitor

is uncharged before closing the switch S. (a) Find the time constant of the circuit.

After closing S at t = 0,find the maximum current in the circuit and find the

maximum charge on the capacitor at t = ∞. (b) Find the charge and current as a

function of time.
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Fig. 24.23 S R

C

t < 0

Solution: (a) The time constant of the circuit is:

τ = R C = (2 × 103 �)(1 × 10−6 F) = 2 × 10−3 s = 2 ms

The maximum current in the circuit (see Eq. 24.44) is:

I◦ = E
R

= 10 V

2 × 103 �
= 5 × 10−3 A = 5 mA

At t = ∞, the magnitude of the maximum charge on the capacitor is:

Q = C E = (1 × 10−6 F)(10 V) = 10−5 C = 10 µC

(b) Substituting the obtained values of part (a) in Eqs. 24.46 and 24.47, we get

for the charge the following relation:

q = Q(1 − e−t/RC) = Q(1 − e−t/τ )

= (10 µC)(1 − e−t/(2×10−3s))

and for the current the following relation:

I = I◦ e−t/RC = I◦ e−t/τ

= (5 × 10−3A) (1 − e−t/(2×10−3s))

Example 24.16

In Fig. 24.24, let R = 2 k�, C = 5 µF, and Q = 50 µC. (a) After how many time

constants, τ = R C, will the charge on the capacitor be half of its initial value

when the switch is closed? (b) When the stored energy in the capacitor becomes

half of its initial value?
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Fig. 24.24 S R

C
+Q

-Q
t < 0

Solution: (a) The time constant of the circuit is:

τ = R C = (2 × 103 �)(5 × 10−6 F) = 10−2 s = 10 ms

After closing the switch at t = 0, the charge on the capacitor is given by Eq. 24.49,

q = Qe−t/τ . To find the time interval during which q drops to one-half its initial

value, we substitute q = Q/2 into this equation and solve for the time t as follows:

Q

2
= Qe−t/τ ⇒ 1

2
= e−t/τ

Taking the logarithm of both sides, we find:

− ln 2 = − t

τ
⇒ t = (ln 2)τ = 0.69τ = 0.69 × (10 ms) = 6.9 ms

(b) From Eq. 23.24, the initial stored energy in the capacitor is U◦ = Q2/2C.

Using Eq. 24.49, the energy stored at time t is:

U = q2

2C
= Q2

2C
e−2t/τ = U◦e−2t/τ

As in part (a), we set U = U◦/2 and solve for t as follows:

U◦
2

= U◦e−2t/τ ⇒ 1

2
= e−2t/τ

Again, taking the logarithm of both sides and solving for t, we find:

− ln 2 = −2t/τ ⇒ t = 1
2 (ln 2)τ = 1

2 × 0.69τ = 1
2 × 0.69 × (10 ms) = 3.45 ms

Note that the results of both parts are independent on the value of Q.
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24.8 Exercises

Section 24.1 Electric Current and Electric Current Density

(1) How many electrons per second would pass through a given cross section of a

conductor carrying a current I = 1.6 A?

(2) A current of 10 A is maintained in a wire for 1 min. (a) How much charge flows

through the wire in this period? (b) How many electrons flow through the wire

in this period?

(3) A 0.1 mol of electrons flows through a wire in 30 min. (a) What is the total

charge that passes through the wire? (b) What is the value of the current in the

wire?

(4) A copper wire contains 2 × 1021 free electrons in 1 cm of its length. The elec-

trons move with a drift speed of 2.5 × 10−3 cm/s. (a) How many electrons pass

through a given cross section of the wire each second? (b) How large is the

current in the wire?

(5) The current through a cross-sectional area of a wire is given by the relation

I = 2 + 3t3; where I is in amperes and t is in seconds. (a) Find the total charge

that passes through this area between t = 2 s and t = 8 s. (b) Find the average

current needed to pass the same quantity of charge calculated in part (a) during

the same time interval.

(6) The charge that passes a cross-sectional area A = 10−4 m2 varies with time

according to the relation Q = 4 + 2t + t2, where Q is in coulombs and t is in

seconds. (a) Find the relation that gives the instantaneous current at any time,

and evaluate this current at time t = 2 s. (b) Find the relation that gives the

current density at any time, and evaluate this current density at time t = 2 s.

(7) A wire carrying a current of 3 A has a circular cross section everywhere with a

non-uniform radius, see Fig. 24.25. The radius of the cross section A1 is 2 cm.

(a) Find the current density across A1. (b) Find the current density across A2 if

its radius is two times the radius at A1.

(8) A copper wire with a 0.2 mm diameter and an iron wire with a 5 mm diameter

are soldered together to form one wire in a circuit. A current of 8 A is found

to pass through the copper wire. (a) What is the current and current density

through the iron wire? (b) What is the current density through the copper

wire?
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Fig. 24.25 See Exercise (7)

I

I

I

A1

A2

(9) Given that the density of aluminum is 2.7 × 103 kg/m3, find the drift speed of

the conduction electrons in an aluminum wire that has a cross-sectional area

of 10−6 m2 and carries a current of 10 A. Assume that each aluminum atom

contributes one free conduction electron to the current.

Section 24.2 Ohm’s Law and Electric Resistance

(10) Use Table 24.1 to calculate the electric field that exists in a gold wire when the

current density in the wire is 3 × 107 A/m2.

(11) A metallic rod has a length L = 1.5 m and a diameter D = 0.2 cm. The rod

carries a current of 5 A when a potential difference of 75 V is applied between

its ends. (a) Find the current density in the rod. (b) Calculate the magnitude of

the electric field applied to the rod. (c) Calculate the resistivity and conductivity

of the material of the rod.

(12) Use Table 24.1 to calculate the resistance of a silver wire that has a length of

100 m and a cross section of 0.4 mm2.

(13) At 20 ◦C, a silver wire has a diameter of 2 mm, a length of 0.5 m, a resistivity

of 1.6 × 10−8 �.m, a temperature coefficient of resistivity of 4 × 10−3 (C◦)−1,

and carries a current of 5 A. (a) What is the current density in the wire? (b)

Find the magnitude of the electric field applied to the wire. (c) What is the

potential difference between the ends of the wire? (d) What is the resistance of

the wire? (e) Find the temperature of the wire when its resistance increases to

6.5 × 10−4 �.

(14) A cylindrical shell of length L = 10 cm is made of copper and has an inner

radius a = 2 mm and an outer radius b = 8 mm, see Fig. 24.26. Assume that the

shell has a uniform current density J = 105 A/m2 directed upward as shown in

the figure. (a) What is the current through the shell? (b) What are the values of

the resistance of the shell and the potential difference �V ?
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Fig. 24.26 See Exercise (14)

V

S

ab

Uniform Current density

JJ

I

L

I

(15) A cube of copper has a mass m = 50 g, see Fig. 24.27. The copper has a den-

sity of 8.92 × 103 kg/m3, a molar mass of 63.546 kg/kmol, a resistivity of

1.7 × 10−8 �.m, and contributes one conduction electron per atom. (a) What

is the distance between opposite faces of the cube? (b) What is the resistance

between opposite faces of the cube? (c) What is the current and the average drift

speed of the conduction electrons when a potential difference �V of 10−4 V is

applied between two opposite faces of the cube?

Fig. 24.27 See Exercise (15)

I

I

A
V

L

(16) The temperature coefficient of resistivity of copper at 20 ◦C is 3.9 × 10−3 (C◦)−1.

Calculate the percentage increase in its resistivity when its temperature increases

to 220 ◦C.

(17) At a temperature of 1,800 ◦C the tungsten filament of a light bulb has a resis-

tance of 250 �. With the aid of Table 24.1, find its resistance at room tempera-

ture (assume it to be 20 ◦C).

(18) At 20 ◦C a copper wire has a resistance of 4 × 10−3 � and a temperature coef-

ficient of resistivity of 3.9 × 10−3 (C◦)−1. What is its resistance at 100 ◦C?

(19) At 70 ◦C, an electric field E = 0.2 V/m is applied along a silver rod of length

L = 0.5 m and radius r = 0.05 mm. Silver has a density of 10.5 × 103 kg/m3,
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a molar mass of 107.868 kg/kmol, a coefficient α at 20 ◦C of 3.8 × 10−3 (C◦)−1,

and a resistivity of 1.59 × 10−8 �.m at 20 ◦C. Assuming 1 free electron per

atom, find: (a) the resistivity of the silver wire (b) the current density in the

silver wire. (c) the current in the silver wire. (d) the resistance of the silver

wire. (e) the drift speed of the conduction electrons. (f) the potential difference

between the ends of the silver wire.

(20) At 20 ◦C, a nichrome wire of resistance R◦n and a carbon wire of resis-

tance R◦c are attached end-to-end to form one wire of resistance R◦, where

R◦ = R◦n + R◦c = 9 �. What values of R◦n and R◦c would give a combined

resistance of R equal to R◦ regardless of the temperature T? [Hint: use

Table 24.1.]

Section 25.3 Electric Power

(21) A light bulb rated 60 W at 240 V is operated from a 240 V source. (a) Find the

current flowing through the bulb. (b) Find the resistance of the bulb. (c) Repeat

(a) and (b) when the bulb is rated 100 W at 240 V.

(22) A 550 W electric heater is designed to operate from a 220 V source. (a) What

is the resistance of the heater? (b) What current does the heater draw from the

source? (c) If the source voltage drops to 120 V, what power does the heater

consume from the source?

(23) A heating coil is made from a nichrome wire of radius 0.45 mm. The coil is

designed to produce 240 W of thermal power when connected to a source that

has a potential difference of 24 V. (a) What is the resistance of the coil? (b) What

current does the heating coil draw from the source? (c) What is the length of

the coil?

(24) A 1 k� carbon resistor used in an electric circuit is rated 0.4 W. (a) Find the

maximum allowable current that can pass through the resistor. (b) Find the

maximum allowable potential difference that can be applied across the resistor.

(25) Batteries are rated in terms of the quantity I t, i.e. rated in ampere-hours (A.h).

For instance, a battery that can produce a current of 4 A for 5 h is rated as a

20 A.h battery. (a) Find the total energy stored in a 12 V battery rated at 75 A.h.

(Express your answer in kW.h, where 1 kW.h = 3.6 × 103 J). (b) At a price of

35 piaster per kilowatt-hour of electricity, what is the total cost of the electricity

produced by this battery?
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(26) A beam of electrons in a TV set has a radius of 0.1 cm. The electrons move

from the cathode to the screen with an electron current of 0.1 mA and a kinetic

energy of 5 ke V. (a) What is the current density in the beam? (b) How many

electrons per second hit the screen? (c) How much power is dissipated at the

screen? (d) What is the speed of each electron in the beam? (e) Find the number

of electrons per unit volume in the beam.

(27) A heating coil operating from a 220 V source increases the temperature of 2 kg

of water from 20 ◦C to 50 ◦C in 20 min. Find the coil’s resistance if water’s

specific heat is 4,186 J/kg.C◦.

Section 24.4 Electromotive Force

(28) In Fig. 24.28 the circuit contains a battery that has an emf E= 11 V and internal

resistance r = 0.5 �. The load in the circuit has a resistance R = 5 �. (a) Find

the current in the circuit. (b) Find the potential difference between a and b.

Fig. 24.28 See Exercise (28)

I

ra b

S

R

(29) Assume a circuit similar to the one in Exercise 28 has an unknown emf E
and internal resistance r. It is found that when the current is 0.5 A, the load

resistance is 16 �. Similarly, it is found that when the current is 1.5 A, the load

resistance is 5 �. (a) Find the internal resistance of the battery. (b) Find the emf

of the battery.

(30) Two batteries, one old and the other new, each have an emf of 1.5 V. When

each battery is short-circuited with a conducting wire of zero resistance, it is

found that the new one establishes a 30 A current in the wire while the old one

establishes a 10 A current. Find the internal resistance of the two batteries.

(31) A battery has an emf E 1 = 9 V and an internal resistance r 1 = 0.4 �. This

battery is connected to a second battery of E 2 = 12 V and r 2 = 0.6 �, and a

light bulb of resistance R. If the batteries are connected with their positive
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terminals in the same direction as shown in Fig. 24.29, a current of 0.7 A is

established in the circuit. (a) Find the resistance of the light bulb. (b) What

fraction of the transferred chemical energy is dissipated in the two batteries?

(c) If we reverse the polarity of the E 1 = 9 V battery in the circuit, what is the

value of the current in the circuit? Would the answer to part (b) change in this

case?

Fig. 24.29 See Exercise (31)

R

I

r1 r2

S

1 2

Section 24.5 Resistors in Series and Parallel

(32) When three resistors of resistances R1 = 2 �, R2 = 1 �, and R3 = 4 � are con-

nected to a source of potential difference �V as shown in Fig. 24.30, the current

in the circuit is found to be 5 A. (a) Find the equivalent resistance of the com-

bination. (b) Determine the value of �V .

Fig. 24.30 See Exercise (32)

V

R1

R2 R3

S

(33) For the circuit shown in Fig. 24.31, take R1 = 3 �, R2 = 6 �, R3 = 12 �,

R4 = 6 �, and �V = 12 V. (a) Find the equivalent resistance of the combi-

nation. (b) Find the current in the branch containing R1 and R2. (c) Repeat (b)

for the branch containing R3 and R4. (d) Find the potential difference across

each resistor.



850 24 Electric Circuits

Fig. 24.31 See Exercise (33)

V
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R2
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S

(34) For each of the combinations shown in Fig. 24.32, find a formula that represents

the equivalent resistance between the terminals A and B.

A

A

B
B

A

BA B

(b) (c)(a) (d)

R

R

R

R

R R

R R

R

R

RR

R

R

R

R

R

R

Fig. 24.32 See Exercise (34)

(35) Assume that in exercise 34, R = 2 � and �VBA = 12 V. For each combination,

find the current in each branch of the circuit. Always start from the branch

closest to A and move toward B.

(36) It is recommended that the current through the human body not exceed 150 µA.

Assume a person stands barefoot on the ground, holding a wire connected

through a resistor of high resistance R to a power source of potential difference

�V = 220 V as shown in Fig. 24.33. Assume that the circuit’s wire makes a

low-resistance contact with the person’s hand. Also, assume that the resistance

through the person’s body is negligible compared to the resistance R. (a) Find

Rmin, which is the safest resistance value of R. (b) While holding Rmin, the

person decided to wear shoes of resistance RS to reduce the current to 100 µA.

Find RS.

(37) A light bulb is rated 60 W at 240 V. The bulb is connected to a source of

240 V with two equal length wires, each having a resistance R/2 = 120 �, see
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Fig. 24.34. (a) What is the resistance Rb of the light bulb? (b) What is the value

of the current I in the circuit? (c) What is the potential difference between the

sockets of the light bulb? (d) What is the actual power delivered to the bulb in

this circuit?

Fig. 24.33 See Exercise (36)

I R

Earth

V=220 V
I

I

Ceramicbarefoot
person

Fig. 24.34 See Exercise (37)
I

Rb

R/2R/2

240 V

(38) The four resistances of Fig. 24.35 are R1 = 1 �, R2 = 2 �, R3 = 4 �, and

R4 = 12 �. The power source has a potential difference �V = 12 V. (a) Find the

equivalent resistance of the combination. (b) What is the value of the current

I in the circuit? (c) Find the currents in R3 and R4. (d) Calculate the power

delivered to each resistor in the circuit.

Fig. 24.35 See Exercise (38)

R1

R2

R3 R4
V

I

S
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Section 24.6 Kirchhoff’s Rules

(39) For the circuit shown in Fig. 24.36, let R1 = 10 �, R2 = 20 �, E1 =10 V,

and E2 = 12 V. Find the values of the currents I1, I2, and I3 in the circuit.

R 1

R 2
I1

2
I I3

SS
1 2

Fig. 24.36 See Exercise (39)

(40) For the circuit shown in Fig. 24.37, let R1 = 1 �, R2 = 2 �, R3 = 3 �, E1 =
10 V, and E2 = 12 V. Find the values of the currents I1, I2, and I3 in the circuit.

Fig. 24.37 See Exercise (40) R 2R1

I1 2II3 R 3
S S

1 2

(41) For the circuit shown in Fig. 24.38, let R1 = 5 �, R2 = R3 = 15 �, E1 = 60 V,

E2 = 80 V, and E3 = 10 V. Find the values of the currents I1, I2, and I3 in the

circuit.

(42) For the circuit shown in Fig. 24.39, let R1 = 2 �, R2 = R3 = 4 �, E2 = 20 V, and

E3 = 2 V. The ammeter, represented by the symbol , reads the current I1

in the wire to be 0.5 A. Find the voltage of the unknown battery E1 and the

values of the currents I2, and I3.
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Fig. 24.38 See Exercise (41)

R 1 R 2

2

I1

2I

I3

R 3

1 3

S SS

Fig. 24.39 See Exercise (42)

R1 R2 2I

I3

R3

S SS

A

1I  = 0.5 A

2 31

(43) For the circuit shown in Fig. 24.40, let R1 = 3 �, R2 = 6 �, R3 = 3 �, R4 = 6 �,

and E= 7.5 V. Find the values of the currents I1, I2, I3, and I4 in the circuit.

R4

I1

S

R1 R2 2I R3

S S

3I

I4

Fig. 24.40 See Exercise (43)
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(44) Each resistor in the different configurations of Fig. 24.41 has the same resistance

R. Show that the equivalent resistance of the four parts of the figure are: (a)

7R/5, (b) 2R/3, (c) R, and (d) 3R/4, respectively.

S S S S

(a) (b) (c) (d)

Fig. 24.41 See Exercise (44)

(45) Apply symmetry arguments to the equal-valued resistors of Fig. 24.42 to show

that: (a) the current passing through any resistor in the figure is either I/3 or

I/6. (b) the equivalent resistance of the circuit is 5 R/6.

Fig. 24.42 See Exercise (45)
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R
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R
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Section 24.7 The RC Circuit

(46) In the process of charging a capacitor of capacitance C through a resistor

of resistance R, about 63% of the maximum charge will accumulate on the

capacitor in a time t = R C (known as the time constant τ = R C). In this time,

what percentage of the maximum electrostatic energy is stored on the capacitor?

(47) An uncharged capacitor has a capacitance of 2 µF. A battery of 12 V charges

this capacitor through a 1 M � resistor. (a) Find the time constant of the circuit,

the maximum charge on the capacitor, and the maximum current in the circuit.
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(b) How much time is required for the potential difference across the capacitor

to reach 6 V?

(48) Prove that when switch S in Fig. 24.43 is closed, the charge q at time t on any

capacitor is q = Q(1 − e−t/τ ), where τ = (R1 + R2)(C1 + C2) and Q = (C1 +
C2) E.

Fig. 24.43 See Exercise (47) S

C2 C1

R 1

R 2

(49) A 5 µF capacitor is charged to 220 V. After disconnecting it from its source, a

student holds its two lead wires with his bare hands. Assume that the resistance

between the student’s hands is 50 k�. (a) What is the initial charge on the

capacitor and the maximum current that passes through the student’s body? (b)

Find the charge that remains on the capacitor, and calculate the current that

passes through the student’s body after 0.5 s.

(50) The switch in the circuit of Fig. 24.44 is left open for a long time, and then

closed at t = 0. Let R1 = 50 k�, R2 = 150 k�, C = 5 µF, and E= 30 V. Find

the time constant before and after the switch is closed. Then find the current in

the switch as a function of time.

Fig. 24.44 See Exercise (50)
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Magnetic Fields 25

It is of common knowledge that every magnet attracts pieces of iron and has two

poles: a north pole (N) and a south pole (S). In addition, given two magnets, like

poles (N–N or S–S) repel each other, and opposite poles (N–S) attract each other.

Moreover, if we cut a magnet in half, we do not obtain isolated north and south poles.

Instead, we get two magnets, each with its own north and south pole.

In 1819, Oersted observed the deflection of a pivoted magnet when it was in the

vicinity of a current-carrying wire. Now, it is known that all magnetic phenomena

result from forces arising from electric charges in motion. Based on these forces, the

concept of a magnetic field was introduced as a mechanism for exerting a magnetic

force on a moving charge. This is similar to the concept of an electric field surrounding

an electric charge. That is, in the region of space around any moving charge, a

magnetic field is established (as well as an electric field), and this magnetic field

can exert a force on a second moving charge. Consequently, all atoms can exhibit

magnetic effects, due to the motion of their electrons about their nuclei.

In this chapter, we discuss forces that act on moving charges as well as forces that

act on current-carrying conductors in the presence of a magnetic field. We postpone

discussing the sources of such fields.

25.1 Magnetic Force on a Moving Charge

A magnetic field exists at a particular point in space if a force is exerted on a moving

charge at that point. The magnetic field, like the electric field, is a vector quantity

and historically is denoted by the symbol
→
B . We can define the magnetic field

→
B at

any point in terms of the magnetic force
→
FB exerted by the field on a test charge q

H. A. Radi and J. O. Rasmussen, Principles of Physics, 859
Undergraduate Lecture Notes in Physics, DOI: 10.1007/978-3-642-23026-4_25,
© Springer-Verlag Berlin Heidelberg 2013
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moving with a velocity →
v . If the smaller angle between the two vectors

→
B and →

v is

denoted by θ, then experiments show that:

• FB ∝ |q|vB sin θ

•
→
FB has the direction of →

v × →
B if q is positive

•
→
FB has the direction of −→

v × →
B if q is negative

In vector form, these results can be written as follows:

→
FB = q →

v × →
B = q

∣∣∣∣∣∣∣∣

→
i

→
j

→
k

vx vy vz

Bx By Bz

∣∣∣∣∣∣∣∣
(25.1)

Therefore, the magnitude of the magnetic force on q is:

FB = |q| vB sin θ (25.2)

To find the direction of →
v × →

B and the direction of
→
FB for both positive and negative

q, we use the right-hand rule, as shown in Fig. 25.1.

θ

B× BF

B

θ

B

θ

B
BF

   q+ q−

(a) (b) (c)

+ -

Fig. 25.1 (a) With the right-hand rule, the direction of the thumb points in the direction of →v × →
B when

the fingers curl →v into
→
B . (b) When q is positive, the direction of

→
FB has the same sign as →v × →

B . (c)

When q is negative, the directions of
→
FB is opposite to →v × →

B

Equation 25.1 indicates that:

• FB = 0 (when →
v //

→
B and, of course, when v = 0)

• FB |max = q vB (when →
v ⊥ →

B )

•
→
FB ⊥ →

v at all times, (hence
→
B changes only the direction of →

v )
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From Eq. 25.1, we see that the SI unit for B is newton per coulomb-meter per

second, which is called tesla (T). With the use of the SI unit: 1 ampere is 1 coulomb

per second, so we have:

1 T = 1
N

C.m/s
= 1

N

A.m
(25.3)

An earlier non-SI unit of B, still in common use, is gauss (G), and is related to tesla

through the conversion formula:

1 T = 104 G (25.4)

Table 25.1 lists some approximate values of B in a few situations.

Table 25.1 Some approximate values of the magnetic fields

Source of the field Value of B(T)

New kind of neutron star called a “Magnetar” 1011

Neutron star 108

Superconducting magnet 30

Strong magnet 2

Medical MRI unit 1.5

Small bar magnet 10−2

Surface of the earth 10−4

Inside human brain 10−13

Smallest value in a magnetically shielded room 10−14

For convenience, we label the magnetic field coming out of the page by black dots

(or blue dots), as shown in Fig. 25.2a and the magnetic field going into the page by

black crosses (or blue crosses), as shown in Fig. 25.2b. The same approach is used

for both →
v and I but sometimes with different colors.

Fig. 25.2 Magnetic field

lines: (a) coming out of the

page are indicated by dots, (b)

going into the page are

indicated by crosses

. . . . .. . . . .. . . . .. . . . .
× × × × ×
× × × × ×
× × × × ×
× × × × ×

out of page

(a) (b)

into pageBB
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Example 25.1

An electron in a television tube moves along the x-axis with a speed v of 107 m/s,

see the sketch in Fig. 25.3. A uniform magnetic field in the xy plane has a mag-

nitude 0.02 T and is directed at an angle of 30◦ from the x-axis. (a) Calculate the

magnitude of the magnetic force on the electron. (b) Find the vector expression of

the magnetic force on the electron in terms of the unit vectors
→
i ,

→
j , and

→
k along

x, y, and z axes.

Fig. 25.3

B

θ

y

z

x

Region
of B

.
-

-

Solution: (a) using Eq. 25.2 we find that:

FB = |q| vB sin θ = (1.6×10−19 C)(107 m/s)(0.02 T)(sin 30◦) = 1.6×10−14 N

(b) We first express the velocity and the magnetic field in terms of the unit

vectors
→
i ,

→
j , and

→
k as follows:

→
v = (107 →

i ) m/s

→
B = B cos θ

→
i + B sin θ

→
j

= [(0.02)(cos 30◦)
→
i + (0.02)(sin 30◦)

→
j ] T

= (0.017
→
i + 0.01

→
j ) T

We use Eq. 25.1 to find the force on the electron as follows:

→
FB = q →

v × →
B = q

∣∣∣∣∣∣∣∣

→
i

→
j

→
k

vx vy vz

Bx By Bz

∣∣∣∣∣∣∣∣
= (−e)

∣∣∣∣∣∣∣∣

→
i

→
j

→
k

107 m/s 0 0

0.017 T 0.01 T 0

∣∣∣∣∣∣∣∣
= (−e)

[
(0)

→
i − (0)

→
j + (107 m/s)(0.01 T)

→
k

]

= (−1.6 × 10−19 C)(105 T m/s)
→
k

= −(1.6 × 10−14 N)
→
k



25.1 Magnetic Force on a Moving Charge 863

The magnetic force on the electron
→
FB has a magnitude that agrees with the result

of part (a) and is directed along the negative z-axis.

25.2 Motion of a Charged Particle in a Uniform Magnetic Field

The fact that
→
FB ⊥ →

v indicates that the magnetic field
→
B does not work on the charged

particle. Therefore,
→
FB never changes the magnitude of →

v , but only changes its

direction.

Let us consider a uniform magnetic field (coming out of the page). Now assume a

positively charged particle q moving with an initial velocity vector →
v perpendicular

to the field, as shown in Fig. 25.4. As the direction of the particle’s velocity changes in

response to the magnetic force, the new
→
FB at the new location remains perpendicular

to the new direction of the particle. As a result, the path of the particle is a circle of

radius r. The particle rotates in a clockwise sense if its charge is positive, as shown

in Fig. 25.4, and in a counterclockwise sense if the charge is negative.

Fig. 25.4 When the initial

velocity of a positively charged

particle is perpendicular to the

magnetic field, the particle’s

orbit is a circle

q

q

q
BF

BF r

BF

B

+

+

+

When we equate the magnitude of the magnetic force, FB = qvB, to the product

of the mass of the particle m and the magnitude of the centripetal acceleration, we

get:

FB = qvB = m × v2

r
(25.5)

Solving for r, we get:

r = mv

qB
(25.6)
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That is, the radius of curvature is proportional to the magnitude of the momentum

mv of the particle and inversely proportional to the magnitude of the charge and to

the magnitude of the magnetic field.

The period of the motion T = 2πr/v, the frequency f = 1/T , and the angular

frequency ω = 2π/T , can be written as:

T = 2πm

qB
(25.7)

f = qB

2πm
(25.8)

ω = qB

m
(25.9)

These equations show that T, f, and ω are independent of the speed v of the particle

and the radius r of the orbit.

If the velocity of the charged particle has two components, one perpendicular (v⊥)

to the uniform magnetic field and the other parallel (v‖) to it, then the particle will

move in a helical path about the direction of the magnetic field
→
B . For example, if

→
B is along the x-axis, the perpendicular component v⊥ (in the yz plane) determines

the radius of the helix r = mv⊥/qB, while the parallel component determines the

distance between the turns of the helix (the pitch) p = v‖T , see Fig. 25.5.

Fig. 25.5 When the initial

velocity of a positively

charged particle has a

component parallel to the

magnetic field
→
B , the particle

will move in a helical path

about the direction of the field

q
B

⊥

x
z

O

y

p =    T

r
+

Example 25.2

A proton of mass m = 1.67 × 10−27 kg and charge q = e = 1.6 × 10−19 C is mov-

ing in a circular orbit of radius r = 20 cm perpendicular to a uniform magnetic

field of magnitude B = 0.25 T. (a) Find the period of the proton. (b) Find the speed

of the proton. (c) Find the magnitude of the magnetic force on the proton.
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Solution: (a) From Eq. 25.7, we have:

T = 2πm

eB
= 2π(1.67 × 10−27 kg)

(1.6 × 10−19 C)(0.25 T)
= 2.6 × 10−7 s

(b) Using the relation T = 2πr/v [or Eq. 25.6], we have:

v = 2πr

T
= 2π(0.2 m)

2.6 × 10−7 s
= 4.8 × 106 m/s

(c) From the relation FB = |q|vB sin 90◦, we have:

FB = evB = (1.6 × 10−19 C)(4.8 × 106 m/s)(0.25 T) = 1.9 × 10−13 N

Example 25.3

An electron of mass m = 9.11 × 10−31 kg is moving with a speed v = 2.8 ×
106 m/s.The electron enters a uniform magnetic field of magnitude B = 5 × 10−4 T

when the angle between →
v and

→
B is 60◦. Find the radius and pitch of the helical

path taken by the electron.

Solution: The components v⊥ and v‖ with respect to
→
B are:

v⊥ = v sin θ = (2.8 × 106 m/s) sin 60◦ = 2.42 × 106 m/s

v‖ = v cos θ = (2.8 × 106 m/s) cos 60◦ = 1.40 × 106 m/s

Using the relations r = mv⊥/qB and p = v‖T , we have:

r = mv⊥
eB

= (9.11 × 10−31 kg)(2.42 × 106 m/s)

(1.6 × 10−19 C)(5 × 10−4 T)
= 0.0276 m = 2.76 cm

p = v‖T = v‖
2πr

v⊥
= 2π(0.0276 m)(1.4 × 106 m/s)

(2.42 × 106 m/s)
= 0.1003 m = 10.03 cm

25.3 Charged Particles in an Electric and Magnetic Fields

In the presence of both an electric field
→
E and a magnetic field

→
B , the total force

→
F

exerted on a charge q moving with velocity →
v is:

→
F = q

→
E + q→

v × →
B (25.10)

which is often called the Lorentz force.
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25.3.1 Velocity Selector

Sometimes it is required to select charged particles moving only with same constant

velocity. This can be achieved by applying an upward electric field
→
E perpendicular

to a magnetic field
→
B coming out of the page, as shown in Fig. 25.6. In this figure

a positive charge q passes from the source through slits S1 and S2 and moves to the

right in a straight line with velocity →
v . Consequently, the electric force q

→
E points

upwards with a magnitude qE, while the magnetic force q→
v × →

B points downwards

with a magnitude qvB.

q

- - - - - BE

+ + + + +

q
q E

q B×

Source

S1 S2

+ +

Fig. 25.6 In a velocity selector, the magnetic field
→
B , electric field

→
E , and the velocity →v of the charged

particle are perpendicular to each other. When the magnetic force q→v × →
B cancels the electric force q

→
E ,

the charged particle will move in a straight line

If we choose the values of
→
E and

→
B such that qE = q vB, then:

v = E

B
(25.11)

and the particle will continue moving in a horizontal straight line through the region

of the fields. For the chosen values of
→
E and

→
B , all particles with speeds greater than

v = E/B will move downwards, while all particles with speeds less than v = E/B will

move upwards.

25.3.2 The Mass Spectrometer

A mass spectrometer is an instrument used to measure the mass or the mass-to-

charge ratio for charged particles (or ions). The mass spectrometer of Fig. 25.7 has

a source of charged particles behind S1, and these particles pass through S1 and S2

into a velocity selector like the one shown in Fig. 25.6. Particles that have a speed

of v = E/B pass through slit S3 and enter a deflecting chamber of uniform magnetic
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field
→
B

′
that has the direction of

→
B in the velocity selector. In this region the particles

move in a circular path of radius r.

.  .  .  .  .  .

.  .  .  .  .  .

.  .  .  .  .  .

- - - - -

q

B

E

+ + + + +

Source

S1 S2

Plate

r

S3

B ′

.  .  .  .  .  .

+

+

Fig. 25.7 The schematic drawing of a mass spectrometer. Positively charged particles from the source

enter the velocity selector and then into a region where the magnetic field
→
B

′
causes the particle to move

in a semicircle of radius r before striking a plate

From Eq. 25.6, the mass m can be expressed as follows:

m = qB′r
v

(25.12)

Then we use v = E/B, to calculate the ratio m/q as follows:

m

q
= BB′r

E
(25.13)

If the charge q is known, then the mass m of the charged particle can be calculated

in terms of B, B′, E, and r.

25.3.3 The Hall Effect

In 1879, Edwin Hall showed that when a current I passes through a strip of metal

which is placed perpendicular to a magnetic field
→
B , a potential difference is estab-

lished in a direction perpendicular to both I and
→
B . This phenomenon is known as

Hall effect.

Figure 25.8a shows a thin flat strip of copper connected to a battery. Electrons

flow with drift speed vd opposite to the conventional current I. In Fig. 25.8b we
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show that when we apply to the strip a magnetic field
→
B (into the page), electrons

experience an upward transverse magnetic force
→
FM = q→

vd × →
B = −e→

vd × →
B and are

deflected from their previous course. Because electrons cannot escape from the strip,

negative charges accumulate on its upper side, leaving a net positive charge on its

lower side. This separation of charges produces an upward transverse Hall electric

field
→
EH that exerts a downward electric force on the electrons

→
FE = q

→
EH = −e

→
EH .

Charges accumulate, and
→
EH increases, until the electric force finally cancels the

magnetic force and equilibrium is established.

0
Voltmeter

I I I

+ + +

- - -

+ + + +

- - - -- - -

+ + +

B
t

B
HE HE

(a) (b) (c)

×××

× ××

×××

× ××

No magnetic field
+ - + - + -

Intermediate case with B Final case with

He E−
de B− ×

d d

I I I

B

-
-

-
-

-
-

- -
-

Fig. 25.8 (a) A conductor carrying a current I. (b) The situation immediately after applying the magnetic

field into the page. Electrons experience an upward magnetic force
→
FM , accumulate on the top surface,

which creates an upward electric field that produces a downward electric force
→
FE . (c)

→
FE cancels

→
FM at

equilibrium

Equating the electric and magnetic forces on an electron gives:

eEH = evd B ⇒ EH = vd B (25.14)

When d is the width of the strip, the potential difference �VH, called the Hall voltage,

across the strip is related to electric field EH by:

�VH = EH d (25.15)

From Eq. 24.6, the drift speed vd is related to the current I by:

I = nevd A (25.16)

where A = td is the cross-sectional area of the strip. Substituting with EH from

Eq. 25.15 and vd from Eq. 25.16 into Eq. 25.14, we get �VH = IB/net. Usually this

result is written as:
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�VH = RH
IB

t
where RH = 1

ne
(25.17)

where RH = 1/ne is the Hall coefficient. Equation 25.17 can be used to measure the

magnitude of the magnetic fields and give information about the sign of the charge

carriers and their density.

Example 25.4

The value of the Hall coefficient RH for a copper strip is 5.4 × 10−11 m3/C. The

strip is 2 mm wide and 0.05 mm thick and carries a current I = 100 mA in a

magnetic field B = 1 T, see Fig. 25.8. (a) How large is the Hall voltage across the

strip? (b) Find the magnitude of the Hall electric field.

Solution: (a) From Eq. 25.17, we have:

�VH = RH
IB

t
= 5.4 × 10−11 m3/C

(100 × 10−3 A)(1 T)

0.05 × 10−3 m
= 1.08 × 10−7 V

A Hall voltage of 0.108 µV needs a sensitive measuring instrument.

(b) From Eq. 25.15, we have:

EH = �VH

d
= 1.08 × 10−7 V

2 × 10−3 m
= 5.4 × 10−5 V/m

25.4 Magnetic Force on a Current-Carrying Conductor

A net flow of charges through a wire is represented by a current. Since a magnetic

field exerts a force on a moving charge, then one should expect that it should exert a

force on a wire carrying a current.

• Figure 25.9a showns a horizontal flexible conducting wire carrying no current. In

the presence of a uniform magnetic field
→
B directed out of the page, the wire stays

horizontal.

• However, when the wire carries a current in the left direction, as shown in Fig. 25.9b,

the wire deflects upwards.

• Now, if the current direction is reversed, as shown in Fig. 25.9c, the wire deflects

downwards.
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0I =
I

BF

(a) (b) (c)

I

BF

. . . .. . . .. . . .. . . .
B

. . . .. . . .. . . .. . . .

. . . .. . . .. . . .. . . .
B B

Fig. 25.9 A flexible wire is suspended horizontally and passes through a region of uniform magnetic

field. (a) Without current in the wire, the wire stays horizontal. (b) With a left current, the deflection is

upwards. (c) With a right current, the deflection is downwards

Figure 25.10 shows a segment of a horizontal straight wire of length L and cross-

sectional area A, carrying a current I to the left in a uniform magnetic field
→
B out of

the page. First, we consider a conducting electron of charge q = −e drifting to the

right (opposite to the conventional left current I) with a drift speed vd . According to

Eq. 25.2, the magnetic force on this electron has a magnitude evd B and is directed

upwards.

To find the magnitude of the total upward force on this segment of wire, we

multiply the force on one electron by the total number of conducting electrons in the

segment, which is nAL, where n is the number of electrons per unit volume. Thus:

FB = (evd B)nAL

I

Conductor

L

A
q e= −

d

BFB

-

Fig. 25.10 Force on a moving charge in a current-carrying conductor. The current direction is to the left,

which means that the electrons drift to the right. A magnetic field out of the page causes the electrons and

the wire to be deflected upwards

From Eq. 25.16, the current in the wire is I = nevd A. Then, the magnitude of the

total upward force on this segment of wire will be:
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FB = ILB (25.18)

When the uniform magnetic field
→
B is not perpendicular to the straight wire, the

magnetic force is given by a generalization of Eq. 25.18 as follows:

→
FB = I

→
L × →

B (25.19)

where
→
L is a length vector that points in the direction of the conventional current I.

If the wire is not straight, we consider a small straight segment of length ds and

apply Eq. 25.19 to calculate the differential force:

d
→
FB = I d→s × →

B (25.20)

To calculate the total force on a wire of arbitrary shape, as shown in Fig. 25.11a,

we integrate Eq. 25.20 over the length of the wire as follows:

→
FB =

b�
a

d
→
FB = I

b�
a

d→s × →
B (25.21)

where the current I runs from one endpoint a to another endpoint b.

d s
B

a

b

L′
I

d s
B

I

I(a) (b)

Fig. 25.11 (a)
→
FB on any curved wire carrying a current I in a uniform magnetic field is equal to the

magnetic force on a straight wire of length L′ from a to b. (b)
→
FB on a closed loop is zero

When the magnetic field is uniform, we take
→
B outside the integrand of Eq. 25.21.

Therefore, this equation reduces to:

→
FB = I

⎛
⎝ b�

a

d→s

⎞
⎠ × →

B (25.22)

When we integrate over →s , we get
� b

a d→s = →
L

′
, where

→
L

′
is a length vector directed

from a to b. Therefore, Eq. 25.21 becomes:

→
FB = I

→
L

′ × →
B (25.23)
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For a closed loop, see Fig. 25.11b,
�

d→s = 0 and hence
→
FB = 0.

Therefore, in a uniform magnetic field, we conclude that:

• The net magnetic force on any curved wire carrying a current I flowing

from one endpoint a to another endpoint b is the same as that for a straight

wire carrying the same current from a to b.

• The net magnetic force on any closed loop of a wire carrying a current I

is zero.

Example 25.5

A conducting wire has a linear density ρ = 40 × 10−3 kg/m and carries a current

I = 20 A. Assume a magnetic field
→
B perpendicular to the wire; find the minimum

B and its direction in order to suspend the wire (that is to balance its weight) when

the wire: (a) is in a horizontally straight configuration of a length L, (b) is bent

into an upward vertical semicircular arc of radius R.

Solution: (a) Figure 25.12 shows the situations for both cases, with a selected

direction of I. For a minimum magnetic field, the magnetic force must be upwards

in both cases as shown in Fig. 25.12.

I

BF

m g

m g

IIB B
B

a

2R

R

b

L

F

Fig. 25.12

In order to suspend the straight wire, the magnetic force FB must equal to the

wire’s weight mg. Since FB = ILB and m = ρL, we have:

FB = mg ⇒ ILB = mg ⇒ ILB = ρLg
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Thus: B = ρg

I
= (40 × 10−3 kg/m)(10 m/s2)

20 A
= 0.02 T

which is about 200 times the strength of the earth’s magnetic field.

(b) The magnetic force FB on a semicircular wire of radius R carrying a current

I flowing from the one endpoint a to another endpoint b is the same as the magnetic

force exerted on a straight wire having length L′ = 2R carrying the same current

from a to b. That is FB = I(2R)B. Since m = ρ(πR) and FB must equal mg, then:

2IRB = πρRg

Thus: B = πρg

2I
= π × (40 × 10−3 kg/m)(10 m/s2)

2 × 20 A
= 0.0314 T

Loudspeakers

The electrical output of a radio or TV set is connected to the leads of a device referred

to as a loudspeaker, which converts electrical energy to sound energy. A loudspeaker

has a permanent magnet that exerts a force on a current-carrying conductor. Those

leads of the speaker are connected internally to a coil that is attached to the speaker

cone, which is made of stiff cardboard that can move freely back and forth in front

of the magnet, see Fig. 25.13.

Fig. 25.13 A sketch showing

a cross-sectional view of a

typical loudspeaker, where

both the coil and the speaker

cone can move back and forth

freely due to the magnetic

force exerted by the permanent

magnet on the current-carrying

coil

I

Rigid metal frame

Movable
Speaker
cone

Coil attached to
speaker cone

I

N

S

S

M
ag

ne
t

When a current representing an audio signal flows through the coil, the magnetic

field produced by the magnet will exert a force on the coil. As the current varies with
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the frequency of the audio signal, the coil and the speaker cone will move back and

forth with the same frequency. This movement causes compressions and expansions

of the air adjacent to the cone and consequently produces sound waves. As the

electrical input to the speaker varies, the frequency and intensity of the generated

sound waves also change to match.

25.5 Torque on a Current Loop

Most electric motors operate on the principle that a magnetic field exerts a torque on

a loop of a current-carrying conductor. This torque has the ability to rotate the loop

about a fixed rotational axis.

Consider a rectangular loop of two short sides ©1 and ©2 each of length a and two

long sides ©3 and ©4 each of length b. The loop carries a current I in the presence

of uniform magnetic field
→
B which is always perpendicular to the long sides ©3 and

©4 , and free to rotate about the axis OO′, see Fig. 25.14.

Fig. 25.14 A rectangular

loop carrying a current I that

can rotate freely about the axis

OO′ in the presence of a

uniform magnetic field

3F

4F

1F

2F

B

I I

O

O

a

b

In Fig. 25.14, we notice the following:

• The magnetic forces
→
F1 and

→
F2 on the short sides ©1 and ©2 cancel each

other and produce no torque, since they pass through a common origin.

• The magnetic forces
→
F3 and

→
F4 on the long sides ©3 and ©4 cancel each

other, but produce a torque about the rotational axis OO′.
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We assume that
→
B makes an angle 0 ≤ θ ≤ 90◦ with the vector area

→
A , which

is a vector perpendicular to the plane of the loop and has a magnitude equal to the

area of the loop, see the side view of the loop shown in Fig. 25.15.

In Fig. 25.15, the side ©3 is represented by a circle and the current passing through

it is represented by a red dot, while the side ©4 has the current represented by a red

cross. From Eq. 25.19, the magnitudes of
→
F3 and

→
F4 are the same and given by:

F3 = F4 = IbB (25.24)

The moment arm of F3 and F4 about O is (a/2) sin θ. Thus, the magnitude of the net

torque about the rotational axis OO′ is:

τ = F3(a/2) sin θ + F4(a/2) sin θ

= [F3 + F4](a/2) sin θ = [2IbB](a/2) sin θ

= IAB sin θ

(25.25)

Fig. 25.15 A side view of the

loop showing the two forces
→
F3 and

→
F4 that produce a

torque on the current loop

about point O

3F

4F

I

I

B

×

A

a /2

sin
2
a

O

where A = ab is the area of the loop. This equation shows that τmax = IAB when
→
B

is perpendicular to the normal of the loop (θ = 90◦), and τmin = 0 when
→
B is parallel

to the normal to the plane of the loop (θ = 0).

The direction of the torque exerted on the loop can be expressed in terms of the

vector area as follows:

→
τ = I

→
A × →

B (τ = IAB sin θ) (25.26)

The product I
→
A is defined as the magnetic dipole moment →

μ (or simply the mag-

netic moment) of the loop and has the SI unit ampere-meter 2 (A.m2). Thus:
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→
μ = I

→
A (Single loop) (25.27)

If we replace the single loop of current with a coil of N loops, or turns, then the

magnetic dipole moment →
μ of the coil will be given by:

→
μ = NI

→
A (Coil of N loops) (25.28)

Using this definition, Eq. 25.26 can be written as:

→
τ = →

μ × →
B (25.29)

We can determine the direction of
→
A and →

μ by using the right-hand rule, which is

described in Fig. 25.16.

Fig. 25.16 Using the

right-hand rule for determining

the direction of
→
A and →μ for a

loop of wire carrying a

current I

A

I

μ

A

I

μ

25.5.1 Electric Motors

A motor is an apparatus that converts electrical energy into rotational energy. A

battery-powered motor uses the principle of torque exerted on a coil of wire wound

onto a shaft that rotates 360◦.
In order to allow the coil to continue rotating, the current through the coil must

reverse the direction just as the coil reaches its vertical position. As shown in

Fig. 25.17, several components are required to achieve this reversal. First, an electric

connection is made using two brushes. These are contacts usually made of graphite.

Second, a ring that is split into two halves, called a split-ring commutator. Brushes

make contact with the commutator and allow current to flow into the coil. As the coil

rotates, so does the commutator, which is arranged so that each of its halves changes

brushes just as the coil reaches the vertical position. Changing brushes reverses the

direction of the current in the coil. As a result, the direction of the force on each side

of the coil is reversed and the coil continues to rotate. This process repeats at each

half-turn, causing the coil to spin in the magnetic field.
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Fig. 25.17 The split-ring

commutators in an electric

motor allow the current in the

wire coil to change direction

and thus enable the coil in the

motor to rotate continuously
Commutator

Brush

+

-
Insulators

Coil

Brush

Shaft

I

I

Example 25.6

A rectangular coil of sides a = 4 cm and b = 8 cm consists of N = 75 turns of

wire and carries a current I = 10 mA. A magnetic field of magnitude B = 0.2 T is

applied parallel to the plane of the coil, see Fig. 25.18. (a) Find the magnitude of

the magnetic dipole moment of the coil. (b) What is the magnitude of the torque

acting on the coil?

Fig. 25.18 I

I

a

b
B

Solution: (a) Using Eq. 25.28, we have:

μ = NIA = (75)(10 × 10−3 A)[(4 × 10−2 m)(8 × 10−2 m)] = 2.4 × 10−3 A.m2

(b) Since
→
B is perpendicular to →

μ , then Eq. 25.29 gives:

τ = μB sin 90◦ = (2.4 × 10−3 A.m2)(0.2 T) = 4.8 × 10−4 N.m

25.5.2 Galvanometers

The basic component of analog ammeters, voltmeters, and ohmmeters is a gal-

vanometer. Figure 25.19 displays the main features of a type of galvanometer called

the D’Arsonval galvanometer. It consists of a coil of wire that has N loops, each of
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cross-sectional area A. That coil is attached to a pointer and a spring. The coil is also

suspended so that it can rotate freely in a radial magnetic field produced by a circular

cross-sectional permanent magnet.

Fig. 25.19 Sketch of the

structure of a moving-coil

galvanometer

Coil Spring

N S

PointerIron core

Scale

φ
0

I

When a current I flows through the coil, the magnetic field exerts a torque on the

coil given by Eq. 25.29, and this torque has a magnitude given by:

τ = μB = NIAB (25.30)

This torque is opposed by the torque τs exerted by the spring, which is approximately

proportional to the coil deflecting angle φ. That is:

τs = k φ (25.31)

where k is the stiffness constant of the spring. When the pointer is in equilibrium,

we have τs = τ, and we get:

φ = NAB

k
I or φ ∝ I (25.32)

Thus, the angular deflection φ of the pointer is directly proportional to the current I

in the coil.

25.6 Non-Uniform Magnetic Fields

One of the useful types of non-uniform magnetic fields is the “magnetic bottle” shown

in Fig. 25.20a. Such magnetic bottles can be used to trap charged particles, because

the magnetic field is strong at the ends and weak in the middle. Charged particles

spiral along the field lines back and forth almost indefinitely if they do not collide.
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Therefore, this magnetic bottle can be used to confine a plasma (a gas consisting of

electrons and ions). Such a confinement can help control nuclear fusion, a process

that could supply us with energy indefinitely.

North geographic poleSouth magnetic pole

South geographic pole North magnetic pole

(a) (b)

Van Allen belt

-
N

S

Fig. 25.20 (a) Trapping of charged particles in a non-uniform magnetic bottle. (b) A sketch of the Van

Allen belt, which consists of charged particles trapped by Earth’s non-uniform magnetic field

The Earth behaves like a gigantic magnet. Its north magnetic pole is actually

near the geographic south pole, and its south magnetic pole is near the geographic

north pole, see Fig. 25.20b. This non-uniform magnetic field traps charged particles

(mostly electrons and protons) in a region of space known as Van Allen belt. In this

belt, charged particles spiral around the field lines from pole to pole in a period of few

seconds. The sun and stars are the sources of these particles (called cosmic rays).

Most cosmic rays are deflected by the Earth’s magnetic field and never reach the

atmosphere. When some particles of the Van Allen belt are close to the poles, they

collide with the atoms of the atmosphere causing them to emit light (Aurora Borealis

or Aurora Australis).

25.7 Exercises

Section 25.1 Magnetic Force on a Moving Charge

(1) For each of the moving charges shown in Fig. 25.21, find the direction of the

magnetic force, taking →
v to be the velocity of the particle and

→
B to be the mag-

netic field.

(2) Consider a uniform magnetic field directed vertically up along the page of this

paper. In which direction does an electron deflect if its velocity is directed: (a)

into the paper, (b) up along the paper, (c) to the left, and (d) out of the paper.
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× × × × ×
× × × × ×× × × × ×

× × × × ×

× × × × ×
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× × × × ×
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B B

B

B

(a) (b) (c) (d)

(e) (f) (g) (h)

+ - + -

+ - + -

Fig. 25.21 See Exercise (1)

(3) When moving with a speed of 107 m/s in a magnetic field of magnitude 1.5 T,

an electron experiences a magnetic force of magnitude 10−12 N. What is the

angle between the electron’s velocity and the field at this instant?

(4) A proton that has a velocity →
v = (3 × 106 →

i + 4 × 106 →
j ) (m/s) moves through

a magnetic field
→
B = (0.3

→
i + 0.02 T

→
j ) (T). Find the vector magnetic force

exerted by the field on the proton, and then find the magnitude and direction of

this force.

(5) Near the Earth’s surface at the equator, the magnetic and electric fields are about

50 µT due North and 100 N/C downwards, respectively. Find the net force on

an electron traveling with velocity 107 m/s due East.

Section 25.2 Motion of a Charged Particle in a Uniform Magnetic Field

(6) In a uniform magnetic field of magnitude of 10−4 T, an ion that has a charge

q = +2e completes two revolutions in 1.51 ms. Find the mass and the type of

the ion.

(7) A proton travels with a speed of 8 × 107 m/s perpendicular to a uniform magnetic

field of magnitude 5 T. (a) What is the radius of the proton’s circular path?

(b) What is the period of the motion? (c) Find the magnitude of the magnetic

force on the proton.

(8) An alpha particle has a charge q = 2 e and mass m � 4 mp, where mp is the mass

of a proton. The alpha particle has a kinetic energy of 5 MeV and enters a uniform

magnetic field of 1.5 T directed perpendicular to its velocity. (a) Find the speed
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of the alpha particle. (b) Find the magnetic force acting on the particle due to

the field. (c) Find the radius of the particle’s path. (d) Find the acceleration of

the particle due the magnetic force.

(9) An electron of speed 5 × 106 m/s enters a uniform magnetic field of magnitude

0.01 T at an angle of 36.87◦. (a) Determine the radius of the electron’s helical

path. (b) Determine the period of one helical path. (c) Determine the pitch of

the electron’s helical path.

(10) Figure 25.22 shows a region of uniform magnetic field
→
B of magnitude 0.5 T

which extends for a width W = 0.4 m. Consider a proton moving with a velocity
→
v of magnitude 3 × 107 m/s, where →

v is perpendicular to
→
B . If the incident

angle θ◦ at the lower boundary is 60◦, the proton emerges from the lower bound-

ary as shown in the left part of the figure. However, if the incident angle θ◦ at the

lower boundary is 0◦, the proton emerges from the upper boundary as shown in

the right part of the figure. (a) At what angle θ and distance d does the proton exit

from the lower boundary? (b) At what angle θ and distance d does the proton

exit from the upper boundary? (c) At what critical incident angle θ◦ does the

proton barely touch the upper boundary?

B

(a) (b)

W

θ ° θ

B

W

θ

d

d

0θ =°

Fig. 25.22 See Exercise (10)

Section 25.3 Charged Particles in Electric and Magnetic Fields

(11) A uniform magnetic field of magnitude 0.02 T is perpendicular to a uniform

electric field of magnitude 750 V/m. What is the speed of an electron that goes

undeflected when moving perpendicular to both fields?

(12) Assume that a 1 keV electron travels in a uniform electric field
→
E = 385

→
j

(kV/m) and a uniform magnetic field
→
B = Bz

→
k . Find the value of Bz such that
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the electron would have a velocity →
v = vx

→
i and would move undeflected in

the presence of the two fields.

(13) Figure 25.23 shows the path of an electron in a region of uniform magnetic

field. Each of the plates is uniformly charged. (a) Which plate is at the higher

electric potential for each pair? (b) What is the direction of the magnetic field

in this region? (c) For both pairs of plates, if the magnitude of the electric field

between the plates is 6 × 104 V/m and the magnitude of the magnetic field is

2 mT, find the radius of the two semicircles.

Fig. 25.23 See Exercise (13)

Semicircle

Semicircle

Straight Straight

Electron's path

(14) In the mass spectrometer shown schematically in Fig. 25.6, the magnitude of

the electric and magnetic fields in the velocity-selector region are 3 kV/m and

40 mT, respectively. The magnitude of the magnetic field in the deflecting

chamber is 75 mT. (a) What is the speed of ions in the velocity selector? (b)

What is the radius of the path in the deflecting chamber for a singly-charged

ion having a mass of 6.49 × 10−26 kg?

(15) Two single ions of the boron isotopes (of masses 10 u and 11 u) are stud-

ied in the mass spectrometer shown schematically in Fig. 25.6. Assume that

the values B = B′ = 250 mT and E = 60 kV/m are used in this experiment.

(a) What is the speed of the ions in the velocity selector? (b) What is the

spacing between the marks produced on the photographic plate by the ions of

boron?

(16) A strip of copper of thickness t = 0.4 mm and width d = 5 mm is placed in a

uniform magnetic field
→
B of magnitude 1.5 T perpendicular to the strip, see

Fig. 25.24. When a current I = 20 A passes though the strip, a Hall potential

difference �VH is generated across the width of the strip. The number of charge

carriers per unit volume for copper is 8.47 × 1028 electrons/m3. (a) Find the

Hall coefficient RH for the copper strip. (b) How large is the Hall voltage �VH

across the strip? (c) Find the magnitude of the Hall electric field EH.
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t

d

B

I
0

Voltmeter

HVΔ

Fig. 25.24 See Exercise (16)

(17) A silver slab of thickness t = 1.5 mm and width d = 2.5 mm carries a current

I = 4 A in a region in which there is a uniform magnetic field
→
B of magnitude

1.25 T perpendicular to the slab. The Hall voltage �VH across the slab is found

to be 0.356 µV. (a) Calculate the density of the charge carriers in the slab.

(b) Compare your answer in part (a) to the density of atoms in the silver slab,

which has a densityρ = 10.5 × 103 kg/m3 and a molar mass M = 107.9 kg/kmol.

What is the conclusion that you can find from this comparison? (c) Find the

magnitude of the Hall electric field EH.

(18) A metal strip of thickness t = 1 mm and width d = 2 cm carries a current

I = 12.5 A in a region in which there is a uniform magnetic field
→
B of magni-

tude 1.6 T perpendicular to the strip, as shown in Fig. 25.25. The Hall voltage

�VH across the strip is measured to be 2.135 µV. (a) Calculate the drift speed

of the electrons in the strip. (b) Find the density of the charge carriers in the

strip. (c) Which point is at the higher potential, a or b?

Fig. 25.25 See Exercise (18)

I

t

d

a

b

B
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Section 25.4 Magnetic Force on a Current-Carrying Conductor

(19) A 1.5 m long straight stiff wire carries a current of 2 A and makes an angle 30◦

with a uniform magnetic field of 0.35 T. Find the magnitude of the force on the

wire.

(20) The L-shaped wire shown in Fig. 25.26 lies in the xy plane. In the presence of

a uniform magnetic field
→
B = 1.5

→
k (T), the wire carries a current of 2.5 A

from point a to point c. (a) Find the net force exerted on the wire. (b) Show that

this net force is the same as if the wire were a straight segment from point a to

point c.

Fig. 25.26 See Exercise (20)

B

y

Z

x
a b

c

3 cm

4 cm
I

(21) For the circuit shown in Fig. 25.27, find the magnitude and direction of the

force on each side, and find the resultant force.

Fig. 25.27 See Exercise (21)

a b

c

IB L 60°

(22) A straight horizontal wire has a length L = 20 cm and mass m = 0.02 kg. The

wire is hung by connecting it by massless flexible leads to an emf source. A

uniform magnetic field of magnitude B = 1.6 T is perpendicular to the wire, as

shown in Fig. 25.28. Find the necessary current needed to suspend the wire and

hence remove the tension in the flexible wire.

(23) If B = 0.2 T and I = 5 A in Fig. 25.29, find the force exerted on each segment

of the wire.
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Fig. 25.28 See Exercise (22)

I

L
B

Flexible leads

Fig. 25.29 See Exercise (23)

I

B

a b

c

d

e f
10 cm

5 cm
20 cm

10 cm
R = 5 cm

60°

I

(24) A circular loop of wire has a radius R and carries a current I. The loop is

placed in a magnetic field whose lines seem to diverge from a point on the

perpendicular axis of the circular loop and at a distance d from its center, see

Fig. 25.30. Find the total force on the loop.

Fig. 25.30 See Exercise (24)

d

θ

I

N

B R
I

Section 25.5 Torque on a Current Loop

(25) A circular coil of N = 40 turns has a radius r = 5 cm and carries a current

I = 2 A. The coil is placed in a uniform magnetic field of 0.5 T so that the

normal to the coil makes an angle θ = 30◦ with the direction of
→
B . (a) What is

the magnitude of the magnetic moment of the coil? (b) What is the magnitude

of the torque exerted on the coil?
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(26) For the current loop shown in the figure of exercise 21, find: (a) the magnitude

and direction of the loop’s magnetic moment. (b) the magnitude of the torque

on the loop and the direction in which it will rotate.

(27) What is the maximum torque exerted on a 400-turn circular coil of radius 0.5 cm

placed in a uniform magnetic field of magnitude 0.2 T if it carries a current of

1.5 A?

(28) A small, stiff, circular loop of radius R and mass m carries a current I. The loop

lies horizontally on a rough flat table in the presence of a horizontal magnetic

field of magnitude B. (a) What is the required minimum value of B so that one

edge of the loop will lift off the table? (b) What is the required value of B so

that one edge of the loop will lift off the table through an angle θ?

(29) The 240-turn rectangular coil shown in Fig. 25.31 carries a current of 1.5 A in

a uniform magnetic field of B = 0.25 T. Find the magnitude of the torque on

the loop and the direction in which it will rotate.

Fig. 25.31 See Exercise (29)

a b

c

IB

d

N S

10 cm

15
 c

m

(30) A rectangular 100-turn coil carries a current I = 1.75 A and has sides a = 40 cm

and b = 30 cm. The coil is hinged along the y-axis, so that its plane makes an

angle θ = 73◦ with the x-axis as shown in Fig. 25.32. (a) What is the magnitude

of the magnetic moment →
μ of the coil? (b) What angle does the vector →

μ make

with the x-axis. (c) In the presence of a uniform magnetic field
→
B = 0.8

→
i (T),

what is the magnitude of the torque exerted on the coil and what is the expected

direction of the coil’s rotation?

(31) A current I = 0.75 A flows in a quarter of a single circular loop of wire that has

a radius R = 5 cm. The loop lies in the xy plane and is hinged along the y-axis,

so that it can rotate about this axis, see Fig. 25.33. (a) What is the magnitude of

the magnetic moment →
μ of the coil? (b) Express the vector →

μ in terms of unit

vectors. (c) When a uniform magnetic field
→
B = [0.2

→
i + 0.3

→
j + 0.4

→
k ] (T)

is applied to the loop, express the torque acting on the coil in terms of unit

vectors? In which direction will the loop rotate?
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Fig. 25.32 See Exercise (30) y

z

x

a

b I

θ

Fig. 25.33 See Exercise (31) y

z

x

I

R

(32) The coil of the galvanometer shown in Fig. 25.34 has N = 35 turns where the

dimensions of each rectangular turn are 2 cm by 2.5 cm. For any position of the

coil, its plane is parallel to the magnetic field which has the value B = 0.4 T.

The galvanometer has a spring with a stiffness constant k = 5 × 10−6 N.m/rad

and gives a full-scale deflection if the current I going through it is 1 mA. What

is the full-scale deflection angle φ in radians and degrees?

Fig. 25.34 See Exercise (32)

Coil Spring

N S

PointerIron core

Scale

φ

0

I

m A

1

(33) Assume that the Earth’s magnetic field at the equator is uniform and northerly

directed at all points with a magnitude 5 × 10−5 T and that it extends out by



888 25 Magnetic Fields

Earth’s diameter (i.e. by 1.28 × 104 km). (a) Find the speed and time that a

singly-ionized uranium atom (m = 238 u, q =+e) would take to circulate the

Earth 20 km above the surface at the equator. (b) A cosmic-ray proton traveling

with a speed of 2.5 × 107 m/s is heading directly towards the center of the Earth

in the plane of the Earth’s equator. Estimate the radius of the proton’s path. Will

the proton hit the Earth?



Sources of Magnetic Field 26

In this chapter we complete the description of magnetic interactions by briefly explor-

ing the origins of magnetic fields.

26.1 The Biot-Savart Law

Based on quantitative experiments, Biot and Savart were able to arrive at a math-

ematical expression that describes the magnetic field at any point in terms of the

current or the charge that produces the field.

Consider a point P at a distance r from: (a) an element d→s chosen in the direction

of a steady current I, (b) a point charge q moving with velocity →
v , see Fig. 26.1.

Biot and Savart proposed that the magnetic field produced by the element, or by the

charge, would be:

d
→
B = μ◦

4π

I d→s × →̂r
r2 and

→
B = μ◦

4π

q →
v × →̂r

r2 (Biot-Savart law) (26.1)

where →̂r is a unit vector directed from d→s or q toward point P. The product I d→s is

called the differential current element, and μ◦ is a constant called the permeability

of free space’ which has the exact value:

μ◦ = 4π × 10−7 T.m/A (26.2)

H. A. Radi and J. O. Rasmussen, Principles of Physics, 889
Undergraduate Lecture Notes in Physics, DOI: 10.1007/978-3-642-23026-4_26,
© Springer-Verlag Berlin Heidelberg 2013
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P

r

I

θ

d B

d s

P

r
θ

q

B(a) (b)

r̂ r̂

Fig. 26.1 (a) The differential magnetic field vector d
→
B at point P, which is located by a position vector

→r drawn from a differential current element I d→s to P. (b) In case of a point charge q moving with a

velocity →v , the magnetic field
→
B is related to the product q→v

To find the magnetic field
→
B created at some point by a current of an extended circuit,

we integrate Eq. 26.1 over all current elements as follows:

→
B = μ◦ I

4π

�
d→s × →̂r

r2 (26.3)

It is useful to compare the Biot-Savart law with Coulomb’s Law as follows:

Biot-Savart law (d
→
B ) Coulomb’s law (d

→
E )

d
→
B is due to differential current element

I d→s , a vector
d
→
E is due to differential charge dq, a scalar

1/r2 distance dependence 1/r2 distance dependence

Proportional to electric current I Proportional to electric charge dq

Lateral, perpendicular to the →r direction Radial, in the →r direction

Some Applications of the Biot-Savart Law

In some situations, the integrand of Eq. 26.3 needs lengthy mathematical steps. For

those interested, several mathematical and integration techniques are given at the

end of this book. In this section we avoid the complexity arising from integrating

Eq. 26.3 and only present the results for some cases.

1. Magnetic Field on the Extension of a Straight Wire

P
I

. (26.4)
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2. Magnetic Field Surrounding a Thin Straight Wire

P

I

a
1θ 2θ

B

(26.5)

3. Magnetic Field Surrounding a Very Long Straight Wire

P

I

a

×

a

P'

B

B

B

(26.6)

4. Magnetic Field Due to a Curved Wire Segment

θ

R

IBθ

R

IB × (26.7)

5. Magnetic Field at the Center of a Circular Wire Loop

R

B I

R

B I× (26.8)
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6. Magnetic Field on the Axis of a Circular Wire Loop

x

z
O

y

R

P

x

I

B (26.9)

7. Sketch of
→
B Along the Axis of a Loop and a bar Magnet

The magnetic
pattern of a

circular
current loop

Looks like

The magnetic

pattern of a

bar magnetI

N

S

N

S

Example 26.1

A point charge q = 6 µC is moving in a straight line with a velocity →
v = 5 ×

104 →
i (m/s). When the charge is at the location P(3 m, 4 m, 0), find the magnetic

field produced by this point charge at the origin o, see Fig. 26.2.

Fig. 26.2

v 4
5 10 (m /s)i= ×

3 m
x

z

y

r

θ

o

q
(3 m, 4 m, 0)P

4 m +
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Solution: For a point charge q moving with a velocity →
v , Eq. 26.1 leads to:

→
B = μ◦

4π

q →
v × →̂r

r2

From the figure, we can find r and →̂r (from the point charge) as follows:

→r = [−3
→
i − 4

→
j ](m)

r =
√

(−3 m)2 + (−4 m)2 = 5 m

→̂r =
→r
r

= [−3
→
i − 4

→
j ](m)

5 m
= −0.6

→
i − 0.8

→
jThus:

Substituting the above results into the equation for
→
B we obtain:

→
B = μ◦

4π

q →
v × →̂r

r2 = μ◦
4π

q (v
→
i ) × [−0.6

→
i − 0.8

→
j ]

r2 = −μ◦
4π

q v (0.8
→
k )

r2

= −(10−7 T.m/A)
(6 × 10−6 C)(5 × 104 m/s)(0.8)

(5 m)2

→
k

= −9.6 × 10−10 →
k (T)

Indeed this is a very small value for the magnetic field produced by this charge,

which is equivalent to the charge of about 4 × 1013 protons.

Example 26.2

Two very long parallel straight wires carry currents that are perpendicular to the

page. Wire ©1 carries a current I1 = 3 A out of the page and passes through the

origin o of the x-axis, while wire ©2 carries a current I2 = 2 A into the page and

passes through the x-axis at a distance d = 0.6 m from the origin. (a) On the

x-axis, show the directions of the magnetic fields, to right of wire ©2 , between the

two wires, and to the left of wire ©1 . (b) To the right of wire ©2 , find a distance a

at which the resultant magnetic field is zero.

Solution: (a) Using the right hand rule presented in the figure of Eq. 26.6, we can

draw the direction of
→
B1 of wire ©1 and

→
B2 of wire ©2 on the three regions of the

x-axis as shown in Fig. 26.3:
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(b) From Eq. 26.6 the magnitudes of the magnetic-field vectors
→
B1 and

→
B2 at

point P are:

B1 = μ◦ I1

2π(d + a)
, and B2 = μ◦ I2

2πa

PO
×1I 2I 1B

1B

1B
2B

2B2B

d a

For  I1 > I2 x

Fig. 26.3

When the magnitudes of the opposite two vectors
→
B1 and

→
B2 are equal, the

resultant magnetic field becomes zero. Therefore, we have:

μ◦ I1

2π(d + a)
= μ◦ I2

2πa
⇒ I1

d + a
= I2

a
⇒ aI1 = I2(d + a)

⇒ a

(
I1

I2
− 1

)
= d

Thus: a = d(
I1

I2
− 1

) = 0.6 m(
3 A

2 A
− 1

) = 1.2 m

Since I1 > I2, P is the only point at which Bnet = 0 on the x-axis.

Example 26.3

Two straight wires ©1 and ©3 , each of length L = 4 cm, are connected by a quarter

circular arc wire ©2 of radius R = 3 cm, as shown in Fig. 26.4. Determine the

magnitude and direction of the magnetic field at the center P of the arc, when the

current I is 2 A.

Solution: There is no contribution to the field at point P from the lower wire ©1 ,

since P is on the extension of the wire, i.e. B1 = 0.

From Eq. 26.7, the quarter circular arc wire ©2 has a magnetic field:

B2 = μ◦ I

8R
(Directed out of the page)
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P

R

LL

1θ
2θ

I

Fig. 26.4

According to Eq. 26.5, point P is at a distance R = 3 cm from the straight wire

©3 and subtends two angles with the wire, θ1 and θ2. From the figure, we get:

cos θ1 = L/
√

L2 + R2 = 4/5 and cos θ2 = cos 90◦ = 0

Thus: B3 = μ◦ I

4πR
(cos θ1 + cos θ2) = μ◦ I

5πR
(Directed out of the page)

The total magnetic field is the superposition of the fields from the three wires.

Thus, the resultant magnetic field is:

B = B1 + B2 + B3 = 0 + μ◦ I

8R
+ μ◦ I

5πR

= μ◦ I

R

(
1

8
+ 1

5π

)
= (4π × 10−7 T.m/A)(2A)

3 × 10−2 m

(
1

8
+ 1

5π

)

= 1.58 × 10−5 T = 15.8 µT (Directed out of the page)

26.2 The Magnetic Force Between Two Parallel Currents

Figure 26.5 shows a portion of length � of two long straight parallel wires separated

by a distance a and carrying currents I1 and I2 in the same direction. Since each wire

lies in the magnetic field established by the other, each will experience a magnetic

force.

Wire ©2 sets up a magnetic field
→
B2 perpendicular to wire ©1 . According to

Eq. 25.19, the magnetic force on a length � of wire ©1 is
→
F1 = I1

→
� × →

B2, where the

direction of
→
F1 is toward wire ©2 . Since

→
� ⊥ →

B2, the magnitude of
→
F1 is F1 = I1 � B2.

When we substitute with the magnitude of B2 given by Eq. 26.6, we get:
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F1 = I1 � B2 = I1 �

(
μ◦ I2

2πa

)
= μ◦ I1 I2

2πa
� (26.10)

Fig. 26.5 Two parallel wires

carrying currents in the same

direction attract each other.

Wire ©2 sets up a magnetic

field
→
B2 at wire ©1 and wire

©1 sets up a magnetic field
→
B1

at wire ©2

2B
r

1B
r

1F
r

2F
ra

1I

2I

We can show that the magnetic force
→
F2 on wire ©2 has the same magnitude as

→
F1 but

is opposite in direction, i.e. the two wires attract each other. We denote the magnitude

of the force between the two wires by the symbol FB and write this magnitude per

unit length as:

FB

�
= μ◦

2π

I1I2

a
(26.11)

If the two currents were antiparallel (i.e. the wires were parallel but the currents were

opposite in direction), then the wires would repel.

Spotlight

Parallel currents attract and antiparallel currents repel.

Example 26.4

A battery of 12 V is connected to a resistor of resistance R = 3 � by two parallel

wires each of length L = 50 cm and separated by a distance a = 2 cm, see Fig. 26.6.

All the connecting wires have negligible resistance. Find the magnitude of the

magnetic force between the two wires. Will the wires repel or attract each other?

Solution: According to the figure, the battery sets a clockwise current I in the

circuit, and the current in the parallel two wires have the same value but opposite

direction. The value of this current is:

I = �V

R
= 12 V

3 �
= 4 A

From Eq. 26.11, the magnetic force between the two wires is:
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L

R+
− aΔV = 12V

I

I

Fig. 26.6

FB = μ◦
2π

I2

a
L = 4π × 10−7 T.m/A

2π

(4 A)2

2 × 10−2 m
× 50 × 10−2 m

= 8 × 10−5 N

Since the currents in the two wires are antiparallel, the wires will repel each other,

but with a very small force due the smallness of μ◦.

26.3 Ampere’s Law

When Oersted traced the magnetic field near a long vertical wire carrying a current

I by a compass, he found that its needle deflects in a direction tangent to any circu-

lar path concentric with the wire, i.e. the needle points in the direction of
→
B , see

Fig. 26.7.

Fig. 26.7 The compass

needle deflects in a direction

tangent to a circle of radius r,

which is the direction of
→
B

created by I

I
B
r

r

The same results can be obtained when we use the Biot-Savart Law to calculate

the magnetic field around a long straight wire carrying a current. The magnitude of
→
B was given by Eq. 26.6.

The work of Oersted and Biot-Savart was continued by Ampere. Ampere’s work

lead to what is now known as Ampere’s law, a law used in the cases of steady currents,

which can be stated as follows:
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Ampere’s law

The line integral of the tangential magnetic field around a closed path is

proportional to the net conduction steady current I enclosed by the path.

That is:

� →
B • d→s = μ◦ I (Ampere’s law) (26.12)

As a check for the long wire of Fig. 26.7, let us consider an element d→s on the

circular path and integrate the product
→
B • d→s over this closed path. Since

→
B is

parallel to d→s , then
→
B • d→s = B ds. Thus:

� →
B • d→s =

�
B ds = B

�
ds = B(2πr) (26.13)

By Ampere’s law, this result should be equal to μ◦ I. Therefore:

B = μ◦ I

2πr
(26.14)

This result is in complete agreement with Eq. 26.6 obtained by using the Biot-Savart

law; however, Ampere’s law saves considerable effort when we deal with problems

that have some symmetry.

Some Applications of Ampere’s Law

In these applications, we avoid solving the integrand of Eq. 26.12 and only present

the results of some well-known cases.

1. Magnetic Field Inside and Outside a Long Straight Wire

I

r
r

R
B

BAmperian
loops

(out of page)I

(26.15)
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2. Magnetic Field of a Solenoid of n Turns per Unit Length

NS

I

I

I

I

Packed solenoid

Solenoid
(26.16)

3. Magnetic Field of a Toroid of N Total Turns (or n turns/m)

I

B

r

Amperian
loop

(26.17)

4. Magnetic Field Produced by an Infinite Current Sheet

B

B

Current per unit length    along the x direction
(out of page)

x

y

λ

(26.18)
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Example 26.5

A long wire of radius R = 10 mm carries a current I = 3 A. What are the magni-

tudes of the magnetic field at a point 5 mm and a point 50 mm from the axis of

the wire?

Solution: For a point inside the wire we use Eq. 26.15 for r ≤ R :

B = μ◦ I

2πR2 r = (4π × 10−7 T.m/A)(3 A)

(2π)(10 × 10−3 m)2 × (5 × 10−3 m) = 3 × 10−5 T

For a point outside the wire we use Eq. 26.15 for r ≥ R :

B = μ◦ I

2πr
= (4π × 10−7 T.m/A)(3 A)

(2π)(50 × 10−3 m)
= 1.2 × 10−5 T

Example 26.6

A solenoid of length L = 0.5 m carries a current I = 2 A. The solenoid consists

of six closely-packed layers, each of 800 turns. What is the magnitude of the

magnetic field inside the solenoid?

Solution: The diameter of winding does not enter into the solenoid Eq. 26.16.

The number of turns per unit length is:

n = (No. of layers)(No. of turns per layer)

L
= 6 × 800 turns

0.5 m
= 9,600 turns/m

Since n is large, then from Eq. 26.16 we have:

B = μ◦ n I = (4π × 10−7 T.m/A)(9,600 turns/m)(2 A) = 2.41 × 10−2 T

Example 26.7

In a fusion reactor, a toroid has inner and outer radii a = 0.5 m and b = 1.5 m,

respectively. The toroid has 900 turns and carries a current of 12 kA. What is the

magnitude of the magnetic field at a point located on a circle having the average

radius of the toroid?
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Solution: With R = (a + b)/2 = (0.5 + 1.5)/2 = 1 m, Eq. 26.17 gives:

B = μ◦ N I

2πR
= (4π × 10−7 T.m/A)(900 turns)(12 × 103 A)

(2π)(1 m)
= 2.16 T

26.4 Displacement Current and the Ampere-Maxwell Law

Ampere’s law is incomplete when the conduction current is not steady. We can show

this by considering the region near a parallel-plate capacitor while the capacitor

is charging, see Fig. 26.8a. A variable conduction current i = dq/dt reaches one

plate and the same conduction current i leaves the other plate. There is no current

flow across the space between the plates. Experiments show the establishment of

a magnetic field between the two plates as well as on both sides of the plates. In

addition, experiments show that the value of
� →

B • d→s is the same for the three

circular loops labeled ©1 , ©2 , and ©3 in Fig. 26.8a. But according to Ampere’s law,� →
B • d→s must be zero for loop ©2 , because the conduction current is zero.

B
B

Bq+ q− q+ q−

E

d A

Gaussian
surface E

(a) (b)
id

Ri i i i

Fig. 26.8 (a) The displacement current id between the plates of a capacitor. (b) The Gaussian surface

that encloses the varying charge q

Maxwell solved this problem by postulating an additional term to the right side of

Ampere’s law that is related to the changing electric field between the plates of the

capacitor. This term is referred to as the displacement current id between the plates.

This current is defined as:

id = ε◦
d�E

dt
(26.19)

The displacement current id between the plates is equivalent to the conduction current

i in the wires, i.e. id = i, and hence produces the same magnetic effects observed

experimentally, see Fig. 26.8a.

Maxwell added the displacement current id to the varying conduction current i

and expressed Ampere’s law as follows:
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� →
B • d→s = μ◦ (i + id)= μ◦

(
i + ε◦

d�E

d t

)
(Ampere–Maxwell law) (26.20)

When there is a conduction current but no change in electric flux (only like loops

©1 and ©3 ), the second term is zero. When there is a change in electric flux but no

conduction current (only like loop ©2 ), the first term is zero.

Spotlight

Magnetic fields are produced both by conduction currents i and by displacement

currents id, created by a time varying electric flux.

To establish the relation Eq. 26.20, we apply Gauss’s law for the Gaussian surface

shown in Fig. 26.8b. According to Gauss’s law, see Eq. 21.7, this surface encloses a

net charge q, and we have:

�E =
� →

E • d
→
A = q

ε◦
(26.21)

As q changes,
→
E changes too, and the rate at which q changes gives the displacement

current postulated by Maxwell. Thus:

id = dq

dt
= ε◦

d�E

dt
(26.22)

Example 26.8

The circular capacitor of Fig. 26.8 a has a radius R = 10 cm and a charge

q = (4 × 10−4 C) sin(2 × 104 t) that varies with time t. In the region between the

plates, find the displacement current and the maximum value of the magnetic field

at radius r = 15 cm.

Solution: From Eq. 26.22, we find the displacement current as:

id = dq

dt
= d

dt
[(4 × 10−4 C) sin(2 × 104 t)] = (8 A) cos(2 × 104 t)

For a maximum displacement current (id)max of 8 A at a point between the plates,

we use Eq. 26.15 for r ≥ R to find Bmax :

Bmax = μ◦(id)max

2πr
= (4π × 10−7 T.m/A)(8 A)

(2π)(15 × 10−2 m)
= 1.07 × 10−5 T
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26.5 Gauss’s Law for Magnetism

As in the case of an electric flux, we calculate the magnetic flux throughout a particular

surface S, see Fig. 26.9, as follows:

�B =
� →

B • d
→
A (26.23)

The SI unit for the magnetic flux is tesla-square meter, which is called weber (abbre-

viated Wb). Thus, 1 weber = 1 Wb = 1 Tm2.

θ
d A

B
dA

Fig. 26.9 The differential surface vector area d
→
A is perpendicular to the differential area dA and pointing

outwards. When the magnetic field
→
B makes an angle θ with d

→
A , the differential flux d�B is

→
B • d

→
A

Since magnetic fields form closed loops, i.e. the magnetic field lines do not begin

or end at any point, and for a closed surface the number of lines entering that surface

equals the number of lines leaving it. Thus, the net magnetic flux over a closed surface

is zero. This is known as Gauss’s law for magnetism and can be stated as:

Gauss’s Law for Magnetism

The net magnetic flux throughout any closed surface is always zero:

� →
B • d

→
A = 0 (Gauss’s law for magnetism) (26.24)

Example 26.9

Find the net magnetic flux through the closed surfaces S1 and S2 of Fig. 26.10,

which are represented by dashed lines intersecting the page.

Fig. 26.10
B 2S

1S

NS
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Solution: According to Gauss’s law for magnetism, we must have:

�
S1

→
B • d

→
A = 0, and

�
S2

→
B • d

→
A = 0

Notice that surface S2 encloses only the north pole of the magnet, and that the

south pole is associated with the left boundary of S2.

26.6 The Origin of Magnetism

We have seen how to generate a magnetic field by allowing an electric current to pass

through a wire. Moreover, we found that the magnetic pattern of a circular current

loop has a North Pole and a South Pole with a magnetic dipole moment →
μ producing

a magnetic pattern that looks like the magnetic pattern produced by a bar magnet.

(Searches for magnetic monopoles in cosmic rays or elsewhere have been negative.)

In addition, there are two subatomic ways that produce a magnetic field in space,

each one involving a magnetic dipole moment. These require an understanding of

quantum physics, which is beyond the scope of this study. Therefore, we shall only

begin our study by presenting the results of the classical model of atoms and electrons.

Orbital Magnetic Dipole Moments of Atoms

In the classical Bohr model of hydrogen atoms, we assume that an electron of mass

me and charge −e moves around a fixed nucleus with a constant speed v in a circular

orbit of radius r, see Fig. 26.11.

r
A r

e−
μ

L

-
I

Fig. 26.11 The classical model of a hydrogen atom, where an electron moves with a constant speed in

a circular orbit about a nucleus. The direction of the associated current is opposite to the direction of the

electron’s motion
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Because the electron travels a circumference 2πr in an interval of time T = 2πr/v,

the current I associated with this motion is:

I = e

T
= ev

2πr
(26.25)

The magnitude of the orbital magnetic dipole moment associated with this orbiting

current is μ� = IA = πr2I, where A is the circular area enclosed by the electron’s

orbit. Thus, using Eq. 26.25, we get:

μ� = πr2I = 1
2 e v r (26.26)

From the definition of the orbital angular momentum
→
L = →r × →p , where →p = me

→
v

is the momentum of the electron, we see that the angle between →r and →p is 90◦.
Then L = mevr and μ� and L are given by:

μ� = e

2me
L (26.27)

Because the electron is a negatively charged particle, the vectors →
μ� and

→
L are

opposite to each other, see Fig. 26.11. Thus:

→
μ � = − e

2me

→
L (26.28)

The orbital angular momentum
→
L cannot be measured. Instead, only its compo-

nents along an axis can be measured. A fundamental outcome of quantum physics is

that the orbital angular momentum and its components are quantized (which means

having discrete restricted values). The quantization rules of
→
L and its component

along the z axis, Lz, have only the values given by:

L = √
�(� + 1) �, (� = 0, 1, 2, . . .)

Lz = m� �, (m� = −�, . . . ,−1, 0,+1, . . . ,+�)
(26.29)

where � is the orbital quantum number, m� is the orbital magnetic quantum number,

� = h/2π, and h is an ever-present constant in quantum physics known as Planck’s

constant, which has the value:

h = 6.63 × 10−34 J.s and � = 1.05 × 10−34 J.s (26.30)

Figure 26.12 displays a vector model for the orbital angular momentum in case

of �= 1.
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x
y0m =

1m = +

1m = −−

+

Z

For =

z

1

Fig. 26.12 For every value of Lz = m� �, there is an equal probability of finding
→
L anywhere on the

surface of a symmetrical cone about the z axis. The vector
→
L rotates randomly about this axis, such that

it has a constant value
√

�(� + 1) � and a constant component Lz = m� �, but Lx and Ly are unknown and

satisfy the average values Lx = Ly = 0

We can relate the component μ�,z to Lz by rewriting Eq. 26.28 in component

form as follows:

μ�,z = −m�

e�

2me
= −m� μB (26.31)

where the quantity μB is called the Bohr magneton and is given by:

μB = e�

2me
= 9.27 × 10−24 J/T(≡A.m2) = 5.79 × 10−5 eV/T (26.32)

When an electron is placed in an external magnetic field
→
B, a torque →

τ = →
μ � × →

B

is exerted on its orbital magnetic dipole moment. This reminds us of the correspond-

ing equation for the torque exerted by an electric field
→
E on an electric dipole moment

→p , τ = →p × →
E ; see Eq. 22.39. In each case, the torque exerted by the field (either

→
B or

→
E ) is equal to the vector product of the dipole moment and the field. In strict

analogy to the U =−→p •
→
E , see Eq. 22.42, a potential energy U� can be associated

with the orientation of the orbital magnetic dipole moment →
μ�, and it is given by:

U� = −→
μ� •

→
B (26.33)

If the direction of the magnetic field is taken to be along the z-axis, then the orientation

potential energy can be written as:

U� = −μ�,z B (26.34)
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Quantization of the component of the orbital magnetic moment gives:

U� = +m�

e�

2me
B or U� = +m� μBB (26.35)

We used the word “orbital” in both classical and quantum studies, but in quantum

physics we must make it clear that all electrons do not orbit the atomic nucleus like

planets orbiting the sun.

Although all materials contain electrons, most of them do not exhibit magnetic

properties. The main reason is due to the cancelation of the randomly oriented orbital

magnetic dipole moments of atoms. Then, for most materials the magnetic effect

produced by the electronic orbital motion is either zero or very small.

Spin Magnetic Dipole Moments of Electrons

In addition to the orbital angular momentum
→
L , an electron has an intrinsic angular

momentum called the spin angular momentum (or just spin)
→
S . The vector

→
S is a

purely quantum-mechanical physical quantity that has no classical analog. Associ-

ated with this spin is an intrinsic-spin magnetic dipole moment →
μs. Experiments

indicate that the
→
S and Sz are quantized and related to →

μs and μs,z as follows:

S = √
s(s + 1) � (s = 1

2 ), Sz = ms � (ms = − 1
2 ,+ 1

2 )

→
μs = − e

me

→
S , μs,z = −2msμB (ms = − 1

2 ,+ 1
2 )

(26.36)

where s is the spin quantum number and ms is the spin-projection magnetic quantum

number. There are two possibilities of finding the atomic electron, either in a state

with ms = − 1
2 or in a state with ms = + 1

2 .

When the electron is placed in an external magnetic field
→
B, the potential energy

Us associated with orientation of the spin magnetic dipole moment →
μs is similarly

given by:

Us = −→
μs •

→
B (26.37)

When
→
B is along the z-axis, μs,z can take only two possible values (up or down),

and hence, the potential energy Us takes the two values:

Us = −μs,z B = ±μB B =

⎧⎪⎨
⎪⎩

+μB B if ms = + 1
2 (then μs,z = −μB)

−μB B if ms = − 1
2 (then μs,z = +μB)

(26.38)
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In both cases,
→
S will rotate about

→
B with angular frequency given by:

→
ω = μB

�

→
B (26.39)

In addition, the lowest energy (−μB B) occurs when μs,z is lined up with
→
B and

the highest energy (+μB B) occurs when μs,z is in the opposite direction of
→
B ,

see Fig. 26.13. The difference in energy between these two orientation levels is

�Us = 2 μB B.

sμr
3 / 4

1
2sm =+/ 2+

z
ω

B

S

S

sμr
r

r

B

1
2sm =−

3 / 4

/ 2−ω

E
°

B
E E Bμ+ = +

°

BBμ

B Bμ

Planexy

Planexy
B

E E Bμ− = −°

Fig. 26.13 In the presence of a magnetic field
→
B , the energy E◦ of the electron splits into two levels with

a difference of 2 μB B. In each level,
→
S (or →μs) will rotate about

→
B with angular frequency →ω = μB

→
B /�

Protons and neutrons have intrinsic magnetic dipole moments given by similar

formulas, but are an order of 103 smaller than that of the electron. This is because

the mass of proton mp and the mass of neutron mn are much greater than the mass

of the electron me.

26.7 Magnetic Materials

Some materials exhibit weak magnetic properties, and others exhibit strong magnetic

properties due to the alignment of the magnetic moments of their atoms. We consider

a small volume V of one of these materials and assume that the magnetic moment of

a typical atom/molecule is →
μatomic. Then the total magnetic moment within V is the
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vector sum
∑ →

μatomic. The magnetic state of this material is described by a quantity

called the magnetization vector
→
M and is defined as:

→
M =

∑ →
μatomic

V
(26.40)

Spotlight

The magnetization of a material is defined as the magnetic moment per unit

volume.

The unit of magnetization is A/m. If the atomic magnetic dipole moments of a

magnetic material are randomly oriented, or there are none, then
∑ →

μatomic = 0 and
→
M = 0.

Consider a region in which a current-carrying conductor produces a magnetic

field
→
B◦. If this region is filled with a magnetic material that produces a magnetic

field
→
BM , then the total magnetic field in this region will be:

→
B = →

B◦ + →
BM (26.41)

To find the relation between
→
BM and

→
M , we consider a solenoid of length L having

N turns and carrying a current I. In vacuum the magnetic field inside the solenoid

is given by Eq. 26.16 as B◦ = μ◦ n I = μ◦ N I/L. Multiplying and dividing the right

hand side of this equation by the cross-sectional area A of the solenoid allows us to

write this equation in terms of the total magnetic moment of all the solenoid loops∑
μcoil = N I A and the solenoid volume V = LA as:

B◦ = μ◦ n I = μ◦
N I A

LA
= μ◦

∑
μcoil

V
(26.42)

This relation can be written in vector form as:

→
B◦ = μ◦

∑ →
μcoil

V
(26.43)

When a magnetic material fills the solenoid, the contribution resulting from the

alignment of the atomic-induced magnetic dipole moments
∑ →

μatomic produces a

magnetic field
→
BM that can be written in a form similar to Eq. 26.43 as:

→
BM = μ◦

∑ →
μatomic

V
(26.44)
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The ratio
∑ →

μatomic/V was defined in Eq. 26.40 as the magnetization vector
→
M of

the magnetic material. Thus:

→
BM = μ◦

→
M (26.45)

Therefore, the total magnetic field inside the solenoid will be:

→
B = →

B◦ + μ◦
→
M (26.46)

In Eq. 26.43, it is convenient to introduce the magnetic field strength
→
H =∑ →

μcoil/V . This field is a quantity related to the magnetic field resulting from the

conduction current. Therefore:

→
B◦ = μ◦

→
H (26.47)

Thus, Eq. 26.46 can be written as:

→
B = μ◦ (

→
H + →

M ) (26.48)

Note that
→
B is composed of μ◦

→
H (associated with the conduction current) and

μ◦
→
M (resulting from the magnetization of the material that fills the solenoid). Since

B◦ = μ◦ n I and B◦ = μ◦ H, then:

H = n I (Solenoid or a toroid) (26.49)

Magnetic materials are classified into three categories:

Diamagnetic where atoms have no permanent magnetic moments

Paramagnetic

Ferromagnetic

}
where atoms have permanent magnetic moments

26.8 Diamagnetism and Paramagnetism

When a diamagnetic or paramagnetic material is placed in an external magnetic field,

the magnetization vector
→
M is proportional to the magnetic field strength

→
H , and

we can write:

→
M = χ

→
H (26.50)
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where χ is a dimensionless factor called the magnetic susceptibility, which mea-

sures the responsiveness of a material to being magnetized.

Substituting Eq. 26.50 for
→
M into Eq. 26.48 gives:

→
B = μ◦(

→
H + →

M ) = μ◦ (
→
H + χ

→
H ) = μ◦(1 + χ)

→
H (26.51)

or:
→
B = μm

→
H (26.52)

where μm is called the magnetic permeability of the material and is related to its

magnetic susceptibility χ by the relation:

μm = μ◦(1 + χ)

⎧⎪⎨
⎪⎩

<μ◦ For diamagnetic materials

>μ◦ For paramagnetic materials

(26.53)

The factor Km = μm/μ◦ is called the relative permeability of the material.

Diamagnetic Materials

A material is considered diamagnetic if its atoms have zero net angular momentum

and hence no permanent magnetic moment. Diamagnetic materials interact weakly

with the applied magnetic field, in which case χ is very small negative value and
→
M is opposite to

→
H. This causes diamagnetic materials to be weakly repelled by a

magnet. Diamagnetism is present in all materials, but its effects are much smaller

than those in paramagnetic or ferromagnetic materials.

To understand this interaction we consider the motion of two electrons orbiting a

nucleus with the same speed but in opposite directions, see Fig. 26.14a. The magnetic

moments of the two electrons in this figure are in opposite directions and therefore

cancel.

In the presence of a uniform magnetic field
→
B directed out of the page, as shown

in Fig. 26.14b, both of the electrons experience an extra magnetic force (−e) →
v × →

B .

Thus:
• For the electron in the left of Fig. 26.14b, the extra magnetic force is radially

inward, increasing the centripetal force. If this electron is to remain in the same

circular path, it must speed up to →
v ′, so that mv′2/r equals the total newly increased

centripetal force. Therefore, its inward magnetic moment thus increases.
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• For the electron in the right of Fig. 26.14b, the extra magnetic force is radially

outward, decreasing the centripetal force. If this electron is to remain in the same

circular path, it must slow down to →
v ′′, so that mv′′2/r equals the total newly

decreased centripetal force. Therefore, its outward magnetic moment thus decreases.

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

e− e−The same
Nucleus

e− e−The same
Nucleus

(a)

(b)

′ ′′

Δ Δ

B B

Fig. 26.14 (a) Two atomic electrons orbiting a fixed nucleus with the same speed but in opposite

directions (separated for clarity). (b) When a magnetic field is applied out of the page, the magnetic force

increases the speed of the left electron and decreases the speed of the right one

As a result, the change in the magnetic moment of the two electrons is into

the page, opposite to the external applied magnetic field. Because the permanent

magnetic moments of the two electrons cancel each other, only an induced magnetic

moment opposite to the applied magnetic field will remain. The induced magnetic

moments that cause diamagnetism are of the order of 10−5 µB. This value is much

smaller than that of the permanent magnetic moments of the atoms of paramagnetic

and ferromagnetic materials. However, the alignments produced in the diamagnetism

decrease with temperature. Therefore, diamagnetism disappears in all materials at

sufficiently high temperatures.

Certain types of superconductors (a substance of zero electric resistance) exhibit

diamagnetism below some critical temperature. As a result, the superconductor can

repel a permanent magnet.
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Paramagnetic Materials

Atoms of paramagnetic materials have permanent magnetic moments that interact

with each other very weakly, resulting in a very small positive magnetic susceptibility

χ. Therefore,
→
M is in the same direction as

→
H . However, the thermal motion of the

molecules reduces the alignments, and this tends to randomize the magnetic dipole

moments’ orientations. The degree to which the magnetic moments line up with an

external magnetic field depends on the strength of the field and on the temperature.

Even in a very strong magnetic field B of 1 T and a typical atomic magnetic

moment μ of 1 μB, the difference in potential energy �U when the magnetic moment

is parallel the field (lower energy) and when the moment antiparallel the field (higher

energy) is:

�U = 2μBB = 2 × (5.79 × 10−5 eV/T)(1 T) = 1.2 × 10−4 eV

At a normal temperature T = 300 K, the typical thermal energy kBT is:

kBT = (8.62 × 10−5 eV/T)(300 K) = 2.6 × 10−2 eV

Therefore, kBT � 200 �U. Thus, at room temperature and even in a very strong

magnetic field, most of the magnetic moments will be randomly oriented unless the

temperature is very low.

In 1895, Pierre Curie discovered that M is directly proportional to the external

magnetic field B◦ and inversely proportional to the kelvin temperature, when B◦/T

is very small; that is:

M = C
B◦
T

(Curie’s law) (26.54)

where the constant C is a known as Curie’s constant. This law shows that M = 0 when

B◦ = 0. Even if B◦ is very large (∼2 T), deviation from Curie’s law can be observed

at extremely low temperatures (i.e. at a few kelvins). In addition, as B◦ increases (or

T decreases), Eq. 26.54 will no longer be valid, and quantum physics indicates that

the magnetization M approaches some maximum value Mmax, which corresponds to

a complete alignment of all permanent magnetic dipole moments.

Table 26.1 gives the magnetic susceptibility of some materials.
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Table 26.1 Magnetic susceptibility of some diamagnetic and paramagnetic materials at 300 K

Diamagnetic material χ Paramagnetic material χ

Bismuth −1.7 × 10−5 Aluminum 2.3 × 10−5

Carbon (graphite) −1.4 × 10−5 Calcium 1.9 × 10−5

Copper −9.8 × 10−6 Chromium 2.7 × 10−4

Carbon (Diamond) −2.2 × 10−5 Lithium 2.1 × 10−5

Gold −3.6 × 10−5 Magnesium 1.2 × 10−5

Lead −1.7 × 10−5 Niobium 2.6 × 10−4

Mercury −2.9 × 10−5 Oxygen 2.1 × 10−6

Nitrogen −5.0 × 10−9 Platinum 2.9 × 10−4

Silver −2.6 × 10−5 Potassium 5.8 × 10−6

Silicon −4.2 × 10−6 Tungsten 6.8 × 10−5

26.9 Ferromagnetism

Materials such as iron, cobalt, nickel, gadolinium, dysprosium, and alloys containing

these materials usually exhibit strong magnetic properties and are called ferromag-

netic materials. These materials contain permanent atomic magnetic moments that

tend to align even in the presence of a weak external magnetic field and remain mag-

netized after the magnetic field is removed. These alignments can only be understood

in quantum-mechanical terms.

Consider a specimen of ferromagnetic material, such as iron in its crystalline form.

Such a crystal would be made of microscopic regions called magnetic domains.

Each domain would be less than 1 mm wide and would have all its atomic magnetic

moments aligned. The boundaries between domains that have different magnetic-

moment orientations are called domain walls. Depending on the structure and type

of the material, the volume of each magnetic domain would vary from about 10−12

to 10−8 m3 and contain about 1018 to 1022 molecules.

If magnetic domains of a particular ferromagnetic material specimen are randomly

oriented as shown in Fig. 26.15a, then the entire specimen would not display a net

magnetic dipole moment.

As the unmagnetized ferromagnetic specimen is placed in an external magnetic

field
→
B◦ that increases gradually, then the specimen would experience the following

two types of domain interactions:
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• Reversible magnetization by domain growth:

When the applied magnetic field
→
B◦ is weak, a growth in volume of the domains that

are oriented along
→
B◦ occurs at the expense of those that are not, see Fig. 26.15b.

In this case, the specimen is magnetized, and this magnetization is reversible. That

is, we have reversible domains when
→
B◦ is removed.

• Irreversible magnetization by domain alignments and rotations:

As the applied magnetic field
→
B◦ strengthens, the domains align even more, and

after a particular threshold the material manifests irreversible domains if
→
B◦ is

removed. But if the magnetic field
→
B◦ becomes even stronger, the irreversible

domains rotate and start to align more and more in the direction of
→
B◦, see

Fig. 26.15c. In both cases, the specimen remains magnetized at ordinary tempera-

tures even after
→
B◦ is removed.

Irreversable domain rotation

Reversable domains

Irreversable domains

H

M

(c)(a) (b)

(d)

B° B°

Fig. 26.15 (a) An unmagnetized specimen having magnetic domains with random magnetic dipole

orientations. (b) A growth in volume of domains that are oriented along
→
B◦. (c) When the magnetic field

becomes much stronger, the domains rotate and align more in the direction of
→
B◦. (d) Variation of the

magnetization M as a function of H (or B◦ = μ◦ H). As H increases, the domains become more and more

aligned until saturation is reached
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For a ferromagnetic material, χ and hence μM are very large, but the relation

between
→
M and

→
H is not linear. This is because μM is not only a characteristic

of ferromagnetic material, but also depends on
→
B◦ and on the previous state of the

material, as we will see shortly.

Hysteresis

Measurements of the magnetic properties are usually done using a toroid (or a sole-

noid) of N turns with an initially unmagnetized ferromagnetic core, see Fig. 26.16.

Suppose that when the switch S in Fig. 26.16 is open (i.e. the current I in the

windings is zero and B◦ = 0), the ferromagnetic core is unmagnetized (B = 0). Then,

we perform the following:

°

S Ferromagnetic
 core

0

G

°

°
°°

°

Reversing switch

I

Fig. 26.16 A circuit used to study the properties of a ferromagnetic material that fills the core of a toroid,

where the magnetic flux is measured by a galvanometer

1. When we close the switch and slowly increase the current in the circuit, the

toroid magnetic field B◦ = μ◦ H increases linearly with I, but the total magnetic

field B = μm H (B  B◦) follows the curve shown in the magnetization curve

of Fig. 26.17. Initially, at point O, the domains of the core are randomly oriented.

As B◦ increases gradually, the domains become more and more aligned until we

reach the saturation point a where nearly all domains are aligned. Increasing B◦
further has a small effect on increasing B.

2. Next, we reduce the external magnetic field by decreasing the current in the coil

until I becomes zero, We notice that the curve follows the path ab, where B◦ = 0

at point b. This point indicates that B �= 0 even though the external field B◦ is

zero (that is B = BM). In other words, some permanent magnetism remains, and

the domains do not become completely random as they were initially.
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Fig. 26.17 Hysteresis curve

for a ferromagnetic material

B Hμ=° °O

a
b

c

d
e

f

 mB Hμ=

3. When the direction of the current is reversed and increased gradually (i.e. the

direction of the external magnetic field B◦ is reversed), enough domains reorient

their magnetic moments until the material is again unmagnetized at point c, where

B = 0.

4. An increase in the reverse current causes the ferromagnetic material to be mag-

netized in the opposite direction, until we reach the saturation at point d.

5. Finally, if the current is again reduced to zero and then increased in the original

positive direction, the total magnetic field follows the path defa.

We notice that the magnetic field did not pass through the origin (point O) in the

loop abcdefa. This effect is called magnetic Hysteresis, while this loop is called the

Hysteresis loop. Points b and e on the hysteresis loop indicate that the ferromagnetic

material has a ‘memory’ because it remains magnetized even when the external field

is removed. The area of this cycle is proportional to the thermal energy used to align

the domains.

The area of the hysteresis loop depends on the properties of the ferromagnetic

material under investigation. Two classifications arise as follows, depending on how

big or small the loop area is:
1. Hard ferromagnetic material (Hard in a magnetic sense): If the hysteresis loop

is wide as shown in Fig. 26.18a, the material can turn into a strong permanent

magnet that cannot be easily demagnetized by an external magnetic field.

2. Soft ferromagnetic material (Soft in a magnetic sense): If the hysteresis loop

is narrow, as shown in Fig. 26.18b, the material can be easily magnetized and

demagnetized (such as iron, which is perfect for making electromagnets and

transformers). An ideal soft ferromagnetic material would exhibit no hysteresis

and would therefore have no residual magnetization at all.
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A ferromagnetic material can be demagnetized by hitting it hard, heating it, or

reversing the magnetizing current repeatedly while decreasing its magnitude, see

Fig. 26.18c. As an example, the heads of a tape recorder can demagnetize tapes this

way.

B°

B B

B° B°

B

(c)(a) (b)

Hard Soft

Fig. 26.18 Hysteresis curve for: (a) a hard ferromagnetic, (b) a soft ferromagnetic. (c) Demagnetizing

a ferromagnetic material can be done by successive hysteresis loops

Ferromagnetic materials are no longer ferromagnetic above a critical temperature

called the Curie temperature, TCurie. Above this temperature, they are generally

paramagnetic (for iron this temperature is about 1,040 K = 770◦C).

Example 26.10

A toroid has 100 turns/m of wire carrying a current of 3 A. The core of the toroid

is filled with powdered steel whose magnetic permeability μm is 100 μ◦ (i.e. with

relative permeability Km = μm/μ◦ = 100). Find the magnitude of the magnetic

field strength H, the magnitude of the magnetic field B◦ produced by the toroid,

and the magnitude of the magnetic field B inside the steel.

Solution: Using Eq. 26.49, we find H as follows:

H = n I = (100 turns/m)(3 A) = 300 A/m

Using Eq. 26.17, we find the B◦ as follows:

B◦ = μ◦ H = (4π × 10−7 T.m/A)(300 A/m) = 3.77 × 10−4 T
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Then using Eq. 26.52, we find B in the steel core as follows:

B = μm H = 100 × (4π × 10−7 T.m/A)(300 A/m) = 0.038 T

The value of B inside the steel is about 100 times the value B◦ in the absence of

a steel core.

Example 26.11

(a) A substance has a magnetization of magnitude M = 106 A/m and a magnetic

field of magnitude B = 4 T. Find the magnitude of the magnetic field strength

H that produces this field. (b) A solenoid of n = 590 turns/m carries a current

I = 0.3 A. If the solenoid’s core is iron of magnetic permeability μm = 4,500 μ◦,
find the magnitude of the magnetic field in its core.

Solution: (a) Using Eq. 26.48, we find B as follows:

B = μ◦(H + M) ⇒ H = B

μ◦
− M = 4 T

4π × 10−7 T.m/A
− 106 A/m

= 2.2 × 106 A/m

(b) Using Eqs. 26.52 and 26.49, we find B as follows:

B = μm H = 4,500 μ◦n I

= (4,500)(4π × 10−7 T.m/A)(590 turns/m)(0.3 A) = 1 T

26.10 Some Applications of Magnetism

Electromagnets

If a soft iron rod is placed inside a solenoid carrying a current, the magnetic field

increases greatly due to the domain alignments. This setup is referred to as an elec-

tromagnet. The alloys of iron used in an electromagnet gain and lose magnetism

quite quickly when the current in the solenoid is turned on or off. Electromagnets

are used in many applications, such as in motors, generators, etc.

One simple use of electromagnets is in doorbells, where a rod of soft iron is

attached to a spring and partially fitted inside a coil, see Fig. 26.19a. Pushing the

doorbell button closes the circuit and the coil becomes a magnet and hence exerts
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a force on the rod. The rod is then pulled into the coil and strikes the bell, see

Fig. 26.19b. If the circuit is then opened, the rod quickly loses its magnetization and

the spring pulls the rod back to its initial position.

Solenoid

°°

Iron rodSpring

Voltage°°
°
Voltage°°Switch

I

(a) (b)

Bell

°

Fig. 26.19 Using the property of soft iron in doorbells. (a) The initial state when the circuit is open. (b)

The circuit is closed

Magnetic Circuit Breakers

If the current in a circuit is larger than it should be, the circuit wires might become very

hot and may burn. Circuit breakers are installed to prevent overloading by the current

in a circuit. These ensure that the current never exceeds a particular value. Modern

circuit breakers contain a magnetic sensing coil as shown in Fig. 26.20a. Inside the

coil of this figure is a non-magnetic tube containing a spring-based moving iron rod.

When the contacts are closed by a switch and the operating current I is less

than or equal to the maximum current Imax rated for this circuit breaker, the current

flowing through the sensing coil establishes a magnetic field around it. In this case,

the field is not strong enough to pull the armature, so the contacts are kept closed, as

shown in Fig. 26.20a. However, when the current exceeds Imax, the strength of the

magnetic field increases enough for the rod to compress the spring and move toward

the pole piece. Once it reaches it, the pole piece gets magnetized and attracts the

armature, pulling the contacts open. This unlatching of the trip mechanism happens

very quickly (<10 ms) and thereby opens the contacts, see Fig. 26.20b.

In the case of a short circuit, the increase in magnetic field is so rapid that the

armature is attracted to the pole instantaneously without any rod movement, allowing

the circuit breaker to trip much faster.
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Sensing coil

° °

Spring Iron rod

Voltage

(a) (b)

°
Voltage

Pole piece

Armature

Contacts
closed

Load

Contacts
open

°
Switch

maxI I≤

The circuit when current exceeds Imax

Fig. 26.20 (a) The circuit breaker is closed when the current I is maximum, I = Imax, or even when

I ≤ Imax. (b) When I exceeds Imax, the armature unlatches a trip mechanism, and the circuit is opened

26.11 Exercises

Section 26.1 The Biot-Savart Law

(1) A point charge q = 25 µC is moving in a straight line with a velocity →
v = 5 ×

104 →
i (m/s). If the charge is at location P(0, 4 m, 0) at time t, find the magnetic

field produced by this point charge at: (a) the origin O(0, 0, 0), (b) the point

Q(3 m, 0, 0).

(2) An electron in the hydrogen atom orbits a fixed proton at a radius r = 5.29 ×
10−11 m with a speed v = 2.4 × 106 m/s. What is the magnitude of the magnetic

field at the proton?

(3) Two point-particles of equal charge q are at a distance r apart. The particles

are moving with the same velocity →
v , see Fig. 26.21. What is the ratio of the

magnitudes of the magnetic and electrostatic forces that each particle exerts on

the other? [Hint: use c2 = 1/μ◦ε◦, where c is the speed of light]

Fig. 26.21 See Exercise (3)

q

r

q +

+
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(4) Two very long straight conducting wires lie in the xy plane and are parallel to

the y-axis. One wire is at x = +L and the other is at x = −L, where L = 8 cm.

Points P and Q are on the x-axis at x = +a and x = −a, where a = 4 cm, see

Fig. 26.22. The current in each wire is I = 10 A. If the currents in the wires are

in the positive y direction, find the magnitude and direction of the magnetic

field at point P and point Q.

Fig. 26.22 See Exercise (4)

x

y

o

L+a+a−L−

2 L

PQ

(5) Redo Exercise 4 when the current in the wire at x = +L is in the positive y

direction while the current in the wire at x = −L is in the negative y direction.

Then calculate the magnitude and direction of the magnetic field at point o.

(6) Two long parallel wires are at two corners of an equilateral triangle of side

a = 5 cm, as shown in the cross-sectional view of Fig. 26.23. The current in

each wire is 10 A. Find the magnitude and direction of the magnetic field at the

unoccupied corner P.

Fig. 26.23 See Exercise (6)

I

P

a a

a
I

(7) Four long parallel wires are at the four corners of a square which has a diagonal

of length 2a, where a = 10 cm, see Fig. 26.24. The magnitudes of the currents

in the four wires are the same, i.e. I1 = I2 = I3 = I4 = 2 A. Point P is at the
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center of the square. Find
→
B at P when: (a) all currents are out of the page,

(b) I1 and I2 are out of the page while I3 and I4 are into th page, (c) I1 and I3

are out of the page while I2 and I4 are into the page.

Fig. 26.24 See Exercise (7)

a a

a

1I 2I

3I4I

a

P

(8) The wire shown in Fig. 26.25 carries a current I = √
2 A. Find the magnetic field

→
B at point P due to each wire segment and then find the resultant magnetic field.

P

10 cm

I

5 cm5 cm
5 cm5 cm

Fig. 26.25 See Exercise (8)

(9) A circular loop of radius R = 4 cm carries a current I = 2 A. What is the mag-

nitude of the magnetic field on the axis of the loop at its center? What about

2 cm from its center, 4 cm from its center, and 10 cm from its center?

(10) For the circular loop of Exercise 9, how far from the center of the loop and

along its axis are the points where the magnetic field is 10% of the field at the

center? What about with 1%, and 0.1%?

(11) Two straight wires ©1 and ©3 , each of length L = 4 cm, are connected by a quarter

circular arc wire ©2 of radius R = 3 cm, as shown in Fig. 26.26. Determine the

magnitude and direction of the magnetic field at the center P of the arc, when

the current I is 2 A.
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Fig. 26.26 See Exercise (11)

P

R

L

L

I

1

23

(12) Use the same values of Exercise 11 to calculate the magnitude and direction of

the magnetic field at the center P of the arc, shown in Fig. 26.27, when the arc

subtended an angle θ = π/3.

Fig. 26.27 See Exercise (12)

P

R
LL

I
θ

1

2

3

(13) Figure 26.28 shows two identical coaxial coils, called Helmholtz coils, each

having a radius R, N coil turns, and are separated by a distance R. The coils

carry equal currents I such that their axial magnetic fields add. (a) When

R = 30 cm, N = 350 turns, and I = 20 A, find the magnitude of the magnetic

field BP at point P, which is a point that exists midway between the coils centers.

(b) Show that BP can be written as BP = 8 μ◦ N I/(53/2 R).

Fig. 26.28 See Exercise (13)

I

R R

R

P

I

/ 2R
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Section 26.2 The Magnetic Force Between Two Parallel Currents

(14) Two long parallel wires are separated by a distance a = 5 cm and carry antipar-

allel currents of the same magnitude, I1 = I2 = 4 A. (a) What is the magnitude

of the magnetic field created by each wire at the location of the other? (b) What

is the magnitude of the force per unit length that each wire exerts on the other?

Is this force attractive or repulsive?

(15) Two long parallel wires in the xy plane are separated by a distance 2a and carry

equal currents I in opposite directions. The origin of the x-axis is taken to be

midway between the wires and x is the position of an arbitrary point P from that

origin, see the cross-sectional view of Fig. 26.29. (a) Derive an expression for

the magnitude of the resultant magnetic field B (x) as a function of the position

x. (b) Plot B(x) for −60 mm < x < 60 mm for I = 20 A and a = 30 mm.

P

1B

2B

0

a a

x

x
I I

1 2

Fig. 26.29 See Exercise (15)

(16) Figure 26.30 shows a very long wire which carries a current I1 = 10 A and

a rectangular loop which carries a current I2 = 15 A. Both the wire and the

loop lie in one plane. Take a = 0.1 m, b = 0.2 m, and c = 0.3 m. (a) Find the

magnitude and direction of the force exerted by the long wire on the wires

©2 and ©4 . (b) Find the direction of the force exerted by the long wire on the

wires ©1 and ©3 . (c) Find the total force exerted by the long wire on the loop.

Section 26.3 Ampere’s Law

(17) A long thin-walled conducting cylindrical shell of radius R carries a current I,

see Fig. 26.31. Use Ampere’s law to find the magnitude of the magnetic field

inside and outside the shell.
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Fig. 26.30 See Exercise (16)

1I 2I

a b

c2

1

3

4

Fig. 26.31 See Exercise (17)

cylindrical conducting shell

Cross-sectional view

R

I

(18) Figure 26.32 shows two antiparallel currents of the same magnitude, I = 10 A.

Evaluate the line integral
� →

B • d→s around the closed paths C1, C2, and C3,

where each line integral is taken with d→s in a counterclockwise direction.

Which path can be used to find the magnetic field at some point?

Fig. 26.32 See Exercise (18)

I I

1C 2C

3C

Cross-sectional view
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(19) A very long coaxial cable consists of a central wire, surrounded by a rubber

layer, which is surrounded by a concentric conducting shell of radius R = 3 mm,

which is surrounded by another rubber layer, see Fig. 26.33. The current I1 in

the inner wire is 1 A out of the page and the current I2 in the outer conducting

shell is 2 A into the page. Find the magnitude and direction of the magnetic

field at ra = 2 mm and rb = 4 mm.

Central wire

Insulator

Conducting shell

Outside 
insulator

Coaxial cable

ba

R

Cross-sectional view

1
I2I

2mm 2mm

Fig. 26.33 See Exercise (19)

(20) A long wire of radius R = 2 cm carries a steady current I = 50 A. What are the

magnitudes of the magnetic fields from the axis of the wire: (a) at a point 1 cm

from the center, (b) on the surface, and (c) at a point 4 cm from the center?

(21) A long conducting cylindrical shell of inner radius a and outer radius b carries

a current I uniformly distributed across the cross-sectional area of the shell.

Find the magnitude of the magnetic field at points of radii: r < a, a < r < b,

and r > b.

(22) A solenoid with n turns per unit length carries a current I, see Fig. 26.34.

Apply Ampere’s law to the rectangular path shown in the figure and derive

an expression for the magnetic field B. For a packed solenoid such as this,

assume that B is uniform inside and B = 0 outside.

(23) A solenoid of length �= 0.25 m carries a current I = 10 A.The solenoid consists

of twenty closely packed layers, each of 500 turns. What is the magnitude of

the magnetic field inside the solenoid?

(24) A solenoid has a length �= 10 cm. A superconducting fine wire (with almost

zero resistance at low temperature) is wound in 10 layers such that n = 4 × 104

turns per meter. (a) What is the number of turns per layer? (b) What is the
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magnitude of the magnetic field B produced inside the solenoid when the current

I in the wire is 60 A?

Fig. 26.34 See Exercise (22)

I

I dC

B

(25) Assume the wire of the solenoid of exercise 24 has a resistance of 104 � at

room temperature. A 12 V battery is applied to the solenoid terminals. Find B

under these conditions.

(26) An insulating cylindrical shell has a radius R = 0.5 cm and length �= 10 cm.

A fine wire of diameter d = 0.4 mm is wound in many layers to establish

a magnetic field of magnitude π × 10−2 T inside the cylindrical solenoid

when the current is 2 A. (a) Determine the number of layers of wire needed.

(b) Determine the length of the wire.

(27) Figure 26.35 shows a toroid with N turns that carries a current I. The toroid has

an inner radius a and an outer radius b. Apply Ampere’s law to the circular path

C of radius r shown in the figure to derive an expression for the magnetic field

B that is only confined to the space enclosed by the windings, and hence B = 0

anywhere else. Show that B is approximately uniform when (b − a)/2 � R,

where R = (a + b)/2 is the mean radius of the toroid.

(28) A plastic ring of mean radius 6 cm is wound with N = 1,000 turns of wire. If

the current in this toroid is I = 0.6 A, find the magnitude of the magnetic field

on the mean circumference.

(29) A tightly wound toroid of inner radius a = 5 cm and outer radius b = 7 cm has

N = 3,300 turns of wire and carries a current I = 2 A. Find the magnitude of

the magnetic field: (a) at any point on the circumference of a circle of radius

r = 5.5 cm. (b) on the mean circumference, which has a radius r = 6 cm.

(30) An infinite conducting sheet lying in the xz plane carries a current in the positive

z direction, see Fig. 26.36. The current per unit length (or the linear current

density) along the x-axis is λ. (a) Use the Biot-Savart law and the symmetry of
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the problem to show that for every point P (such that y > 0) and every point P′

(such that y < 0), the magnetic field
→
B is parallel to the sheet and directed as

shown in the figure. (b) Apply Ampere’s law to the rectangular path shown in

the figure to derive an expression for the magnitude of the magnetic field B.

Fig. 26.35 See Exercise (27)

B
I

C

r b
a

I

d

x

y

P

P ′

λ is the current perunit
length along the x direction
and this current is directed
out of the page along the z
direction

B

B

Fig. 26.36 See Exercise (30)

(31) Figure 26.37 shows two parallel infinite conducting sheets, each carries λ

amperes of current per unit length out of the page. Find the magnetic field

at points a, b, and c.

Fig. 26.37 See Exercise (31) a

b

c

λ

λ x

y
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Section 26.4 Displacement Current and the Ampere–Maxwell Law

(32) A capacitor has circular plates, each of radius R = 5 cm. At a particular instant,

the capacitor is charging by a current of 0.2 A. (a) What is the displacement

current between the plates? (b) What is the rate of change of electric flux

between the plates? (c) What is the magnitude of the magnetic field at r = 8 cm

from the capacitor’s axis in the region between the plates?

(33) A capacitor has circular plates, each of radius R = 10 cm. At a particular instant,

the capacitor is charging by a current of 0.3 A. (a) What is the rate of change

of electric field between the plates? (b) Apply Ampere-Maxwell Law to find

the magnitude of the magnetic field at r = 5 cm from the capacitor’s axis in the

region between the plates, see Fig. 26.38.

Fig. 26.38 See Exercise (33)

r

Bq+ q−

di

i i
R axis

Section 26.5 The Origin of Magnetism

(34) What is the value of the orbital angular momentum of an electron having

orbital quantum number �= 2? For this electronic state, what is the measured

component of the orbital magnetic dipole moment μ�,z when its orbital mag-

netic quantum numbers are m� = 0, m� = 1, and m� = −2?

(35) An atomic electron has an orbital angular momentum with m� = 0. (a) What

are the measured components Lz and μ�,z? (b) When an external magnetic field

of magnitude B = 40 mT is applied along the z-axis, find the potential energy

U� associated with the orientation of the orbital magnetic dipole moment →
μ�.

(c) Repeat parts (a) and (b) for orbital angular momentum with m� = −2.

(36) What is the potential energy Us associated with the orientation of the spin

magnetic dipole moment →
μ s of an atomic electron when an external magnetic

field of magnitude B = 0.5 T is applied along the z-axis. Then what is the energy

difference between parallel and antiparallel alignment of μs,z?
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(37) An external magnetic field
→
B of magnitude 35 T is produced along the z direc-

tion in a short period by a pulsed coil. An electron whose μs,z was parallel to
→
B experiences a “spin flip” so that the final orientation of μs,z is antiparallel

to
→
B . Find the change in the orientation potential energy of the electron.

Section 26.7 Magnetic Materials

Section 26.8 Diamagnetism and Paramagnetism

(38) A small magnetic disk has a radius of 1.2 cm and thickness of 0.2 cm. The

disk has a uniform magnetization throughout its volume and along its axis. The

magnetic moment of the disk is 10−2 A.m2. (a) What is the magnetization
→
M

of the disk? (b) If the magnetization is due to the alignment of N atoms along

the disk axis, each with magnetic moment of 1 µB (1 Bohr Magneton), what is

the value of N?

(39) Figure 26.39 shows a diamagnetic loop before and after applying an exter-

nal magnetic field
→
B . (a) What is the direction of the loop’s net magnetic

dipole moment →
μ before and after the application of

→
B? (b) Is the conventional

current counterclockwise or clockwise? (c) What is the direction of the mag-

netic force on the loop?

Fig. 26.39 See Exercise (39)

B

Diamagnetic
loop

(40) The magnetic field inside a solenoid carrying a current is decreased by

5 × 10−3% when sample of liquid is inserted into its core. What is the magnetic

susceptibility of the liquid?

(41) The number of turns for a toroid is N = 1,200 and the current it carries is

I = 1.5 A. The core has an average circumference of 100 cm and a cross-

sectional area of 2 cm2. (a) If the core is air, find the magnetic field strength

H, the magnetic field B◦, and the total flux �B in the toroid. (b) If the core is

filled with bismuth of magnetic susceptibility χ =−2 × 10−6, find the mag-
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netization M of bismuth, the magnetic field B in bismuth, and the total flux

�B.

(42) A solenoid 0.4 m long is tightly wound with 800 turns of copper wire. The

current in the winding is I = 2 A. (a) If the core is air, find at the center of

the core the magnetic field strength H and the magnetic field B◦. (b) If the

solenoid has an aluminum core of magnetic susceptibility χ = 2.3 × 10−5,

find the magnetization M of aluminum and the magnetic field B.

(43) Repeat part (b) of Exercise 42 for a tungsten core of magnetic susceptibility

χ = 6.8 × 10−5.

(44) If all atoms in a material have their magnetic moments aligned, then the

maximum magnetization is given by Mmax = nμatomic, where n is the num-

ber of atoms per unit volume. Aluminum has a density of 2.7 × 103 kg/m3,

molecular mass of 27 kg/kmol, and atomic magnetic moment μatomic = 9.27 ×
10−24 J/T = 1 μB, where the quantity μB is called the Bohr magneton. Find

Mmax and μ◦Mmax.

Section 26.9 Ferromagnetism

(45) Assume that all iron atoms in an iron rod are completely aligned and each atom

has an approximate magnetic dipole moment μIron = 1.9 × 10−23 J/T. Iron has

density of 7.8 × 103 kg/m3 and molecular mass of 55.85 kg/kmol. (a) Find the

maximum magnetization Mmax. (b) Find the dipole moment of the rod if it is

10 cm long, 2 cm wide, and 0.5 cm thick. (c) When a magnetic field of 0.5 T is

applied perpendicular to the rod, find the torque exerted by the field.

(46) A 4-A current flows through the wire of a toroid that has 250 turns per meter.

The toroid’s core is iron of magnetic permeability μm = 2,100 μ◦, find the

magnitude of the magnetic field in its core.

(47) A solenoid of 50 cm long, 1.5 cm in diameter, and 500 turns is filled with

iron core. When a current of 10 A flows through the wire of the solenoid, the

magnetic field inside it reaches 2 T. What is the permeability of the iron?
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Experimentally, M. Faraday and J. Henry show that a changing magnetic field can

establish a current in a circuit that has no battery.

27.1 Faraday’s Law of Induction

When we move a magnet toward a stationary loop that is connected to a galvanometer,

see Fig. 27.1a, the galvanometer’s needle deflects in one direction. When the magnet

stops, as shown in Fig. 27.1b, no deflection is observed. Now, when we move the

magnet away from the loop, as shown in Fig. 27.1c, the needle deflects in the opposite

direction.

The current produced in this loop is called an induced current and the work done

per unit charge in producing that current is called an induced emf. This emf is due to

the change in magnetic flux through the loop, and this process is known as Faraday’s

law of induction and stated as:

Faraday’s law of induction

The magnitude of the induced emf |E| in a conducting loop is equal to the rate

of change of the magnetic flux �B through the loop.

Lenz’s Law

Soon after Faraday proposed his law, Lenz devised a rule—now known as Lenz’s

law, for determining the direction of an induced emf and the direction of an induced

current in a loop. This law states that:

H. A. Radi and J. O. Rasmussen, Principles of Physics, 933
Undergraduate Lecture Notes in Physics, DOI: 10.1007/978-3-642-23026-4_27,
© Springer-Verlag Berlin Heidelberg 2013
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(a)

(b)

0

Galvanometer

0

Galvanometer

0

Galvanometer

N S

N S

I

I

At rest

(c)

N S

Loop

Loop

Loop Motion

Motion

Fig. 27.1 A galvanometer registers an induced current in a loop when the magnet is moving with respect

to the loop (parts a and c). In part b, the magnet is at rest, and no induced current is established

Lenz’s law

An induced current in a loop is created such that the internal magnetic field of

the loop opposes the changes in the external magnetic flux.

To get a sense of Lenz’s law, let us consider the case of a bar magnet approaching

the loop of Fig. 27.2a. During the motion toward the loop, the external magnetic field
→
Bext of the bar magnet increases the magnetic flux on the loop and thereby induces

a current in the loop. The induced current produces its own internal magnetic field
→
Bint that counteracts the increase in the external magnetic flux. In Fig. 27.2b,

→
Bint

opposes the decrease in the external flux.

Based on Faraday’s law and Lenz’s law, the induced emf in a coil of N loops of

the same area is given by:

E= −N
d�B

dt
(Faraday’s law) (27.1)
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If a coil lies in a uniform magnetic field
→
B , then �B = →

B •
→
A = B A cos θ, where any

combination of the quantities A, B, and θ can change with time. The induced emf in

this case will take the form:

E = −N
d

dt
(B A cos θ) (27.2)

N S

Motion

extB
intB

I

NS

MotionI

N S

(a)

(b)

extB

intB

SN

Fig. 27.2 The internal magnetic field
→
Bint : (a) opposes the increase in flux of

→
Bext . (b) opposes the

decrease in flux of
→
Bext

Example 27.1

A coil of wire has N = 15 turns and each turn has an area A = 0.04 m2. The coil

is placed in a uniform magnetic field directed perpendicular to the plane of the

coil and connected to a resistor of resistance R = 2 �, see Fig. 27.3. The magnetic

field changes linearly from 0.1 T at time t = 0 to 0.6 T at time t = 0.5 s. (a) What

is the magnitude of the induced emf in the coil during this time interval? (b) What

is the magnitude and direction of the induced current?

Solution: (a) The flux �B through each turn at t = 0 and t = 0.5 s is:

�B|t=0 = B A = (0.1 T) (0.04 m2) = 0.004 Wb

�B|t=0.5 s = B A = (0.6 T)(0.04 m2) = 0.024 Wb
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Fig. 27.3

R

B

B is uniform and changes linearly

Therefore, from Eq. 27.1, the magnitude of the induced emf is:

|E| = N
��B

�t
= 15

0.024 Wb − 0.004 Wb

0.5 s − 0
= 0.6 V

(b) According to Lenz’s law, since the magnetic flux increases, then the induced

current I established in the circuit must be in a clockwise direction. The value of

the induced current is:

I = |E|
R

= 0.6 V

2 �
= 0.3 A

27.2 Motional emf

The Motional emf is an induced emf in a conductor moving through a constant

magnetic field.

Figure 27.4 shows a conducting bar of length L moving to the right with a veloc-

ity →
v perpendicular to a uniform magnetic field

→
B into the page. Each conduction

electron is subjected to a downward magnetic force
→
FB = −e→

v × →
B . Consequently,

an accumulation of negative charges on the lower end is established, leaving a net

positive charge on the upper end. Because of this accumulation, a downwards elec-

tric field
→
E is produced inside the conducting bar and hence an upwards electric

force
→
Fe = −e

→
E is exerted on each electron. The accumulation process will continue

until the magnitude of the downwards magnetic force FB = evB is balanced by the

upwards electric force Fe = eE. This condition of equilibrium requires that:

eE = evB or E = vB (27.3)

The established electric field is related to the induced potential difference �V

between the ends of the conducting bar according to the relation �V = EL or

|E| = EL, see Eq. 22.17. Thus, from Eq. 27.3, the equilibrium condition requires that:



27.2 Motional emf 937

�V = BLv or |E| = BLv (27.4)

Of course, the potential of the upper end is higher than the lower end, and this polarity

is reversed when the direction of motion is reversed.

Fig. 27.4 A conductor of

length L moving with velocity
→v across a uniform magnetic

field
→
B . This establishes an

electric field
→
E

eF

BF

L

B

E

Now, let us consider the sliding of this conducting bar on horizontal, frictionless,

conducting rails connected to a resistor of a resistance R, as shown in Fig. 27.5 (top

view). As the bar is pulled to the right with a velocity →
v under the influence of a

force
→
Fapp, a magnetic force acts on the free electrons, causing a counterclockwise

induced conventional current I to pass in the circuit. At the same time, a magnetic

force
→
FB = ILB will act on the bar opposite to

→
Fapp. If both forces are equal, FB =

Fapp, the bar will move with a constant speed v.

L BR appF

I

BF

x

Fig. 27.5 A conducting bar of length L is connected to a resistor and moves on a horizontal conducting

rails with velocity →v across a uniform magnetic field
→
B . A counterclockwise current I is induced

The area of the circuit within the magnetic field is Lx, where x is the position of

the bar from the resistor. Thus, the magnetic flux through this area is:

�B = BLx (27.5)

Using Faraday’s law, and noting that v = dx/dt, the induced emf is:

E = −d�B

dt
= − d

dt
(BLx) = −BL

dx

dt
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Therefore, E = −BLv (27.6)

and, I = |E|
R

= BLv

R
(27.7)

The power delivered by the applied force is:

P = Fapp v = (ILB)v = B2L2v2

R
= E

2

R
(27.8)

This proves that the power input is equal to the rate at which energy is delivered to

the resistor, which is confirmed by Eq. 24.24.

Example 27.2

The conducting bar in Fig. 27.5 is 0.1 m long and moves to the right with a speed

of 10 m/s across a uniform magnetic field of 1.5 T.(a) Find the induced emf in the

circuit. (b) Find the force per a unit charge in the conducting bar.

Solution: (a) From Eq. 27.6, the induced emf in the circuit is:

|E| = BLv = (1.5 T)(0.1 m)(10 m/s) = 1.5 V

From Lenz’s law, a counterclockwise emf is created in the circuit.

(b) Using Eq. 25.2, the force per unit charge is:

FB

|q| = vB sin 90◦ = (10 m/s)(1.5 T) = 15 N/C

From
→
FB = q →

v × →
B , the force

→
FB must be along the bar and upwards.

Example 27.3

The conducting bar in Fig. 27.5 is 0.5 m long and moves to the right across a

uniform magnetic field of 0.15 T. If the total resistance of the circuit is 3 �,

calculate the force required to move the rod at a constant speed of 2 m/s. Find the

power delivered.

Solution: From Eq. 27.6, the induced emf in the circuit is:

|E| = BLv = (0.15 T)(0.5 m)(2 m/s)= 0.15 V
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From Lenz’s law, a counterclockwise emf is created in the circuit.

The current in the circuit is:

I = |E|
R

= 0.15 V

3 �
= 0.05 A

Equation 25.19 gives the magnitude of the magnetic force on the bar:

FB = ILB sin 90◦ = (0.05 A)(0.5 m)(0.15 T) = 3.75 × 10−3 N

This magnetic force is directed to the left and must be equal in magnitude to the

applied force Fapp, but opposite in direction. The power delivered is calculated

from Eq. 27.8 as:

P = Fapp v = FB v = (3.75 × 10−3 N)(2 m/s) = 7.5 × 10−3 W

Example 27.4

A rectangular conducting loop has a resistance R, width L, and length a. The loop

is pulled at a constant speed v to the right while approaching, entering, and leaving

a uniform magnetic field directed out of the page, which extends over a distance

b along the x-axis, see Fig. 27.6 for different times. Plot as a function of x: (a) the

magnetic flux through the loop, (b) the induced motional emf.

L

a
a

B

x0
x x x x x

b
I

I
(a+b) x0 0 0 0 0xb

Fig. 27.6

Solution: (a) Figure 27.7 shows the flux �B through the loop as a function of x for

different times. The flux is zero when the loop is not in the field; it is BLx when

the loop is entering the field; it is BLa when the loop is entirely in the field; it is

BL(a + b − x) when the loop is leaving the field; and finally zero when x ≥ a + b.

(b) As the loop enters the field, the flux increases (with
→
B out of the page). By

Lenz’s law, a clockwise current is created to produce a magnetic field into the

page with emf E= BLv. When the loop is entirely in the field, the change in flux

is zero, and hence E= 0. When the loop is leaving the field, the flux decreases

and a counterclockwise current is created with E= −BLv. When the loop leaves

the field, the emf drops to zero, see Fig. 27.7. The current value is I = BLv/R.
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Fig. 27.7

27.3 Electric Generators

Electric generators are devices that convert rotational energy to electric energy.

A generator consists of a coil of wire wound on an armature that can rotate in a

magnetic field between the poles of the magnet. The magnetic flux through the coil

changes with time. Thus, according to Faraday’s law, an induced emf and current

will be created in the coil.

If θ is the angle between the magnetic field
→
B and the normal to the plane of the

coil, then the magnetic flux through each loop of the coil will be given by:

�B = →
B •

→
A = BA cos θ (27.9)

If the shaft of the generator rotates with constant angular frequency ω (in rad/s), then

the relation between the angular position θ (in rad) and the frequency ω is θ = ωt.

Therefore, �B = BA cos ωt. Hence, according to Faraday’s law, the induced emf of

a coil of N loops will be:

E = −N
d�B

dt
= −N

d

dt
(BA cos ωt) = N B A ω sin ωt

which can be written in compact (E≡ v and E◦ ≡ V ) form as follows:

v = V sin ωt where V = N B A ω (27.10)

The output emf is sinusoidal with amplitude (or peak) V. From this relation we see

that v = 0 when ωt = 0 or ωt = π, and this occurs when
→
B is perpendicular to the

plane of the coil. Furthermore, v = V when ωt = π/2 or ωt = 3π/2, and this occurs

when
→
B is in the plane of the coil.
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The Direct Current (dc) Generator

Figure 27.8 illustrates the simplest form of the direct current (dc) generator. The

ends of the coil are connected to a split-ring commutator (as shown in Fig. 27.8a) that

rotate with the coil. Those splits are in contact with two brushes that act as the output

terminals of the generator. The output is always of the same polarity and varies with

time as shown in Fig. 27.8b.

N

SCommutator

Brush

Insulators

Coil

Brush

Shaft 

I

I
I

I

External
rotator t

(a) (b)

A

B

 

Side view
o

×

Fig. 27.8 (a) A sketch of a dc generator. An emf is induced in a coil when it rotates with constant angular

frequency ω in a magnetic field
→
B . (b) The direct induced emf is plotted as a function of time

The Alternating Current (ac) Generator

Figure 27.9 illustrates the simplest form of an alternating current (ac) generator.

The ends of the coil are connected to slip-rings (as shown in Fig. 27.9a) that rotate

with the coil. Those slips are in contact with two brushes that act as the output

terminals of the generator. The output varies sinusoidally with time. See Fig. 27.9b.

N

Brush

Coil

Brush

Shaft 

I

I

External
rotator

t

(a) (b)

Slip rings S

×

tθ ω=
A

B

I

I
Side view

Fig. 27.9 (a) A sketch of an ac generator. An emf is induced in a coil when it rotates with constant

angular frequency ω in a magnetic field. (b) The alternating, induced emf is plotted as a function of time
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27.4 Alternating Current

When electric generators at electric power plants produce alternating emf we

get alternating current, or ac (uppercase letters can be used) with the usual

symbol . Alternating current reverses direction many times per second, which

means that electrons in a wire will repeatedly move in one direction and then reverse

their direction. Since the output emf of an ac generator is sinusoidal, as shown in

Fig. 27.9b, then the current it produces is also sinusoidal.

Ohm’s law, Eq. 24.8, is also valid for alternating voltage and current. Based on

Eq. 27.10, when a sinusoidal voltage v exists across a resistance R, see Fig. 27.10a,

then the alternating current i (we use the small letter i for ac) through the resistor is:

i = v

R
= V

R
sin ωt = I sin ω t where I = V

R
(27.11)

where I is the peak current, see Fig. 27.10b. From this figure we see that the average

current is zero. This does not mean that no heat is produced in the resistor. On the

contrary, electrons produce heat when they move back and forth in the resistor. The

power delivered at time t to a resistor of resistance R, see Fig. 27.10c, is:

P(t) = i2 R = I2 R sin2 ωt (27.12)

which indicates that the power is always positive because the current is squared. The

quantity sin2 ωt varies between 0 and 1 and we can prove that its mean (or average)

value is 1
2 , i.e. sin2 ωt = 1/2. Therefore, using P = i2 R or P = v2/R2 as the average

power delivered to the resistor, we get:

P = I2R/2 or P = V 2/2R (27.13)

t

I+

I

t

2I R

Power
2( )P t i R=sini I tω=

Current 2 21
rms2

P I R I R= =

(a) (b)

R

(c)

Fig. 27.10 (a) A resistor connected to an ac source. (b) Alternating current in a resistor as a function of

time. (c) Power and average power delivered to a resistor as a function of time
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As introduced in Sect. 13.1, the notation rms stands for root-mean-square, which

here means the square root of the mean value of the square of the current Irms =
√

i2

or the voltage Vrms =
√
E2. Thus (remember E≡ v):

Irms = I√
2

= 0.707 I and Vrms = V√
2

= 0.707 V (27.14)

This means that an alternating current whose maximum value is 1 A delivers to a

resistor the same power as a direct current of 0.707 A. Thus, Ohm’s law and the

average power delivered to a resistor give:

Vrms = Irms R and P = Irms Vrms = I2
rms R = V 2

rms/R (27.15)

Alternating-current instruments are usually calibrated to read the rms values of the

current defined by Irms = I/
√

2 and voltage defined by Vrms = V/
√

2. More than

81% of countries around the globe use Vrms in the range from 220 to 240 V.

Example 27.5

Find the resistance and the peak current in a 1,000-W heater connected to a 220-V

ac line.

Solution: Using Eq. 27.15, we can find the rms current:

Irms = P

Vrms
= 1,000 W

220 V
= 4.55 A

Then, the peak current and the resistance of the heater will be:

I = √
2 Irms = 6.43 A

R = Vrms

Irms
= 220 V

4.55 A
= 48.35 �

27.5 Transformers

A transformer is a device used to increase or decrease an ac voltage. Transformers

are widely used in: reducing the high voltage from the electric power plant to a

usable household electric ac outlet (120 or 220 V), in chargers for mobiles, laptops,

and other electronic devices, in cars to increase the voltage to a high voltage needed

to spark the plugs, in CRT monitors, and on many electrical applications.
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An ideal transformer consists of two resistanceless coils known as the primary

and secondary coils, wound around an iron core, see Fig. 27.11. We assume that

the primary coil has NP turns and the secondary coil has NS turns. If all magnetic

lines are confined to the iron core, then at any instant the magnetic flux per turn �B

produced by the current in the primary coil will pass through the secondary coil.

Fig. 27.11 An ac input of

voltage vP (with peak VP) is

connected to the primary coil

of a transformer to get an ac

output in the secondary coil.

The figure shows a step-up

transformer where NP = 5 and

NS = 7

VP
VS

N P

N S

turns

turns

Primary
coil

Secondary
coil

Input
Output

When an ac voltage vP (with peak VP) is applied to the primary coil, the magnetic

flux change is the same in each turn of the primary and secondary coils. Thus,

according to Faraday’s law, the resulting induced emf in the primary and secondly

coils will be:

EP = −NP
d�B

dt
and ES = −NS

d�B

dt
(27.16)

where EP and ES have the same frequency as the ac input source vP. Since the flux

per turn �B is the same, the ratio of the secondary emf to the primary emf at any

instant is ES/EP = NS/NP. If the windings have zero resistance, the induced emf EP

and ES are exactly balanced by the terminal voltage across the primary voltage vP

(with peak VP) and the secondary voltage vS (with peak VS), respectively. Thus:

VS

VP
= NS

NP
(27.17)

This transformer equation relates the output (the secondary) to the input (the pri-

mary) and can apply for the amplitude or the rms values.

If NS > NP, then VS > VP and this kind of transformer is called a step-up trans-

former. Similarly, if NS < NP, then VS < VP and this kind of the transformer is called

a step-down transformer.

For step-up or step-down ideal transformers, the power output is equal to the

power input. Using Eq. 24.24, we have:
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IP VP = IS VS or
IS

IP
= NP

NS
(27.18)

Example 27.6

The transformer used to charge a laptop reduces 220-V ac to 19 V ac. Assume

that the primary coil contains 400 turns and the charger supplies 5 A to the laptop.

Find: (a) the number of turns in the secondary coil and the current in the primary

coil, and (b) the power transformed.

Solution: (a) Using Eq. 27.17, we have:

VS

VP
= NS

NP
⇒ NS = NP

VS

VP
= (400)(19 V)

220 V
= 35 turns

Using Eq. 27.18, we have:

IP VP = IS VS ⇒ IP = IS
VS

VP
= (5 A)(19 V)

220 V
= 431.8 mA

(b) The power transformed is:

P = IS VS = (5 A)(19 V) = 95 W

27.6 Induced Electric Fields

By Faraday’s law a changing magnetic flux induces both an emf and a current in

a conducting loop. But in Chap. 24, see Eq. 24.11, we related current to an electric

field that applies electric forces on charged particles.

Similarly, we relate an induced current to an electric field such as:

Spotlight

A changing magnetic field in a conducting loop, or even in any hypothetical

closed path, induces an electric field.

We can examine this statement by considering a circular copper loop of radius r

placed in a uniform magnetic field
→
B perpendicular to the loop, see Fig. 27.12. If the

magnetic field increases with time, then according to Faraday’s law, an induced emf

and an induced current are created in the loop. But this induced current implies the

existence of an induced electric field
→
E . The work done by

→
E to move a test charge
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q◦ around the loop is W = q◦E. On the other hand, according to Eq. 22.3, this work

is given for a closed loop by:

W = q◦
� →

E • d→s (27.19)

Fig. 27.12 A copper loop in

a uniform magnetic field. If
→
B

changes with time, an induced

electric field is produced

tangent to the loop

Bq°

r

×

×

×

×

×

×

××
R

Copper loop

increases

I

E

E

E

×

Thus, equating the two expressions of work, we get:

q◦
� →

E • d→s = q◦E (27.20)

Using E= −d�B/dt, then Faraday’s law of induction can be expressed in terms

of the induced electric field as follows:�→
E • d→s = −d�B

dt
(Faraday’s law) (27.21)

The striking feature of Eq. 27.21 is that the electric field is induced even if there

is no conducting loop of r < R. In addition, an induced electric field is established

even if r > R, see Fig. 27.13.

r

×

×

×

×

×

×

×

××
increasesR
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×

×

×

×

×

×

×
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×

×

×

×

×

×

×

××
R

(a) (b) (c)

Hypothetical
circular path

Copper loop

increases

increases

I

E

E

E

E

E

E
E

E

E

B B

B

Fig. 27.13 (a) Same as Fig. 27.10 when the conducting loop is in place. (b) Induced electric field is

established even for a hypothetical path of r < R. (c) Same as (b), but when r > R
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Example 27.7

In Fig. 27.13, find an expression for the magnitude of the induced electric field

E for r < R and r > R. When R = 8 cm and the magnitude of the magnetic field

increases at a rate given by dB/dt = 0.2 T/s, evaluate E for r = 5 cm and r = 10 cm

Solution: We evaluate the integral of Eq. 27.21 for any radius:

� →
E • d→s =

�
E ds = E

�
ds = E(2πr) = 2πrE

The flux �B and its rate d�B/dt through the circular path of r < R are:

�B = BA = B(πr2) and d�B/dt = πr2dB/dt

The flux �B and its rate d�B/dt through the circular path of r > R are:

�B = BA = B(πR2) and d�B/dt = πR2dB/dt

Thus, dropping the minus sign of Eq. 27.21 leads to:

E = r

2

dB

dt
(for r < R) and E|r=5 cm = 0.05 m

2
0.2 T/s = 5 × 10−3 V/m

E = R2

2r

dB

dt
(for r > R) and E|r=10 cm = (0.08 m)2

2 × (0.1 m)
0.2 T/s = 6.4×10−3 V/m

27.7 Maxwell’s Equations of Electromagnetism

From our previous studies, we can collect all the relationships between electric and

magnetic fields and their sources. This collection consists of four equations, called

Maxwell’s equations. Maxwell used these equations to predict the existence of

electromagnetic waves.

The first two equations involve a surface integral of
→
E and

→
B over a closed sur-

face. The third and fourth two equations involve a line integral of
→
B and

→
E over a

closed loop.
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The first is simply Gauss’s law for electric fields, Eq. 21.7, which states that “the

net electric flux through any closed surface is equal to the net charge inside the

surface divided by the permittivity of free space ε◦”. That is:�→
E •.

→
A = qin

ε◦
(Gauss’s law for

→
E ) (27.22)

The second is the analogous relationship for magnetic field, Eq. 26.24, which

states “The net magnetic flux throughout any closed surface is always zero”. That is:

�→
B • d

→
A = 0 (Gauss’s law for

→
B ) (27.23)

The third equation is Ampere–Maxwell law, Eq. 26.20, which states “Magnetic

fields are produced both by varying conduction currents i and by displacement

currents id, created by a time varying electric flux”. That is:

�→
B • d→s = μ◦(i + id) = μ◦

(
i + ε◦

d�E

dt

)
(Ampere−Maxwell law)

(27.24)

The fourth equation is Faraday’s, Eq. 27.21, which states that “A changing

magnetic field in a conducting loop, or even in any hypothetical closed path, induces

an electric field”. That is:�→
E • d→s = −d�B

dt
(Faraday’s law) (27.25)

In all Maxwell’s equations,
→
E is the total electric field, which comes from

an electrostatic field
→
Es caused by static charges and magnetically-induced, non-

electrostatic field
→
E ind.

It is worth noting that in empty space, where there is no charge and conduction

current, the first two equations are identical in form. In addition to that, replacing

�E by
� →

E • d
→
A and �B by

� →
B • d

→
A , we can write the third and fourth equations in

different but equivalent forms. Thus, in empty space Maxell’s equations reduce to:�→
E • d

→
A = 0,

�→
B • d

→
A = 0�→

B • d→s = μ◦ε◦
d

dt

∫ →
E • d

→
A ,

�→
E • d→s = − d

dt

∫ →
B • d

→
A .

(27.26)
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The most remarkable feature about these Maxwell’s equations is that time-

varying of
→
E induces a field

→
B and time-varying of

→
B induces a field

→
E in neigh-

boring regions of space. Maxwell recognized that Eq. 27.26 predict the existence of

electromagnetic disturbance of electric and magnetic fields that propagate from one

point to another, even if no matter is present. This disturbance is called an electro-

magnetic wave (EMW), and this provides the physical basis for light and all the rest

of the electromagnetic spectrum.

The properties of electromagnetic waves can be deduced from Maxwell’s equa-

tions, but the mathematical treatment is beyond the scope of this book. Instead, one

can focus attention on an electromagnetic wave traveling in the x-direction. By doing

so, we can show that the line integral of the last two forms of Eq. 27.26 lead to the

following two differential equations:

∂2E

∂x2 − μ◦ ε◦
∂2E

∂t2 = 0 and
∂2B

∂x2 − μ◦ ε◦
∂2B

∂t2 = 0 (27.27)

These two differential equations have the identical form as the general wave equation

introduced in Chap. 14, see Eq. 14.58, for one-dimensional wave motion, but with

speed c, given by:

c = 1√
μ◦ ε◦

(27.28)

Taking μ◦ = 4π × 10−7 T.m/A and ε◦ = 8.8542 × 10−12 C2/N.m2, we find that

c = 2.99792 × 108 m/s, which is precisely the speed of light in empty space. In

addition
→
E and

→
B are perpendicular to one another, and both are perpendicular to

the wave velocity →c , see Fig. 27.14a.

The simplest solution to Eq. 27.27 is a sinusoidal wave, where E and B vary with

x and t according to the two expressions:

E = E◦ cos(kx − ωt) and B = B◦ cos(kx − ωt) (27.29)

where E◦ and B◦ are the peak values of the electric and magnetic waves, respectively,

while k and ω are defined in Chap. 14. Figure 27.14b displays the various types of

electromagnetic waves.
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(a)
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(b)
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1 pm

1 nm

1 m

1 mm
1 cm

1 m

1 km

Violet
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Green
Yellow
Orange
Red

~700 nm

~400 nm

Fig. 27.14 (a) Propagation of EMW. (b) The EMW spectrum

27.8 Exercises

Section 27.1 Faraday’s Law of Induction

(1) A loop of wire with a vector area
→
A = (0.2

→
i + 0.3

→
j + 0.6

→
k ) m2 is placed

in a uniform magnetic field
→
B = 0.2

→
j (T). (a) Find the magnetic flux through

the loop. (b) What is the angle between
→
B and

→
A ?

(2) If the magnetic field of Exercise 1 changes to
→
B = 0.2

→
k (T) in a period of

0.5 s, find the magnitude of the average induced emf and current in the loop,

assuming the loop has a resistance of 1.5 �.

(3) In Fig. 27.15, the south pole of the magnet approaches the loop. What is the

direction of the induced current in the resistor of the circuit?

(4) In Fig. 27.16, the north pole of the magnet recedes from the loop. What is the

direction of the induced current in the resistor of the circuit?
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Fig. 27.15 See Exercise (3)
MotionLoop

R

NS

Fig. 27.16 See Exercise (4)

Loop

R

Motion

NS

(5) The magnetic flux through a loop of wire changes from −20 to +20 Wb in

0.2 s. What is the average induced emf in the loop?

(6) Figure 27.17 shows a circuit containing a battery and a resistor whose resistance

can vary. Two loops are located inside and outside the circuit. If the resistance

is slowly decreased, what is the direction of the induced current in the two

loops?

Fig. 27.17 See Exercise (6) I

(7) A circular loop of radius r = 5 cm is perpendicular to a uniform magnetic field

that is pointing out of the page and has an initial magnitude Bi = 0.6 T. During

a time interval of 0.2 s the field is changed to a final magnitude Bf = 0.2 T and

now points into the page. What is the average induced emf in the loop?

(8) A square loop of wire has a side a = 5 cm and is perpendicular to a uniform

magnetic field of magnitude B = 0.8 T. The orientation of the loop changes in

a period of 0.4 s until the surface of its plane is parallel to the field. What is the

average induced emf in the loop?
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(9) The plane of a circular loop of radius r = 10 cm is perpendicular to a uni-

form magnetic field of initial magnitude B = 0.8 T. The field’s magnitude then

decreases at a constant rate of dB/dt =−10−3 T/s. (a) What is the magnitude

of the field at any time? (b) What is the induced emf produced in the loop?

(10) For each situation in Fig. 27.18, show the direction of the induced current.

. . . . .. . . . .. . . . .. . . . .
B

. . . . .. . . . .. . . . .. . . . .
B

. . . . .. . . . .. . . . .. . . . .

. . . . .. . . . .. . . . .. . . . .
× × × × ×
× × × × ×
× × × × ×
× × × × ×

B B

Shrinking loop Expanding loop

× × × × ×
× × × × ×
× × × × ×
× × × × ×

Moving in loop Moving out loop 

increasesB decreasesB

(a) (b) (c) (d)

× × × × ×
× × × × ×
× × × × ×
× × × × ×

× × × × ×
× × × × ×
× × × × ×
× × × × ×

Rotating loop Rotating loop 

(e) (f) (g) (h)

Fig. 27.18 See Exercise (10). (a) Moving in loop. (b) Moving out loop. (c) Shrinking loop. (d) Expanding

loop. (e)
→
B increases. (f)

→
B decreases. (g) Rotating loop. (h) Rotating loop

(11) The diameter of the circular loop of Fig. 27.18c decreases from 20 to 5 cm in

0.6 s. The magnitude of the magnetic field in that figure has a value B = 0.5 T.

(a) What is the direction of the induced current? (b) What is the average induced

emf in the loop? (c) What is the average magnitude of the induced current if

the loop’s resistance is 2 �?

(12) The radius of the circular loop of Fig. 27.18d increases from 2 cm to 15 cm in

0.2 s. The magnitude of the magnetic field in that figure has a value B = 0.25 T.

(a) What is the direction of the induced current? (b) What is the average induced

emf in the loop? (c) What is the average magnitude of the induced current if

the loop’s resistance is 1.5 �?

(13) The plane of the circular loop of Fig. 27.18g has an area A = 5 cm2. In 0.2 s

it rotates to make an angle θ = 60◦ with the field lines. The magnitude of the
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magnetic field in that figure has a value B = 0.75 T. (a) What is the direction

of the induced current? (b) What is the average induced emf in the loop? (c)

What is the average magnitude of the induced current if the loop’s resistance

is 2.5 �?

(14) A solenoid of length L = 0.25 m and radius r = 4 cm has 100 turns. A coil of

N = 20 turns and resistance R = 4 � is wound tightly around the solenoid, see

Fig. 27.19. The current in the direction shown in the figure increases uniformly

from 0 to 2 A in 0.5 s. (a) What is the direction of the induced current in the

coil during this period of time? (b) What is the magnitude of the induced emf in

the coil? (c) What is the magnitude of the induced current in the coil? (d) Redo

parts a, b, and c assuming this time that the solenoid’s core is made entirely out

of iron whose magnetic permeability μm is 1,000μ◦ and also assume that the

direction of the solenoid’s current is reversed.

Fig. 27.19 See Exercise (14)

NS

I

r

Solenoid I

B

L

Coil

(15) A thin circular gold ring has a diameter of 2 cm, a resistance of 60 µ�, a

mass of 20 g, and a specific heat of 129 J/kg.C◦. In a period of 40 ms, the

ring moves from a zero-field location to a location where a magnetic field has

magnitude B = 0.75 T and points perpendicular to the ring. (a) What is the

average magnitude of the induced emf in the ring? (b) Find the thermal energy

dissipated in the ring. (c) Find the temperature rise in the ring if all thermal

energy converts to heat.

(16) A coil of radius rc = 10 cm consists of N = 30 turns of copper wire. The wire of

the coil has a radius of rw = 1.5 mm and a resistivity ρw = 1.68 × 10−8 �.m. A

uniform magnetic field perpendicular to the plane of the coil changes at a rate

dB/dt of 8.5 × 10−3 T/s. (a) What is the induced emf produced in the coil? (b)

What is the resistance of the wire of the coil? (c) What is the induced current
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in the coil? (d) What is the rate at which the thermal energy is dissipated in the

wire of the coil?

(17) A circular loop of wire has a radius r = 15 cm and resistance R = 80 �. The

loop is initially in a uniform magnetic field perpendicular to the plane of the

loop and has a magnitude B = 0.5 T. The loop is removed from the field in

150 ms. (a) What is the average induced emf produced in the loop? (b) Find the

electric energy delivered by the process if it is equal to the energy dissipated

in the loop.

(18) A vertical rectangular loop of width a and height b is at a distance x from a

vertical long wire carrying a current I, see Fig. 27.20. (a) Find the magnetic

flux through the loop. (b) If the rectangular loop is pulled away from the wire

with a speed v, find the instantaneously-induced emf produced in the loop and

the instantaneous force required.

Fig. 27.20 See Exercise (18)

I

x a

b

Resistance R

Section 27.2 Motional emf

(19) The rod in Fig. 27.4 has a length L = 12 cm and moves with a speed v = 1 m/s

in a uniform magnetic field of magnitude B = 1.5 T. Find the induced motional

emf developed in the rod.

(20) An induced emf of 2 V is established by moving a rod 0.8 m long at a speed

of 5 m/s perpendicular to a uniform magnetic field. Find the magnitude of that

field.

(21) A jet plane is flying horizontally at 250 m/s in a region where the vertical

component of the Earth’s magnetic field is 80 µT. The distance between the tips

of the two wings of the plane is 30 m. What is the electric potential difference

induced between the two wing tips?

(22) The rod in Fig. 27.5 has a length L = 25 cm and moves with a constant speed

v = 10 m/s in a uniform magnetic field of magnitude B = 1.5 T. The resistor
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has a resistance R = 10 � and the rest of the circuit has a negligible resistance.

(a) Find the induced motional emf developed in the circuit. (b) Find the force

required to move the rod at this constant speed. (c) Find the power delivered to

the resistor.

(23) Figure 27.21 shows a conducting rod that has a resistivity ρ and cross-sectional

area Arod. The rod makes contacts with horizontal conducting rails of the same

type to complete the circuit. The circuit area is perpendicular to a uniform

magnetic field of magnitude B. The rod starts from x = 0 at t = 0 and moves

with constant speed v. (a) Find the induced current I as a function of time.

(b) Find the power delivered by the applied force Fapp as a function of time.

Fig. 27.21 See Exercise (23)

L B appF

I

BF

x

(24) A conducting rod of length L = 25 cm and mass m = 3.5 g slides along a pair of

vertical metal guides connected to a resistor of resistance R = 1.5 × 10−3 �,

see Fig. 27.22. The circuit is perpendicular to a magnetic field with B = 0.05 T.

Friction and resistance of the rod and the guides are negligible. Find the terminal

speed of the rod.

Fig. 27.22 See Exercise (24) L

B

I
BF

mg

t

R

y
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(25) A conducting rod of length L slides down from rest at the top of a frictionless

incline of angle θ. Assume that a uniform vertical magnetic field
→
B present

throughout the motion of the rod, see Fig. 27.23. (a) Find the potential difference

between the ends of the rod as a function of time. (b) Which side of the rod has

a higher potential.

Fig. 27.23 See Exercise (25)

x

L

θ

B

B
B

B

(26) Figure 27.24 shows a conducting rod of length L, mass m, and resistance R.

The rod slides on two long horizontal frictionless and resistanceless parallel

rails immersed in a uniform magnetic field
→
B . A battery of emf E◦ and switch

are connected to one end of the rails to complete the circuit. When the rod is

at rest at t = 0, the switch S is closed. Find the speed v of the rod as a function

of time, and find its terminal speed.

Fig. 27.24 See Exercise (26)

L B I
S F

°

x

Section 27.3 Electric Generators

(27) When the rotating speed of the generator of a stationary car is 1,000 rpm its

output is 12 V. What will the output of the generator be when its rotating speed

is 2,500 rpm, assuming that the car is still stationary?
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(28) If you plug an alternating-current voltmeter into a household electric outlet and

the voltmeter reads 220 V, what is the peak value of the outlet voltage?

(29) The amplitude (or peak) of the sinusoidal output voltage of a generator is 311 V.

The square coil of the generator has a side of a = 10 cm and rotates with an

frequency f = 50 rev/s in a magnetic field with B = 0.5 T. How many loops of

wire should the coil consist of?

(30) A generator has a coil of N = 500 loops, each of area A = 5 × 10−2 m2. The coil

can rotate freely between the poles of a permanent magnet of uniform magnetic

field B = 0.45 T. How fast must the coil rotate to produce a maximum output

voltage of 311 V?

Section 27.4 Alternating Current

(31) Find the peak current when a 220-V rms source is connected to a resistor of

resistance R = 2 k�.

(32) An ac power supply produces a peak voltage of 120 V and is connected to a

24-� resistor. What are the rms and peak currents in the resistor?

(33) Two light bulbs of 60-W and 100-W are connected in parallel to a 220-V rms

source at your house. (a) What is the total resistance of the two bulbs as seen

by the power company? (b) What is the resistance of each bulb?

(34) A heater rated as 1,000 W is connected to an ac source that allows a peak

current of 12.86 A. What is the rms voltage of the source?

(35) A 1,100-W hair dryer is connected to 110-V ac source. Find the peak voltage

applied to the dryer and the peak current passing through the dryer.

(36) A welding machine has a resistance R = 22 � and is connected to a 220-V ac

line. (a) What is the average electric power consumed in the welding machine?

(b) What are the minimum and maximum values of the instantaneous consumed

power?

Section 27.5 Transformers

(37) A transformer has NP = 500 turns in the primary coil and NS = 60 turns in the

secondary coil. (a) What kind of transformer is this? (b) By what factor does

this transformer change the ac voltage and current?
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(38) The transformer of a neon lamp operates from an alternating source of 220 V.

The lamp requires 10 kV to operate. What is the ratio of the secondary to

primary turns of the transformer coils?

(39) The input ac current of a 90-W transformer is 2 A and the output ac voltage

is 12 V. (a) What kind of transformer is this? (b) By what factor does this

transformer change the ac voltage?

(40) An ac source provides an output peak Vi and current peak Ii when connected to

the primary coil of a transformer. The transformer has NP turns in the primary

coil and NS turns in the secondary coil. A circuit of resistance R is connected to

the transformer, see Fig. 27.25. What is the equivalent resistance of the circuit?

Fig. 27.25 See Exercise (40)

Vi N P NS

Input Output

I i

RV S

I s

(41) Figure 27.26a shows the transmission of electric power from the generator of

a power plant to a town, part b of the figure shows a simple equivalent circuit

of part a, where the current and voltages are in rms values. The value of the ac

voltage reaching the town is Vtown = 50 kV with average power Ptown = 80 MW

via a transmission line of resistance R = 3.5 � from the generator. (a) Find the

emf of the generator Egen. (b) What is the value of the average power generated

by the power plant and the fraction of the lost generated power through the

transmission line?

Section 27.6 Induced Electric Fields

(42) A positive charge q = +20 µC is located on the right part of the circumfer-

ence of the circle of Fig. 27.13b, where R = 5 cm. The magnetic field starts to

decrease at a rate of −0.01 T/s. Find the initial force exerted on the charge.

(43) Repeat exercise 42 when the charge is q = −20 µC and is located at r = 25 cm

outside the region of the change of the magnetic field.
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Fig. 27.26 See Exercise (41)

(44) A long solenoid has 500 turns per meter and a radius of 2 cm. The current in the

solenoid is increasing at a rate of 2 A/s. What is the magnitude of the induced

electric field at a point 1 cm from the axis of the solenoid?

(45) A long solenoid has a circular cross section of radius R. The magnetic field

inside the solenoid is uniform and increasing at a rate dB/dt. The magnetic

field outside the solenoid is essentially zero. (a) What is the rate of change

of magnetic flux through a circle of radius r < R, normal to the axis of the

solenoid and center coinciding with solenoid axis? (b) What is the magnitude

of the induced electric field at a distance r < R from the solenoid axis? (c)

What is the magnitude of the induced electric field at a distance r > R from the

solenoid axis? (d) What is the magnitude of the induced emf in a circular loop

of radius r < R, normal to the axis of the solenoid and center coinciding with

the solenoid axis? (e) What is the magnitude of the induced emf if the radius

in part d is R and 2R?
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An emf produced by a physical source (like a battery) is quite different from that

produced by changing magnetic flux. In this chapter, we study how an emf is induced

as a result of a changing magnetic flux produced by the circuit itself or by a nearby

circuit.

28.1 Self-Inductance

First, consider the loop shown in Fig. 28.1, which contains a battery of emf E, a

resistor of resistance R, and a switch S. When the switch is closed, the current does

not jump immediately from 0 to its final value E/R. Actually, Faraday’s law and

Lenz’s law can be used as follows to describe what happens in this loop:

• As the current I in the loop increases with time, the magnetic flux through the loop

also increases

• The increasing magnetic flux creates an induced emf EL in the loop

• The induced emf and induced current are opposing the battery’s emf E and its

current I

• This process causes a gradual increase in the battery’s current to its final value

E/R

This effect is called self-induction because it arises from the loop itself. The

induced emf EL is called a self-induced emf, or back emf.

Consider a coil wound on a cylindrical core with a current passing through the

coil, as shown in Fig. 28.2a. As a result, a magnetic field directed to the right is set

up inside the coil. Faraday’s law can be used to describe the effect of increasing or

decreasing the current.

H. A. Radi and J. O. Rasmussen, Principles of Physics, 961
Undergraduate Lecture Notes in Physics, DOI: 10.1007/978-3-642-23026-4_28,
© Springer-Verlag Berlin Heidelberg 2013
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R

SSelf-induced emf

+-

B

B

I (increasing after closing S)

L

° °

Fig. 28.1 After closing the switch S, the current increases and so does the magnetic flux through the

loop. A self-induced emf EL (the dashed battery) is created in the loop opposite to the battery’s emf E

When the current I in the coil increases with time as in Fig. 28.2b:

• The magnetic flux through the coil also increases

• The increasing magnetic flux creates an induced emf EL in the coil

• The induced emf and its induced current are opposing the emf and current gener-

ated by the source

+- I increasing I decreasing+ -
I

B B

I I

B

I

(a) (b) (c)

Variable
resistance

L L

-+

Fig. 28.2 (a) A current in the coil creates a magnetic field to the right. (b) When the current increases,

the increasing magnetic flux creates a self-induced emf EL (the dashed battery) opposite to the emf of the

source. (c) The polarity of the self-induced emf EL reverses if the current decreases

When the current I in the coil decreases with time as in Fig. 28.2c:

• The magnetic flux through the coil also decreases

• The decreasing magnetic flux creates an induced emf EL in the coil

• The induced emf and its induced current are in the same direction as the emf and

current I generated by the source

Spotlight

In conclusion, the self-induction of a coil prevents the current in the coil from

increasing or decreasing instantaneously.
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The magnetic flux �B in a loop is proportional to the magnetic field
→
B, which

in turn is proportional to the current I that produced this magnetic field in the loop.

Therefore, �B ∝ I. The proportionality constant between �B and I is called the self-

inductance (or inductance) of the loop, and is denoted by the symbol L. Thus:

�B = LI (28.1)

According to both Faraday’s law and Lenz’s law, E= −d�B/dt, the self-induced

emf EL is given by:

EL = − L
dI

dt
(28.2)

The negative sign indicates that the self-induced emf EL is a back emf that opposes

the change in current. The SI unit of self-inductance is the henry (abbreviated by H).

Thus:

1 H = 1
V·s
A

= 1 �.s or 1 H = 1
Wb

A
= 1 T.m2/A

Comparing Eq. 28.2 with Faraday’s law for N loops, we find:

L = N�B

I
(28.3)

When used in circuits, elements with large values of L are referred to as inductors

and denoted by the circuit symbol .

Example 28.1

The current in a coil changes according to the formula: I = 0.5 − 0.2 t where t

is in seconds and I is in amperes. Experimental measurements show that a self-

induced emf of 0.5 mV is produced across the terminals of the coil. What is the

self-inductance of the coil?

Solution: From the current-time relation, we have:

dI

dt
= d

dt
(0.5 − 0.2 t) = −0.2 A/s

which means that I decreases with time. Given that EL = 0.5 mV, then:

L = − EL

dI/dt
= −0.5 × 10−3 V

−0.2 A/s
= 2.5 × 10−3 H = 2.5 mH
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28.2 Mutual Inductance

We have seen that a changing current in a coil causes a changing magnetic flux,

which in turn creates a self-induced emf EL = −LdI/dt in the coil. If two coils exist

in close proximity, then a changing current in one coil will result in a changing flux

through the second coil; hence, there will be an induced emf in this second coil.

Figure 28.3 shows two coils with a common axis near each other. Coil 1 has N1

turns and carries a current I1 and coil 2 has N2 turns. Part of the flux established by

I1 in coil 1 passes each turn of coil 2 and is represented by �21. The total linkage

flux through coil 2 is thus N2�21. Since this total flux is directly proportional to the

current I1, then in analogy to Eq. 28.3, we define the mutual inductance M21 of coil

2 as:

M21 = N2�21

I1
(28.4)

Fig. 28.3 If the current I1 in

coil 1 changes, a mutual

induced emf E2 =−MdI1/dt

will be established in a nearby

coil 2

Coil 1

1I
1N

2N

Coil 2

B

2 21N

It is clear that the mutual inductance depends on the geometry of both coils. We can

rearrange the last equation as:

M21I1 = N2�21 (28.5)

If the current I1 varies with time, then:

M21
dI1

dt
= N2

d�21

dt
(28.6)

According to Faraday’s law, apart from a sign, the right side is just the emf EM2

established in coil 2. Thus, the mutual emf in coil 2 is:

EM2 = −M21
dI1

dt
(28.7)
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The preceding steps can be repeated to show that if a current I2 in coil 2 varies with

time, then the mutual emf in coil 1 will be:

EM1 = −M12
dI2

dt
(28.8)

Thus, the emf produced in either coil is proportional to the rate of change of current

in the other coil. It can be shown that M12 = M21 = M, i.e. the two coils have a single

mutual inductance M. Then, we have:

EM2 = −M
dI1

dt
and EM1 = −M

dI2

dt
(28.9)

It is obvious that the unit of mutual inductance is the henry.

Example 28.2

Two nearby coils 1 and 2 have self-inductances L1 = 0.2 mH and L2 = 0.1 mH,

respectively. When the current in coil 1 changes at a rate of 4 A/s, it is found that

a mutual emf of 10 mV is induced in coil 2. (a) What is the mutual inductance

of the combination? (b) If the two coils are joined as shown in Fig. 28.4, find the

total induced emf of the combination.

Fig. 28.4

Coil 11I Coil 2

1I
1L 2L

Solution: (a) Using the magnitude values of Eq. 28.9, we get:

EM2 = M
dI1

dt
⇒ M = EM2

dI1/dt
= 10 × 10−3 V

4 A/s
= 2.5 × 10−3 H

(b) The mutually-induced and self-induced emfs in the two coils are in the

same direction. Since the current is the same in both coils, then:

E tot = EL1 + EL2 + EM1 + EM2 = −(L1 + L2 + 2M)
dI1

dt

= −(0.2 × 10−3 H + 0.1 × 10−3 H + 2 × 2.5 × 10−3 H)(4 A/s)

= −21.2 × 10−3 V
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28.3 Energy Stored in an Inductor

It is necessary to do work in order to overcome the back emf in any conductor when

the current is changing. Because energy is not dissipated by an ohm-less inductor,

we may consider any work done as energy stored in the inductor in the form of a

magnetic field.

Consider the circuit of Fig. 28.5a in which a battery of emf E is connected to an

ohm-less inductor in series with an open switch S.

(a) (b)

S

t < 0 t >0

L L

I I increasing

S

L

Fig. 28.5 (a) A battery, inductor, and open switch at t < 0. (b) The circuit at time t > 0 when I is

increasing after S is closed at t = 0

When S is closed at time t = 0, the current I begins to increase, see Fig. 28.5b, and

a back emf that opposes I is induced in the inductor; thus the induced emf is against

E. The loop theorem yields:

E− L
dI

dt
= 0 ⇒ E = L

dI

dt
(At time t > 0) (28.10)

Multiplying by the instantaneous value of the current, we get:

IE = LI
dI

dt
(28.11)

Since IE is the rate at which energy is being supplied by the battery, then P = LI dI/dt

must represent the rate at which energy is being stored in the inductor. The energy

UL stored is the conductor is thus:

UL =
t�

0

P dt =
t�

0

LI
dI

dt
dt = L

I�
0

I dI = 1

2
LI2

UL = 1

2
LI2 (28.12)
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This is the energy stored in the magnetic field of an inductor when the current is I.

We can prove that uB = B2/2μ◦ is the energy density, see Eq. 23.38.

28.4 The L – R Circuit

We can place inductors in circuits to prevent the current in these circuits from increas-

ing or decreasing instantaneously.

Figure 28.6 displays a circuit containing a battery of emf E, a resistor of resistance

R, an inductor of inductance L, and a switch S. Assume that the switch S is open for

t < 0, as shown in Fig. 28.6a.

(a) (b)

S

t < 0 t >0

L L

I

RR

I increasing

a

b

S
a

b

L

Fig. 28.6 (a) The circuit diagram of an inductor in series with a resistor, an open switch, and a battery.

(b) The circuit diagram at time t > 0 when I is increasing after the switch S is connected to a at t = 0

Connecting Switch S to Position a

Once the switch S is connected to position a at time t = 0, the current begins to

increase, and a back emf that opposes the increasing current is induced in the inductor;

thus EL, is against the battery’s emf.

Assume that the current in the circuit at time t > 0 is I, as shown in Fig. 28.6b.

Applying Kirchhoff’s loop rule and traversing the circuit clockwise, we get:

E− IR − L
dI

dt
= 0 (At time t > 0) (28.13)

Using the condition I = 0 at t = 0 and changing the variables by letting x = E/R − I,

it is left as a problem to show that the solution of (28.13) is:
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I = E
R

(1 − e−t/τ ), τ = L

R
(28.14)

This relation shows that I = 0 at t = 0 and I = E/R at t = ∞, as expected.

We can generalize these results as follows:

Spotlight

Initially, an inductor acts to oppose the increase in the current, but after a long

time it acts like an ordinary conductive connecting wire.

If we take the first time derivative of Eq. 28.14, we get:

dI

dt
= E

L
e−t/τ , τ = L

R
(28.15)

Thus, dI/dt is a maximum and is equal to E/L at t = 0 and falls off exponentially to

zero as t approaches infinity.

The quantity L/R in the exponents of Eqs. 28.14 and 28.15 is called the time

constant τ of the circuit. Therefore, the quantity τ = L/R represents the time interval

during which the current in the circuit increases to (1−e−1)= 0.632 ≡ 63.2∼63% of

its final value E/R. Similarly, after a time interval τ, the current rate dI/dt decreases

to e−1 = 0.368 ≡ 36.8∼37% of its initial value E/L.

Figure 28.7 shows the variation of the circuit current I and the current rate dI/dt

as a function of time.
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Fig. 28.7 (a) A plot of the current I in the circuit of Fig. 28.6 versus time t. (b) A plot of current rate

dI/dt in the circuit of Fig. 28.6 versus time t. The two curves of parts (a) and (b) are based on the values

R = 200 �, L = 0.4 H, and E= 2 V
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Connecting S is Changed to Position b After Being Connected to a

Suppose that the switch S has been connected to position a first for a long period to

allow the current to reach to its equilibrium value E/R, as shown in Fig. 28.8a.

(a) (b)

L

RS
a

b

t < 0 t > 0

L
I

RSa

b I decreasing/I R=I

L°
°°

°
°°

°
°°

Fig. 28.8 (a) The circuit diagram with a saturated current of constant value I = E/R. (b) The circuit

diagram at time t > 0 when I is decreasing after the switch S is connected to position b at t = 0

At t = 0, the switch S is disconnected from position a and instantaneously

connected to position b. At this moment, the current begins to decrease, and a self-

induced emf that opposes the decreasing current is induced in the inductor; thus EL

is clockwise.

Assume that the current in the circuit at time t > 0 is I, as show in Fig. 28.8b. With

the switch in position b, the battery’s emf E is removed and Eq. 28.13 reduces to:

0 − IR − L
dI

dt
= 0 (At time t > 0) (28.16)

It is left as an exercise to show that the solution of Eq. 28.16 is:

I = E
R

e−t/τ , τ = L

R
(28.17)

This current falls exponentially from E/R to zero. In a time interval τ = L/R, the

current in the circuit declines to e−1 = 0.368 ∼ 37% of its initial value E/R. Note

that the direction of the current is the same when the switch is connected to position

a or position b.
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Example 28.3

In Fig. 28.6, let R = 12 �, E= 24 V, and L = 60 mH. (a) Find the time constant of

the circuit. (b) After closing S at t = 0, find the current in the circuit at t = 2 ms.

(c) Find the energy stored in the inductor when the current is 1.5 A.

Solution: (a) The time constant of the R–L circuit is given by:

τ = L

R
= 60 × 10−3 H

12 �
= 5 × 10−3 s = 5 ms

(b) Using Eq. 28.14, we find the current in the circuit at t = 2 ms:

I = E
R

(1 − e−t/τ ) = 24 V

12 �
(1 − e−0.4) = 0.659 A

(c) Using Eq. 28.12, the energy stored when I = 1.5 A is:

UB = 1

2
LI2 = 0.5(60 × 10−3 H)(1.5 A)2 = 67.5 × 10−3 J = 67.5 mJ

Example 28.4

In Fig. 28.9, determine the initial current at t = 0 (when the switch is closed) and

the final current at t → ∞ (when the switch is closed for a long time).

Fig. 28.9

S

L

° °
1

R2

R

Solution: When the switch is closed at t = 0, the current in the inductance coil

cannot change instantaneously. Therefore, at t = 0 the current from the battery

must flow through R1 and R2 only. Hence:

I(at t=0) = E
R1 + R2

When the switch is closed for a long time, the current in the inductor is not

changing and therefore the induced emf is zero. In this case the inductor (which
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has zero resistance) is short circuited with R2. Thus, there is no current in R2 and

the same current will flow through R1 and L. Hence:

I(at t → ∞) = E
R1

28.5 The Oscillating L – C Circuit

In Fig. 28.10a, assume that the switch S is open when the capacitor has an initial

charge Q (the maximum charge), and hence the total energy stored in the capacitor

is U = Q2/2C. In addition, we assume a resistance-free, non-radiating LC circuit.

E E

(a) (b)

L

S

°° Q

Q
C

I

L

S

°
C

q

q

°

0t

L

S

°° Q

Q
C

0t 0t

0I

(c)

E
B

Fig. 28.10 (a) Before starting (t < 0), switch S is open and the capacitor has an initial maximum charge

Q. (b) When the switch is closed at t = 0, the current in the circuit is zero and the charge begins decreasing.

(c) For t > 0, the charge has decreased to q(t) and the current in the circuit I = −dq(t)/dt establishes a

magnetic field
→
B (t) in the inductor

When the switch is closed at t = 0, the current I in the circuit is zero, and the

capacitor starts to discharge through the inductor, see Fig. 28.10b.

At t > 0, represented in Fig. 28.10c, the charge on the capacitor decreases to q

(where q < Q) and the rate at which the charges leave (or enter) the capacitor is

equal to the current I in the circuit. This current establishes a magnetic field
→
B in the

inductor.

When the capacitor is fully discharged, the current at this time reaches its max-

imum value Imax, and all of the energy is now stored in the inductor. The current

continues in the same direction, but it is now decreasing in magnitude and the capac-

itor is being charged with polarity opposite to the initial polarity. This is followed

by another discharge until the circuit returns to its original state. In a system with

zero resistance the energy continues to oscillate between the capacitor and inductor

indefinitely. We refer to this as an “oscillating circuit”.
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At an arbitrary time t, the current in the circuit is related to the decreasing charge

q by I = −dq/dt. In addition, at time t the sum of the stored energy in the capacitor

UC and the inductor UL must equal the initial energy stored in the capacitor U at

t = 0. Thus:

UC + UL = U

q2

2C
+ 1

2
LI2 = Q2

2C

(28.18)

Differentiating this equation with respect to the time t and noting that dI/dt =
−d2q/dt2, we can reach the following differential equations:

d2q

dt2 + 1

LC
q = 0

or:
d2q

dt2 + ω2q = 0 (28.19)

where: ω = 1√
LC

(28.20)

This equation is analogous to a block-spring system given by Eq. 14.8. By consider-

ation of the initial conditions, q = Q and I = 0 at t = 0, we find that Eq. 28.19 has a

solution given by:

q = Q cos(ωt) (28.21)

where ω is the angular frequency of the oscillations, which is a frequency solely

depends on the capacitance C and inductance L of the circuit. The undamped fre-

quency and period of the oscillations are given by:

f = ω

2π
= 1

2π
√

LC
, T = 1

f
= 2π

√
LC (28.22)

The current as a function of time is therefore given by:

I = −dq

dt
= Qω sin(ωt) = Imax sin(ωt) (28.23)

where the maximum current and charge are related by Imax = Qω. The general solu-

tion of (28.19) is q = Q cos(ωt + φ), with φ is a phase angle.

Figure 28.11 displays the electric and magnetic fields as well as current of a

complete cycle of an L – C circuit.
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Fig. 28.11 (a) At t = 0, all of the energy is stored as an electric energy Q2/2C in the capacitor. (b)

At t = T/4, all of the energy is stored as a magnetic energy 1
2 LI2

max in the inductor. (c) At t = T/2,

all of the energy is stored again in the capacitor, but with opposite polarity. (d) At t = 3T/4, all of the

energy is stored as a magnetic energy 1
2 LI2

max in the inductor. (e) At t = T , the circuit returns to its initial

configuration at t = 0

For a complete cycle, Fig. 28.12 displays both the charge and current versus time

for a resistanceless nonradiating LC circuit.

Fig. 28.12 Variation of q and

I as a function of time t

t

t

TT /4 T /2 3T /40

I
maxI

q
Q

/I dq dt

Example 28.5

When S1 is closed and S2 is opened, as shown in the left part of Fig. 28.13, a capac-

itor of capacitance C = 7.1 pF is charged from a battery of emf E= 12 V. Switch

S1 is then opened, and the capacitor remains charged. Switch S2 is then closed,
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so the capacitor is connected directly to an inductor of inductance L = 3.56 mH,

as shown in the right part of Fig. 28.13. (a) Find the frequency of oscillation of

the circuit. (b) Find both the maximum charge on the capacitor and current in the

circuit. (c) Find the charge and current as a function of time.

EE L

°°
C

° ° Q

Q
L

°°
C

° °
1S 2S 1S 2S

q

q

I

0t0t

B

Fig. 28.13

Solution: (a) Eq. 28.22 gives for the frequency of the oscillating circuit as:

f = 1

2π
√

LC
= 1

2π
√

(3.56 × 10−3 H)(7.1 × 10−12 F)
= 1×106 Hz = 1 MHz

(b) Using the relation Q = C�V = CE, we get the maximum charge as:

Q = CE = (7.1 × 10−12 F)(12 V) = 8.52 × 10−11 C = 85.2 pC

From Eq. 28.23 and the relation ω = 2π f , the maximum current is given in terms

of the maximum charge as:

Imax = Qω = (8.52 × 10−11 C)(2π × 106 s−1) = 5.35 × 10−4 A

(c) Using Eqs. 28.21 and 28.23, the charge and current as a function of time

are given as follows:

q = Q cos(ωt) = (8.52 × 10−11 C) cos[(2π × 106 s−1) t]
I = Imax sin ωt = (5.35 × 10−4 A) sin[(2π × 106 s−1) t]

28.6 The L – R – C Circuit

Now we consider a realistic L – C circuit with some resistance R. In Fig. 28.14a, the

switch S is open and the capacitor has an initial charge Q. This is the maximum charge

that the capacitor can store. Consequently, the total energy stored in the capacitor is

U = Q2/2C.
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Fig. 28.14 (a) Before starting (t < 0), the switch S is open and the capacitor has an initial maximum

charge Q. (b) After the switch is closed (t > 0), the charge has decreased to q(t) and the current in the

circuit I =−dq(t)/dt establishes a magnetic field
→
B in the inductor

The switch S is closed at t = 0. Figure 28.14b represents the case at t > 0. In

this figure, the charge on the capacitor decreases to q (where q < Q) and the rate at

which the charges leave (or enter) the capacitor is equal to the current I in the circuit.

This current establishes a magnetic field
→
B in the inductor. Applying Kirchhoff’s

loop rule and traversing the circuit counterclockwise (starting from the capacitor’s

negative plate), we get:

q

C
− IR − L

dI

dt
= 0 (At time t > 0) (28.24)

Since I = −dq/dt, this equation becomes:

L
d2q

dt2 + R
dq

dt
+ q

C
= 0 (28.25)

This second-order differential equation in the variable q has the same form as the

damped harmonic oscillator Eq. 14.25:

m
d2x

dt2 + b
dx

dt
+ kHx = 0

Therefore, by comparison, Eq. 28.25 has the solution:

q(t) = Qe−(R/2L)t cos(ωd t + φ) (28.26)

where the angular frequency of the damped oscillation ωd is given by:

ωd =
√

1

LC
− R2

4L2

(
ωd

R
2
√

1/LC−−−−−−−→
or R→0

√
1

LC
= ω

)
(28.27)
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If the resistance R is relatively small, the circuit oscillates, but with damped oscil-

lations. We refer to this as an underdamped circuit, see Fig. 28.15. If we increase

R, the oscillations die out more rapidly. When R reaches a certain critical value

Rc = √
4L/C, the circuit does not oscillate and it is said to be critically damped,

see Fig. 28.15. When R is greater than Rc, the circuit is said to be overdamped.

Fig. 28.15 When φ = 0, the

figure shows an underdamped

circuit with R < Rc (red curve)

and critically damped circuit

with R = Rc (blue curve)

1

q /Q

40R

R R

cR R

t(s)0

20 mHL
2 FC

c

0 0.005
1

Example 28.6

In the circuit of Fig. 28.14, take R = 40 �, L = 20 mH, and C = 2 µF. (a) Show

that this circuit oscillates. (b) Determine the frequency of the circuit. (c) When

φ = 0 and t > 0, find the first three times at which the cosine term of Eq. 28.26

becomes ∓1 and then find the ratio q/Q at these times. (d) What resistance R is

required to make this circuit oscillate with one-half the undamped frequency?

Solution: (a) We first calculate the critical value Rc as follows:

Rc =
√

4L

C
=

√
4(20 × 10−3 H)

2 × 10−6 F
= 200 �

Since R < Rc is satisfied when R = 40 �, then this circuit oscillates.

(b) We use the relation ωd = 2π fd to find the frequency as follows:

fd = ωd

2π
= 1

2π

√
1

LC
− R2

4L2

= 1

2π

√
1

(20 × 10−3 H)(2 × 10−6 F)
− (40 �)2

4(20 × 10−3 H)2 = 779.7 Hz
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(c) For t > 0, the term cos(ωd t) equals ∓1 when ωd t = π, 2π, . . . , Thus,

tn = nπ/ωd = n/2fd, (n = 1, 2, . . .). Therefore, cos(ωd t)= ∓1 at:

t1 = 0.641 ms, t2 = 1.28 ms, t3 = 1.924 ms, . . .

For these calculated times, the ratio qn/Q is:

qn

Q
= e−

(
R
2L

)
tn = e

−
(

40 �

2(20×10−3 H)

)
tn = e−(1000 s−1) tn

Thus:

q1

Q
= e−(1000 s−1) t1 = e−(1000 s−1)(0.641×10−3 s) = e−0.641 = 0.53 (53%)

q2

Q
= e−(1000 s−1) t2 = e−(1000 s−1)(1.28×10−3 s) = e−1.28 = 0.28 (28%)

q3

Q
= e−(1000 s−1) t3 = e−(1000 s−1)(1.924×10−3 s) = e−1.924 = 0.15 (15%)

(d) Using Eqs. 28.22 and 28.27, the required resistance R that makes this circuit

oscillate with one-half the undamped frequency is obtained by setting ωd = ω/2.

Thus:

ωd = 1
2ω ⇒

√
1

LC
− R2

4L2 = 1
2

√
1

LC

When we square both sides, we get:

R =
√

3L

C
=

√
3(20 × 10−3 H)

2 × 10−6 F
= 173.2 �

28.7 Circuits with an ac Source

In this section, we continue studying circuits containing elements such as resistors,

inductors, and capacitors, but this time connecting them to a source of alternating

voltage that produces an alternating current (ac). First, we examine these electronic

components individually, considering a sinusoidal voltage (see Sect. 27.3) and current

(see Sect. 27.4) that can be described by:

v = V sin ωt (28.28)

i = I sin ωt (28.29)
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In these expressions, the lowercase v and i represent the instantaneous potential

difference and current, respectively. The uppercase V and I represent the peak voltage

and current, respectively. The angular frequency ω is equal to 2π times the frequency

f of the oscillations.

Resistors in an ac Circuit

According to Eq. 28.28, we can write the alternating voltage across any resistor as:

vR = VR sin ωt (28.30)

where VR is the peak voltage across the resistor. From Ohm’s law, the instantaneous

current through such a resistor is:

iR = vR

R
= VR

R
sin ωt = IR sin ωt (28.31)

Where the peak current IR is given by IR = VR/R. According to this result, we have:

VR = IR R (28.32)

In addition, the relations between the rms and peak values of the current and

voltage; Ohm’s law; and the average power delivered to a resistor as a heat, are all

given Sect. 27.4 as follows:

Irms = I√
2

= 0.707 I and Vrms = V√
2

= 0.707 V (28.33)

Vrms = Irms R (28.34)

P = Irms Vrms = I2
rms R = V 2

rms/R (28.35)

Because the current iR is zero when the voltage vR is zero and the current reaches

a peak when the voltage reaches a peak, they are both proportional to sin ωt and we

say that the current and voltage are in phase, see Fig. 28.16. That is:

Spotlight

The voltage across a resistor is in phase with current.
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Fig. 28.16 (a) A resistor connected to an ac source. (b) Alternating voltage vR (red) across R is in phase

with alternating current iR (blue)

Inductors in an ac Circuit

We replace the resistor in Fig. 28.16a with a pure inductor of inductance L and zero

resistance as shown in Fig. 28.17a. The potential difference across the inductor can

be written as:

vL = VL sin ωt (28.36)

where VL is the peak voltage. The voltage applied to the inductor will be equal to

the back induced emf generated in the inductor by the changing alternating current.

Thus:

vL = L
diL
dt

(28.37)

If we combine the last two equations, we get:

diL
dt

= VL

L
sin ωt (28.38)

To find the current, we integrate the last equation to get:

iL = VL

L

�
sin ωt dt = − VL

ωL
cos ωt (28.39)

For reasons of symmetry of notation, we use trigonometric identities to replace

−cos ωt with a phase-shifted sine as follows:

−cos ωt = sin(ωt − π/2)

With this change, the current in the inductor becomes:

iL = VL

ωL
sin(ωt − π/2) = IL sin(ωt − π/2) (28.40)
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where IL = VL/ωL is the peak current. Figure 28.17b shows the variation of vL and

iL as a function of time. It is clear from the figure and Eqs. 28.36 and 28.40 that the

voltage vL and the current iL are out of phase by a quarter cycle, which is equivalent

to π/2 radians or 90◦. That is:

Soptlight

The voltage across an inductor leads the current by 90◦.

In other words, the current in an inductor reaches its peak quarter a cycle later

than the voltage.

(a) (b)

t
LI+

2sin( )L Li I t π
LV+

ac

sinL LV t=

LL

w w= −

Fig. 28.17 (a) An inductor connected to an ac source. (b) Alternating voltage vL (red) leads alternating

current iL (blue) by quarter a cycle or 90◦

Because the current and voltage are out of phase by 90◦, the average power

dissipated is zero. Energy from the source is delivered to the inductor and stored

as an increasing magnetic field between its turns. As the field decreases, the energy

returns to the source. That is:

PL = 0 (28.41)

Capacitors in an ac Circuit

Figure 28.18a shows a capacitor connected to a generator with an alternating emf.

The applied potential difference of the ac source must equal the applied potential

difference across the capacitor. Thus:

vC = VC sin ωt (28.42)

where VC is the peak voltage across the capacitor. According to the definition of

capacitance, the instantaneous charge on the capacitor plates is:

qC = CvC = CVC sin ωt (28.43)
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CI+
2sin( )C Ci I t π= +

(a) (b)

CV+

ac

sinC CV t=

CC t

Fig. 28.18 (a) A capacitor connected to an ac source. (b) Alternating voltage vC (red) lags alternating

current iC (blue) by quarter a cycle or 90◦

The current in the circuit at any instant is thus:

iC = dqC

dt
= ωCVC cos ωt (28.44)

Again, for reasons of symmetry of notation, we use trigonometric identities to replace

cos ωt with a phase-shifted sine as follows:

cos ωt = sin(ωt + π/2)

With this change, the current in the capacitor becomes:

iC = ω CVC sin(ωt + π/2) = IC sin(ωt + π/2) (28.45)

where IC = ω CVC is the peak current in the circuit. Figure 28.18b shows the variation

of vC and iC as a function of time. It is clear from the figure and Eqs. 28.42 and 28.45

that the voltage vC and the current iC are out of phase by a quarter cycle, which is

equivalent to π/2 radians or 90◦. That is:

Spotlight

The voltage across a capacitor lags the current by 90◦.

In other words, the current reaches its peak quarter a cycle ahead of the voltage.

Because the current and voltage are out of phase by 90◦, the average power

dissipated is zero. This is similar to an inductor. Energy from the source is delivered

to the capacitor and stored as an increasing electric field between its plates. As the

electric field decreases, the energy returns to the source. That is:

PC = 0 (28.46)
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Reactance and Phasors in an ac Circuit

We notice from Eqs. 28.40 and 28.45 that VL = IL (ωL) for inductors and VC =
IC(1/ωC) for capacitors. As we search for additional symmetry in ac circuits, we

introduce the two quantities XL and XC, called the inductive reactance of the induc-

tor and the capacitive reactance of the capacitor, respectively, as follows:

XL = ωL (28.47)

XC = 1

ωC
(28.48)

where both quantities have the units of ohms. Just like the relation VR = IR R for ohmic

resistors, we can write similar relations for inductors and capacitors as follows:

VL = IL XL (Peak or rms values) (28.49)

VC = IC XC (Peak or rms values) (28.50)

Note that because the peak values of the current and voltage are not reached at

the same time, these equations are valid only for peak or rms values and not for any

other instant.

Note also that:

• The inductive reactance XL =ωL is large for high frequencies f and/or larger induc-

tances L. Consequently, the greater the value of XL, the more it impedes the flow

of charge and the smaller the current experienced in the inductor.

• The capacitive reactance XC = 1/ωC is large for smaller frequencies f and/or

smaller capacitances C. Consequently, the greater the value of XC, the more it

impedes the flow of charge and the smaller the current experienced in the capac-

itor. (For dc circuits ω = 0 and XC = ∞, and hence a capacitor does not pass dc

current).

To simplify the analysis of complicated ac circuits, we use a graphical tool called

the phasor diagram.

We define a phasor that represents a time-varying quantity to be a vector having

the following properties:

• Length: Its length is proportional to the peak value of the variable

• Angular frequency: It rotates counterclockwise around the origin with the same

angular frequency of the variable
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• Rotation angle: Its rotation angle with respect to the horizontal axis is equal to the

phase of the alternating quantity

• Projection: Its projection onto the vertical axis represents the instantaneous value

of the variable

The time-varying quantities of vR and iR for a resistor, vL and iL for inductor, and

vC and iC for capacitor are represented graphically in Fig. 28.19.

t

R RV I R=

RI

R

Ri
LI

L
L L LV I X=

CI

C C C CV I X=

Li Ci

(a) (b) (c)

t t

Fig. 28.19 Phasor diagrams. (a) For resistors, the voltage and current are in phase. (b) For inductors,

the voltage leads the current by 90◦. (c) For the capacitors, the voltage lags the current by 90◦

Example 28.7

A coil has an inductance L = 0.4 H and a small resistance R = 2 �. Find the current

in the coil when the applied voltage is: (a) 220-V dc, and (b) 220-V ac (rms) with

a frequency f = 50 Hz.

Solution: (a) For a dc source, ω = 0 and XL = 0 and Ohm’s law gives:

IR = VR

R
= 220 V

2 �
= 110 A

(b) The value of the inductive reactance to be:

XL = ωL = 2π fL = 2π(50 cycle/s)(0.4 H) = 126 �

Since XL is much greater than R, we ignore its effect and use Eq. 28.49 to calculate

the current as follows:

Irms = Vrms

XL
= 220 V

126 �
= 1.75 A
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Example 28.8

A capacitor has a capacitance C = 2 µF. Find the current in the capacitor if you

apply a 50 Hz and 220-V ac (rms) voltage.

Solution: The value of the capacitive reactance is:

XC = 1

ωC
= 1

2π fC
= 1

2π(50 cycle/s)(2 × 10−6 F)
= 1,592 �

We use Eq. 28.50 to calculate the current as follows:

Irms = Vrms

XC
= 220 V

1,592 �
= 0.14 A

28.8 L – R – C Series in an ac Circuit

Figure 28.20 shows an ac source connected to a circuit containing three elements

in series: a resistor of resistance R, an inductor of inductance L, and a capacitor of

capacitance C. Let us find the effect of R, XL, and XC on the peak current and the

relation of the phase between the voltage and the current.

Fig. 28.20 An ac source

connected in series with a

resistor R, an inductor L, and a

capacitor C
R

ac

R L C

L C

Since all elements in the circuit are in series, the current at any point in the circuit

must be the same at any time. We choose the current i, at any time t to be:

i = I sin ωt

The peak currents in all elements are equal, i.e. IR = IL = IC = I. Consequently,

the peak voltages across the resistor, inductor, and capacitor are VR = IR, VL = IXL,

and VC = IXC, respectively. Based on the preceding section, the phases between the

voltages across the elements and the current are summarized as follows:

1. The voltage across the resistor vR is in phase with the current i

2. The voltage across the inductor vL leads the current i by 90◦

3. The voltage across the capacitors vC lags the current i by 90◦
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We can express the relationships of these results as follows:

vR = IR sin ωt = VR sin ωt (28.51)

vL = IXL sin(ωt + π/2) = VL sin(ωt + π/2) (28.52)

vC = IXC sin(ωt − π/2) = VC sin(ωt − π/2) (28.53)

The instantaneous voltage across the three elements equals the sum:

v = vR + vL + vC (28.54)

Although this analytical method is correct and leads to the final answer, it is actu-

ally simpler to use the phasor diagram. Figure 28.21a shows the phasor diagram for

the three elements, based on the phasor diagram displayed in Fig. 28.19. To find the

resultant phasor, we construct the difference phasor VL − VC (assuming that the cir-

cuit is more inductive that capacitive), which is perpendicular to the phasor VR, see

Fig. 28.21b. From the Pythagorean theorem, the resultant voltage V is the hypotenuse

of the right angle triangle shown in Fig. 28.21b. Thus:

V =
√

V 2
R + (VL − VC)2 = I

√
R2 + (XL − XC)2 (28.55)

t

RV

I

(a)

LV

CV

t

RV

(b)

L CV V

V

I

Fig. 28.21 (a) Phasor diagram for an ac source connected to a series L-R-C circuit. (b) The vector sum

V of the three phasors VR, VL, and VC

We define the impedance Z of an ac circuit as the ratio of the peak voltage across

the circuit to the current peak in the circuit. Thus:

V = IZ or Vrms = Irms Z (28.56)
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where

Z =
√

R2 + (XL − XC)2 =
√

R2 +
(

ωL − 1

ωC

)2

(28.57)

Eq. 28.56 is known as the impedance version of Ohm’s law.

According to Fig. 28.21, the phase angle φ between the peak voltage V and peak

current I is giving by the two relations:

tan φ = VL − VC

VR
= IXL − IXC

IR
= XL − XC

R
(28.58)

or

cos φ = VR

V
= IR

IZ
= R

Z
(28.59)

In a series L-R-C circuit, only the resistor dissipates the power. Then, the average

power dissipated is given by:

P = I2
rms R (28.60)

We can use R = Z cos φ, from Eq. 28.59, and Vrms = Irms Z from Eq. 28.56 to write

the average power as follows:

P = Irms Vrms cos φ (28.61)

where the quantity cos φ is called the power factor of the circuit. When the cir-

cuit contains only a resistor, then φ = 0, cos φ = 1, and consequently P = Irms Vrms.

However, when the circuit does not contain a resistor but contains either an inductor

or capacitor, φ = +90◦ and φ =−90◦, respectively, then no power is dissipated since

cos φ = 0.

Example 28.9

An ac source of 220-V (rms) and angular frequency ω = 314 rad/s is connected to

a series L-R-C circuit, where R = 35 �, L = 100 mH, and C = 650 µF. Find: (a)

the inductive reactance, the capacitive reactance, and the impedance of the circuit,

(b) the peak and rms current, (c) the peak voltage, the instantaneous voltage, and

the rms voltage across each element, (d) the phase angle φ and the average power

dissipated in the circuit.
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Solution: (a) The reactance of the inductor and capacitor are:

XL = ω L = (314 rad/s)(100 × 10−3 H) = 31.4 �

XC = 1

ωC
= 1

(314 rad.s)(650 × 10−6 µF)
= 4.9 �

The impedance of the circuit is thus:

Z =
√

R2 + (XL − XC)2 =
√

(35 �)2 + (31.4 � − 4.9 �)2 = 43.9 �

(b) Using the impedance form of Ohm’s law, Eq. 28.56, we get:

Irms = Vrms

Z
= 220 V

43.9 �
= 5.01 A � 5 A and I = √

2Irms = 7.09 A

(c) The peak and instantaneous voltages across each element are:

VR = IR = (7.09 A)(35 �) = 248.2 V

VL = IXL = (7.09 A)(31.4 �) = 222.6 V

VC = IXC = (7.09 A)(4.9 �) = 34.7 V

vR = (248.2 V) sin(314 t)

vL = (222.6 V) sin(314 t + π/2)

vC = (34.7 V) sin(314 t − π/2)

The rms voltage across each element is:

(VR)rms = Irms R = (5.01 A)(35 �) = 175 V

(VL)rms = Irms XL = (5.01 A)(31.4 �) = 157 V

(VC)rms = Irms XC = (5.01 A)(4.9 �) = 24.5 V

Notice that the peak and rms voltages across the elements do not add to equal the

source voltage, 311 V (peak value) or 220 V (rms). This is because the different

voltages are not in phase with each other. At a particular instant, one voltage across

a particular element may be negative in order to compensate for the large positive

voltage on the other, but the instantaneous voltages must add up to the source

voltage. On the other hand, the rms voltages are always positive by definition.

(d) The phase angle φ is given by Eq. 28.59 as:

cos φ = R

Z
= 35 �

43.9 �
= 0.797 ⇒ φ = cos−1(0.797) = 37.1◦

The average power dissipated is given by Eq. 28.61 as:

P = Irms Vrms cos φ = (5 A)(220 V)(0.797) = 876.7 W
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28.9 Resonance in L – R – C Series Circuit

As we saw in Eq. 28.56, the rms current in an L–R–C series circuit depends on the

source’s frequency f . This can be rewritten as:

Irms = Vrms

Z
= Vrms√

R2 + (XL − XC)2
(28.62)

Such a circuit is said to be in resonance when the current is maximum at a

certain frequency. The maximum current occurs when the impedance is mini-

mum. This condition can happen when XL−XC = 0 at a certain frequency ω◦, i.e.

XL−XC = ω◦ L − 1/ω◦ C = 0. Therefore:

ω◦ = 1√
LC

(28.63)

This frequency corresponds to the natural frequency of oscillation of an L – C circuit

as introduced in Sect. 28.5.

Figure 28.22 shows the variation of Irms as a function of the angular frequency ω

for a particular L – R – C series circuit. The current Irms is maximum at ω = ω◦ and

decreases when ω < ω◦ and also when ω > ω◦. At resonance, the energy transferred

from the source to the circuit is maximum and increases for small values of R.

Fig. 28.22 Current in an

L – R – C circuit as a function

of the angular frequency ω. At

ω =ω◦ resonance occurs and

the current is maximum

rmsI Small R

Large R

Resonance is used in Radio and TV sets for tuning to a station. By changing C

of the L – R – C circuit, the resonance frequency of the circuit matches a particular

received EMW and the current flow is enhanced.

28.10 Exercises

Section 28.1 Self-Inductance

(1) The current in a coil of self-inductance L = 75 mH changes uniformly from

zero to 1 A in 50 ms. What is the magnitude of the induced emf?
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(2) The magnitude of the average induced emf in a coil is 5 V when its current

changes from −30 to +120 mA during a period of 30 ms. What is the self-

inductance (or inductance) of the coil?

(3) When a steady current I = 10 A passes through a solenoid of N = 25 turns, the

magnetic flux through each turn is �B = 10−2 Wb. What is the inductance of

the coil?

(4) A solenoid has N = 200 turns, a length 	= 4 cm, and a cross-sectional area

A = 10−2 m2. What is the inductance of the solenoid?

(5) An air-filled cylindrical inductor of cross-sectional area A = 5 × 10−3 m2 has

a length 	= 4 cm. How many turns of wire are required such that the inductor

achieves an inductance L = 125 mH?

(6) If the core of the inductor of exercise 5 is filled with iron of relative perme-

ability Km = μm/μ◦ = 1,500, how many turns are needed to obtain the same

inductance?

(7) A solenoid of length 	= 20 cm has N = 500 windings around an iron core of

cross-sectional area A = 2 × 10−4 m2 and relative permeability 500. (a) What

is the inductance of the solenoid? (b) What is the average emf induced in the

solenoid when its current decreases from 1.8 to 0.5 A in a period of 20 ms?

(8) A steady current I = 5 A passes through a coil of N = 400 turns and creates a

magnetic flux �B = 10−3 Wb through each turn of the coil. (a) Find the average

emf induced in the coil when the current drops to zero in 40 ms. (b) What is

the inductance of the coil? (c) What was the initial magnetic energy stored in

the coil?

(9) A student wants to build an air-filled solenoid of inductance L = 0.1 H and

diameter D = 20 cm by tightly winding one layer of insulated copper wire of

diameter d = 0.5 mm around a plastic hollow tube, see Fig. 28.23. (a) What

is the length 	 of the solenoid? (b) What is the length of the required copper

wire? (c) What will be the resistance of this wire if the resistivity of copper is

ρ = 1.68 × 10−8 �.m?

Fig. 28.23 See Exercise (9) Solenoidd

D

Wire
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(10) Two inductors having inductances L1 = 0.1 H and L2 = 0.2 H are assumed to be

well separated. What is the equivalent self-inductance Leq between terminals

a and b when the two inductors are placed in: (a) series, and (b) parallel, see

Fig. 28.24?

1L 2L
a b

1L

2L
a b

ba
eqL

ba
eqL

Fig. 28.24 See Exercise (10)

Section 28.2 Mutual Inductance

(11) When the current in a coil changes at a rate dI/dt = 2 A/s, an emf of 5 mV is

induced in a nearby coil. What is the mutual inductance of the combination?

(12) The primary current in a transformer changes at a rate of 3 A/s. What is the

induced emf in the secondary coil if the mutual inductance between the primary

and secondary coils is 0.4 H?

(13) Primary and secondary coils have a common cylindrical iron core to allow for a

common value of magnetic flux. A magnetic flux of 5 × 10−3 Wb is established

in the primary coil when the current passing through it increases from zero to

5 A. What is the mutual inductance of the two coils if the secondary coil is an

open circuit and has 20 loops?

(14) A solenoid of length 	= 1.5 m containing N1 = 500 turns is wound around

an iron core of cross-sectional area A = 3 × 10−3 m2 and relative permeabil-

ity Km = μm/μ◦ = 2,100. A second coil containing N2 = 40 turns is wrapped

around the solenoid such that the flux from the solenoid passes through the

second coil, see Fig. 28.25. The current in the solenoid drops from 10 A to zero

in 40 ms. (a) What is the mutual inductance of the combination? (b) What is

the emf induced in the second coil?
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Fig. 28.25 See Exercise (14)

B

I

Solenoid

I

Coil

Iron core
1N 2N

A

(15) Two solenoids are close to each other and share the same cylindrical axle,

see Fig. 28.26. The first solenoid has N1 = 250 turns and the second solenoid

has N2 = 500 turns. A current I1 = 5 A produces an internal magnetic flux per

turn �1 = 350 µWb in the first solenoid and an external magnetic flux per turn

�21 = 10 µWb in the second solenoid. (a) What is the self-inductance of the

first solenoid? (b) What is the mutual inductance of the two solenoids? (c) What

is the emf induced in the second solenoid when the current in the first solenoid

increases at a rate dI1/dt = 0.25 A/s?

Fig. 28.26 See Exercise (15) Solenoid 1

1N 1I
Solenoid 2

2N

2 21N Φ
1 1N Φ

1I

B

B

(16) Two inductors having self-inductances L1 and L2 and mutual inductance Ms

when connected in series and Mp when connected in parallel, as shown in

Fig. 28.27. Find the equivalent self-inductance Leq of the system in both the

series and parallel cases.

Section 28.3 Energy Stored in an Inductor

(17) An air-filled solenoid has length 	= 20 cm and cross-sectional area A =
10−4 m2. The magnetic field inside the solenoid is uniform and has the value

B = 0.2 T while the field outside the solenoid is very small (i.e. negligible).



992 28 Inductance, Oscillating Circuits, and AC Circuits

(a) Find the magnetic energy density inside the solenoid. (b) How much mag-

netic energy is stored in this field?

1L
2L

a b

1L

2L

a b

ba
eqL

eqL
ba

sM

I (t)

I (t)

I (t)

I (t)

I (t)1

I (t)2

pM

Fig. 28.27 See Exercise (16)

(18) An air-filled solenoid has N = 500 turns and carries a current I = 1.5 A in order

to produce a magnetic flux per turn �B = 3 × 10−4 Wb. What is the energy

stored in the magnetic field of the solenoid?

(19) An air-core solenoid has N = 300 turns, a length 	= 15 cm, and a cross-

sectional area A = 10−4 m2. How much magnetic energy is stored in its mag-

netic field when the current in the solenoid is I = 0.5 A?

(20) Typical large experimental values of magnetic and electric fields that are used

in laboratories are Blarge = 2 T and Elarge = 104 V/m. (a) Find and compare

the energy density for each field. (b) Find the value of the electric field that

produce the same energy as the magnetic field Blarge = 2 T, and then compare

this electric field with Ebreakdown = 3 × 106 V/m, the breakdown electric field

in air.

(21) An electromagnet stores 800 J of magnetic energy when a current I = 10 A is

used in its wires. What is the average emf induced if the current reduces to zero

in 0.5 s?

(22) A loop of wire of radius R = 30 cm carries a current I = 10 A. What is the

magnetic energy density at its center?

(23) A long narrow toroid has an average circumference 2πR, cross-sectional area

A, number of turns N, and permeability Km μ◦, see Fig. 28.28. (a) For circles of

radii a < r < b use the validity of 1/r ≈ 1/R to show that the self-inductance of

the toroid’s coil is given by L = Km μ◦ N2 A/(2πR). (b) Show that the energy

stored per unit volume in the magnetic field of the toroid is BH/2.
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Fig. 28.28 See Exercise (23)

I

B

R b

a

I

turnsN
mK

A

(24) When the toroid of exercise 23 has Km = 250, A = 2.5 × 10−4 m2, R = 0.05 m,

N = 3000, and current I = 0.4 A, find the values of: (a) the self-inductance L,

(b) the energy stored in the magnetic field UB, (c) the magnetic field B, (d) the

magnetization field H, and (e) the magnetic energy density uB.

Section 28.4 The L – R Circuit

(25) After how many multiplications of the time constant τ = L/R does the current

in Fig. 28.6 reach: (a) 10%, (b) 50%, and (c) 90% of its final value?

(26) An inductor of inductance L = 2 H and resistance R = 1.5 � is connected to a

6-V battery. (a) Find the time required for the current to rise to 80% of its final

value. (b) Find the final current through the inductor.

(27) An inductor of inductance L = 80 mH is connected in series with a resistor of

resistance R = 4 k�, a switch S, and a battery of emf E= 24 V. (a) What is the

time constant of the circuit? (b) How long after the switch S is closed will the

current take to reach 99% of its final value? (c) Find the final current through

the resistor.

(28) A circuit contains two elements, an inductor of inductance L = 50 mH and a

resistor. When a battery is connected in series with the two elements, the current

increases from zero to 80% of its maximum value in 4 ms. (a) Find the time

constant of the circuit. (b) Find the resistance of the resistor.

(29) When an air-core solenoid is connected to a 12-V battery, the current passing

through it rises from zero to 63% of its maximum value in 5 ms. However, if

the core of the solenoid is filled with iron, the current rises from zero to 63%
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of its maximum value in 1.5 s. (a) What is the relative permeability Km of this

iron core? (b) What is the resistance R of the solenoid and the inductance Lair

of the coil if the maximum current is 0.75 A?

(30) An inductor of inductance L is connected in series with a resistor of resistance

R, a switch S, and a battery of emf E. After the switch S is closed at time t = 0,

find the following: (a) the induced emf in the inductor EL(t), (b) the power

output of the battery Poutput(t), (c) the power dissipated in the resistor Pdiss(t),

(d) the rate at which energy is stored in the inductor dUB(t)/dt, and (e) evaluate

parts (a–d) when τ = L/R, where τ is the time constant of the circuit.

(31) In Fig. 28.29, E= 12 V, R1 = 4 �, R2 = 6 �, and R3 = 3 �. Determine the cur-

rents I1, I2, and I3 at: (a) t = 0, when S is closed, (b) t = ∞, when S is closed

for a very long time, (c) t = 0, when S is reopened (after being closed for a

long time in part b, and (d) after a long time following part c.

Fig. 28.29 See Exercise (31) S

L

1R

2R

3R

1I

2I 3I

(32) In Fig. 28.8, take E= 9 V, R = 4 k�, and L = 40 mH. The switch S in part a of

the figure is connected to position a for a sufficient amount of time so that a

steady current flows in the circuit. At t = 0, the switch S is disconnected from

position a and connected instantaneously to position b to allow the current to

decay exponentially through the resistor. (a) Find the induced emf EL in the

inductor as a function of time. (b) At what times does EL(t) reach its maximum

and minimum values?

Section 28.5 The Oscillating L – C Circuit

(33) Find the inductance of an L-C circuit that oscillates at 1 MHz when the capac-

itor’s capacitance is 2 nF.
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(34) An L – C circuit has L = 0.5 H and C = 8 µF. At t = 0, the initial charge on the

capacitor is Q = 400 µC. (a) What is the frequency of oscillation? (b) What

is the maximum value of the current? (c) Represent the current as a function

of time. (d) What is the maximum energy stored in the magnetic field of the

inductor?

(35) When the capacitor of an L – C circuit is originally charged to a potential dif-

ference of 10 V, the circuit oscillates at 1 kHz. A maximum current of 1 A is

attained after quarter of a cycle and again after three quarters of a cycle. What

are the values of the inductance L and capacitance C of the circuit?

(36) A radio tuner has an L–C circuit of variable capacitance and a fixed inductance.

The radio is tuned to a station of frequency 1.5 MHz when the tuner has a

capacitance of 0.15 nF. (a) What must be the capacitance of the tuner in order

to receive a station that broadcasts at a frequency of 0.8 MHz? (b) What is the

inductance of the tuner?

(37) An L – C circuit has an inductor of inductance L = 20 mH and a capacitor of

capacitance C = 2 µF. The capacitor is fully charged by a 50 V power supply

and then discharged through the inductor. Use the concept of energy stored

in the capacitor and inductor to find the maximum current in the oscillating

circuit.

Section 28.6 The L – R – C Circuit

(38) In the circuit of Fig. 28.14, take R = 8 �, L = 2.5 mH, and C = 2 µF. Does this

circuit oscillate? If it does, then find the frequency of this oscillation.

(39) In the circuit of Fig. 28.14, take R = 1.6 �, L = 1 mH, and C = 10−3 F. (a)

Show that this circuit oscillates. (b) Determine the frequency of the circuit. (c)

When φ = 0 and t > 0, find the time when the cosine term of Eq. 28.26 first

becomes −1 and then find the ratio q/Q at this time. (d) What resistance R is

required to make this circuit oscillate with one-half the undamped frequency

of the L–C circuit?

(40) For the L–R–C circuit of exercise 39, find the resistance R that will make the

resistor dissipate only 5% of the circuit’s energy in each cycle.

(41) An L–R–C circuit executes a damped oscillation and its energy decreases by

2 % during each oscillation when it has a resistor of resistance R = 10 �. When

the resistor is removed, the pure L–C circuit oscillates at a frequency of 2 kHz.

Find the inductance and capacitance of the circuit.
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Sections 28.7 and 28.8 Circuits with ac Source—L – R – C Series
in an ac Circuit

(42) A sinusoidal 50-cycle per second ac voltage is read to be 220 V by a voltmeter.

(a) What is the peak (maximum) voltage of the source? (b) Find an equation

that represents this voltage as a function of time.

(43) An ac voltage v = (155.6 V) sin(100 π t) is applied across a resistor of resis-

tance R = 20 �. (a) What will be the reading of an ac voltmeter placed in

parallel with the resistor? (b) What will be the reading of an ammeter placed

in series with the resistor? (c) What is the frequency of the ac voltage?

(44) A coil has an inductance L = 0.5 mH and a small resistance R = 1 �. Find the

current in the coil when the applied voltage is: (a) 110-V dc, and (b) 110-V

(rms) with a frequency f = 60 Hz.

(45) Repeat exercise 44 when the coil is replaced by a capacitor of capacitance

C = 2 µF.

(46) A coil has an inductance L = 0.2 mH and a resistance R = 10 �. When a voltage

of 220-V (rms) with frequency f = 50 Hz is applied, find the impedance of the

circuit and rms current in the coil.

(47) An ac source of frequency 50 Hz is connected in series with a resistor of resis-

tance R = 4 k� and an inductor of inductance L = 0.5 H. At what frequency

does the circuit’s impendence double?

(48) An R–C circuit of R = 3 k� and C = 1 µF is connected to a 50 Hz ac source of

220 V(rms). (a) What is the impedance of the circuit? (b) What is the rms

current in the circuit? (c) What is the phase angle between the current and

the voltage? (d) What is the power dissipated in the circuit? (e) What are the

voltmeter readings across the resistor and capacitor?

(49) In Fig. 28.30, R = 1 k� and C = 1 µF. Digital voltmeters are used to measure

the voltages across the ac source, the resistor, and the capacitor. Their measure-

ments are (Vrms)ac = 104.80 V, (Vrms)R = 31.42 V, and (Vrms)C = 100.00 V,

respectively. (a) Find the frequency of the source. (b) Why is the voltage of

the ac source not equal to the sum of the voltages across the resistor and the

capacitor?

(50) An ac source of 110-V (rms) and frequency f = 60 Hz is connected to an

L – R – C series circuit which has a resistor of resistance R = 8 �, an inductor of

inductive reactance XL = 9 �, and capacitor of capacitive reactance XC = 3 �.
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(a) Find the impedance of the circuit. (b) Find the current in the circuit. (c) Find

the voltage across the resistor, the inductor, and the capacitor.

Fig. 28.30 See Exercise (49)

R

ac

C

31.42 100.00

104.80

V V

V

(51) For the circuit in exercise 50, find: (a) the inductance and capacitance of the

circuit, (b) the power factor of the circuit, and (c) the power dissipated in the

circuit.

(52) An ac source of 110-V (rms) and angular frequency ω = 377 rad/s is connected

to an L–R–C series circuit, where R = 35 �, L = 100 mH, and C = 650 µF.

Find: (a) the inductive reactance, the capacitive reactance, and the impedance of

the circuit, (b) the peak and rms current, (c) the peak voltage, the instantaneous

voltage, and the rms voltage across each element, (d) the phase angle φ and the

average power dissipated in the circuit.

(53) Show that the charge q on the capacitor of the L–R–C series circuit of

Fig. 28.20 has a peak value given by:

Q = V√
(ωR)2 +

(
ω2L − 1

C

)2

and show that Qmax occurs at an angular frequency ω′ given by:

ω′ =
√

1

LC
− R2

2L2

Section 28.9 Resonance in L – R – C Series Circuit

(54) An L–R–C series circuit has R = 4 k� and L = 6 mH. (a) What must the value

of the capacitance C be in order to produce a resonance at frequency of 40 kHz?
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(b) What is the maximum rms current in the circuit when the rms voltage of

the source is 150 V?

(55) In the L–R–C series circuit of exercise 54, find: (a) the impedance of the

inductor and capacitor, and (b) the power dissipated in the circuit.

(56) An L–R–C series circuit has R = 20 �, L = 0.16 H, C = 30 µF, and an ac

source of peak voltage 250 V. For a certain angular frequency, the power factor

of the circuit becomes unity and the circuit consumes the maximum power. (a)

Find this angular frequency. (b) Find the inductive reactance, the capacitive

reactance, the impedance of the circuit. (c) Find the phase angle φ and the

maximum current in the circuit. (d) Find the peak voltage across the resistor,

the peak voltage across the inductor, and the peak voltage across the capacitor.



Conversion Factors A

Table A.1 Length

m cm km in. ft mi

1 meter 1 102 10−3 39.37 3.281 6.214 × 10−4

1 centimeter 10−2 1 10−5 0.3937 3.281 × 10−2 6.214 × 10−6

1 kilometer 103 105 1 3.937 × 104 3.281 × 103 0.621 4

1 inch 2.540 × 10−2 2.540 2.540 × 10−5 1 8.333 × 10−2 1.578 × 10−5

1 foot 0.304 8 30.48 3.048 × 10−4 12 1 1.894 × 10−4

1 mile 1 609 1.609 × 105 1.609 6.336 × 104 5280 1

Table A.2 Time

s min h day year

1 second 1 1.667 × 10−2 2.778 × 10−4 1.157 × 10−5 3.169 × 10−8

1 minute 60 1 1.667 × 10−2 6.994 × 10−4 1.901 × 10−6

1 hour 3 600 60 1 4.167 × 10−2 1.141 × 10−4

1 day 8.640 × 104 1440 24 1 2.738 × 10−5

1 year 3.156 × 107 5.259 × 105 8.766 × 103 365.2 1

Table A.3 Area

m2 cm2 ft2 in.2

1 square meter 1 104 10.76 1550

1 square centimeter 10−4 1 1.076 × 10−3 0.1550

1 square foot 9.290 × 10−2 929.0 1 144

1 square inch 6.452 × 10−4 6.452 6.944 × 10−3 1

Note 1 square kilometer = 247.108 acres

H. A. Radi and J. O. Rasmussen, Principles of Physics, 999
Undergraduate Lecture Notes in Physics, DOI: 10.1007/978-3-642-23026-4,
© Springer-Verlag Berlin Heidelberg 2013
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Table A.4 Volume

m3 cm3 L ft3 in.3

1 cubic meter 1 106 1000 35.51 6.102 × 104

1 cubic centimeter 10−6 1 1.000 × 10−3 3.531 × 10−5 6.102 × 10−2

1 liter 1.000 × 10−3 1000 1 3.531 × 10−2 61.02

1 cubic foot 2.832 × 10−4 1 28.32 1 1728

1 cubic inch 1.639 × 10−4 16.39 1.639 × 10−2 5.787 × 10−4 1

Note 1 U.S. fluid gallon = 3.786 L

Table A.5 Speed

m/s cm/s ft/s mi/h km/h

1 meter per second 1 102 3.281 2.237 3.6

1 centimeter per second 10−2 1 3.281 × 10−2 2.237 × 10−2 3.6 × 10−2

1 foot per second 0.304 8 30.48 1 0.681 8 1.097

1 mile per hour 0.447 0 44.70 1.467 1 1.609

1 kilometer per hour 0.277 8 27.78 0.9113 0.6214 1

Table A.6 Mass

kg g slug u

1 kilogram 1 103 6.852 × 10−2 6.024 × 1026

1 gram 10−3 1 6.852 × 10−5 6.024 × 1023

1 slug 14.59 1.459 × 104 1 8.789 × 1027

1 atomic mass unit 1.660 × 10−27 1.660 × 10−24 1.137 × 10−28 1

Note 1 metric ton = 1000 kg

Table A.7 Force

N lb

1 newton 1 0.224 8

1 pound 4.448 1

Table A.8 Work, energy, and heat

J ft.lb eV

1 joule 1 0.737 6 6.242 × 1018

1 foot-pound 1.356 1 8.464 × 1018

1 electron volt 1.602 × 10−19 1.182 × 10−19 1

1 calorie 4.186 3.087 2.613 × 1019

1 British thermal unit 1.055 × 103 7.779 × 102 6.585 × 1021

1 kilowatt hour 3.600 × 106 2.655 × 106 2.247 × 1025
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Table A.8 Continued

cal Btu kWh

1 joule 0.238 9 9.481 × 10−4 2.778 × 10−7

1 foot-pound 0.323 9 1.285 × 10−3 3.766 × 10−7

1 electron volt 3.827 × 10−20 1.519 × 10−22 4.450 × 10−26

1 calorie 1 3.968 × 10−3 1.163 × 10−6

1 British thermal unit 2.520 × 102 1 2.930 × 10−4

1 kilowatt hour 8.601 × 105 3.413 × 102 1

Table A.9 Pressure

Pa atm cm Hg lb/in.2 lb/ft2

1 pascal 1 9.869 × 10−6 7.501 × 10−4 1.450 × 10−4 2.089 × 10−2

1 atmosphere 1.013 × 105 1 76 14.70 2.116 × 103

1 centimeter mercurya 1.333 × 103 1.316 × 10−2 1 0.194 3 27.85

1 pound per square inch 6.895 × 103 6.805 × 10−2 5.171 1 144

1 pound per square foot 47.88 4.725 × 10−4 3.591 × 10−2 6.944 × 10−3 1
aAt 0◦C and at a location where the free-fall acceleration has its “standard” value, 9.806 65 m/s2



Basic Rules and Formulas B

Scientific Notation

When numbers in powers of 10 are expressed in scientific notation are being multi-

plied or divided, the following rules are very useful:

10m × 10n = 10m+n

10m

10n
= 10m−n

(B.1)

When powers of a given quantity x are multiplied or divided, the following rules

hold:

xm × xn = xm+n

xm

xn
= xm−n

(B.2)

The Distance Between Two Points

In Fig. B.1, P(x1, y1) and Q(x2, y2) are two different points in the (x, y) plane. As

we move from point P to point Q, the coordinates x and y change by amounts that

we denote by �x and �y (read “delta x” and “delta y”). Thus:

The change in x = �x = x2 − x1

The change in y = �y = y2 − y1

(B.3)

One can calculate the distance between the two points P and Q from the theorem

of Pythagoras in geometry such that:

H. A. Radi and J. O. Rasmussen, Principles of Physics, 1003
Undergraduate Lecture Notes in Physics, DOI: 10.1007/978-3-642-23026-4,
© Springer-Verlag Berlin Heidelberg 2013
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The distance PQ = √
(�x)2 + (�y)2 = √

(x2 − x1)2 + (y2 − y1)2 (B.4)

Fig. B.1

x-axis

y-axis

(0 ,0 ) o

Q(x2,y2)

P(x1,y1)

y

Slope and the Equation of a Straight Line

The slope of a line (usually given the symbol m) on which two points P and Q lie, is

defined as the ratio �y/�x, see Fig. B.2. Thus:

slope ≡ m = �y

�x
(B.5)

Fig. B.2

x-axis

y-axis

o

x

y
P

Q

(0,b)

Using this basic geometric property, we can find the equation of a straight line in

terms of a general point (x, y), and the y intercept b of the line with the y-axis and

the slope m of the line, as follows:

y = mx + b (B.6)
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Exponential and Logarithmic Functions

An exponential function with base a has the following forms:

y = ax (a > 0, a �= 1) (B.7)

where x is a variable and a is a constant, i.e., the exponential function is a constant

raised to a variable power. Exponential functions are continuous on the interval

(−∞,∞) with a range [0,∞] and have one of the basic two shapes shown in

Fig. B.3.

Fig. B.3

y axy ax

y

(a> 1)(0 < a < 1)

x00

Moreover, some algebraic properties of exponential functions are:

1. ax × ay = ax+y

2. (a b)x = ax × bx

3. (ax) y = a x y

4.
ax

ay
= a x−y

5. ax/q = q
√

ax = ( q
√

a)x, (q integer and q > 0)

6. a0 = 1, (for every positive real number a)

(B.8)

The logarithmic function to the base a of x is introduced as the inverse of the

exponential function x = ay. That is, y = loga x is the power (or exponent) to which

a must be raised to produce x, so that:

y = loga x (is equivalent to) x = ay (B.9)
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Additionally, some algebraic properties of logarithmic functions for any base a are

as follows:

1. loga(xy)= loga(x) + loga(y) Product property

2. loga(x/y)= loga(x) − loga(y) Quotient property

3. loga(x
r)= r loga(x) Power property

4. loga(1/x)= − loga(x) Reciprocal property

(B.10)

Historically, the first logarithmic base was 10, called the common logarithm. For

such logarithms it is usual to suppress explicit reference to the base and write log x

rather than log10 x. However, the most widely used logarithms in applications are the

natural logarithms, which have an irrational base denoted by the letter e in honor of

L. Euler, who first suggested its application to logarithms. This constant’s value to

six decimal places is:

e ≈ 2.718282 (B.11)

This number arises as the horizontal asymptote of the graph of the equation y = (1 +
1/x)x. Therefore, as x → ±∞ this allows us to express e as a limit and ex as an

infinite sum such that:

e = lim
x→±∞

(
1 + 1

x

)x

= lim
x→0

(1 + x)
1
x (B.12)

ex = 1 + x + x2

2! + x3

3! + . . . =
∞∑

n = 0

xn

n! (B.13)

where the symbol n! is read as “n factorial” and by definition 1! = 1, 0! = 1, and n!
are given by:

n! = n × (n − 1) × (n − 2) . . . × 3 × 2 × 1 (B.14)

Both expressions (B.11) and (B.12) are sometimes taken to be the definition of the

number e. Thus, loge x is the natural logarithm to the base e of x, and it is usually

denoted by ln x, so that:

ln x ≡ loge x (B.15)
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and thus:

y = ex (is equivalent to) ln y = x (B.16)

The exponential function f (x)= ex is called the natural exponential function. To sim-

plify the typography, this function is sometimes written as exp(x), that is exp(x)≡ ex.

As an example, Table B.1 displays some special cases of the last relation.

Table B.1 Some exponential and logarithmic functions

y = ex 1 = e0 e = e1 1/e = e−1 ex = ex

ln y = x ln 1 = 0 ln e = 1 ln(1/e) = − 1 ln ex = x

Radian Measures

The arc length s of a circular arc, see Fig. B.4, which is part of a circle of radius

r is related to the radian measure θ of the angle ACB (measured in radians) by the

relation:

s

r
= θ or s = rθ (radian measure) (B.17)

Fig. B.4

A

B

C r

s

Since the circumference of a unit circle is 2π and one complete revolution of a circle

is 360◦, then the relation between revolutions, degrees, and radians is given by:

1 rev = 360◦ = 2π rad ⇒ π rad = 180◦

1◦ = π

180
rad ≈ 0.02 rad and 1 rad = 180

π
deg ≈ 57.3◦ (B.18)
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The Six Basic Trigonometric Functions

For an acute angle θ in a right-angled triangle, see Fig. B.5, we define the following

six basic trigonometric functions:

Sine sin θ = opp

hyp
Cosecant csc θ = hyp

opp

Cosine cos θ = adj

hyp
Secant sec θ = hyp

adj

Tangent tan θ = opp

adj
Cotangent cot θ = adj

opp

Fig. B.5

O
pp

os
ite

Hypoten
use

Adjacent

To extend this definition to obtuse and negative angles, we place the angle in the

standard position in a circle of radius r and define the trigonometric functions in

terms of the point P(x, y) where the angle’s terminal ray intersects the circle, see

Fig. B.6. Therefore, we get the following relations:

Sine sin θ = y

r
Cosecant csc θ = r

y
= 1

sin θ

Cosine cos θ = x

r
Secant sec θ = r

x
= 1

cos θ

Tangent tan θ = y

x
= sin θ

cos θ
Cotangent cot θ = x

y
= cos θ

sin θ

(B.19)

We see that tan θ and sec θ are not defined if x = 0. This means that they are not

defined if θ is ±π/2,±3π/2, . . . Similarly, cot θ and csc θ are not defined if y = 0,

namely θ = 0,±π,±2π, . . .

Some properties of the trigonometric functions are:
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x

y

x

yr
P(x,y)P(x,y)

ox

y

x

y
r

o

y

Fig. B.6

sin(−θ) = −sin(θ)

cos(−θ) = cos(θ)

tan(−θ) = − tan(θ)

(B.20)

From the right triangle of Fig. B.5, we can find the following:

sin θ = cos(90◦ − θ)

cos θ = sin(90◦ − θ)

cot θ = tan(90◦ − θ)

(B.21)

Moreover, we list here the following trigonometric identities:

cos2 θ + sin2 θ = 1

1 + cot2 θ = csc2 θ 1 + tan2 θ = sec2 θ

sin 2θ = 2 sin θ cos θ cos 2θ = cos2 θ − sin2 θ

tan 2θ = 2 tan θ

1 − tan2 θ
tan

θ

2
=

√
1 − cos θ

1 + cos θ

sin2 θ

2
= 1

2
(1 − cos θ) cos2 θ

2
= 1

2
(1 + cos θ)

sin(α ± β)= sin α cos β ± cos α sin β

cos(α ± β)= cos α cos β ∓ sin α sin β

sin α ± sin β = 2 sin[(α ± β)/2] cos[(α ∓ β)/2]

(B.22)
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Table B.2 The results of differentiating several functions and their corresponding integrations

Differentiation formula Integration formula

d

dx
[x]= 1

�
dx = x + C

d

dx

[
xn+1

n + 1

]
= xn, (n �= −1)

�
xndx = xn+1

n + 1
+ C, (n �= −1)

d

dx
[sin x]= cos x

�
cos x dx = sin x + C

d

dx
[cos x] = −sin x

�
sin x dx = −cos x + C

d

dx
[tan x]= sec2 x

�
sec2 x dx = tan x + C

d

dx
[csc x] = −csc x cot x

�
csc x cot x dx = −csc x + C

d
d

dx
[sec x]= sec x tan x

�
sec x tan x dx = sec x + C

d

dx
[cot x] = −csc2 x

�
csc2 x dx = −cot x + C

d

dx
[ex]= ex

�
ex dx = ex + C

d

dx
[ln x]= 1

x

� 1

x
dx = ln x + C
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Table B.3 Some complicated indefinite integrals (an arbitrary constant should be added to each of these

integrals)

� dx

a + bx
= 1

b
ln(a + bx)

� x dx√
a2 − x2

=−√
a2 − x2

� x dx

a + bx
= x

b
− a

b2 ln(a + bx)
� x dx√

x2 ± a2
=√

x2 ± a2

� dx

x (x + a)
= − 1

a
ln

x + a

x

�
x
√

a2 − x2 dx = − 1
3 (a2 − x2)3/2

� dx

(a + bx)2 = − 1

b(a + bx)

�
x
√

x2 ± a2 dx = 1
3 (x2 ± a2)3/2

� dx

x2 + a2 = 1

a
tan−1 x

a

�
e a x dx = 1

a
e a x

� dx

a2 − x2 = 1

2 a
ln

a + x

a − x
, (a2 − x2 > 0)

�
x e a x dx = 1

a2 (a x − 1) e a x

� dx

x2 − a2 = 1

2 a
ln

x − a

x + a
, (x2 − a2 > 0)

� dx

a + b e c x
= x

a
− 1

a c
ln(a + b e c x)

� x dx

a2 ± x2 = ± 1
2 ln(a2 ± x2)

�
ln(a x) dx = x ln(a x) − x

� dx

(x2 + a2)3/2 = x

a2
√

x2 + a2

�
cos2(ax)dx = x

2
+ sin 2 a x

4 a

� x dx

(x2 + a2)3/2 = − x√
x2 + a2

�
sin2(a x) dx = x

2
− sin 2 a x

4 a

� dx√
a2 − x2

= sin−1 x

a
, (a2 − x2 > 0)

�
tan2(a x) dx = 1

a
tan(a x) − x

� dx√
x2 ± a2

= ln(x + √
x2 ± a2)

�
cot2(a x) dx = − 1

a
cot(a x) − x
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Useful Information for Geometry

Rectangle

a

b

Area  a b

Sphere r

Surface area = 4 r 2

Volume =    r 34
3

Circle

r

Area = r 2

Circumference = 2 r 

Cylinder

r

h

Lateral surface area = 2 r h
Volume = r 2 h

Triangle

Area =   ah

a

h

1
2

Rectangular box

a

b

c

Surface area = 2(ab+ac+bc)

Volume =abc

Triapezoid

a

b

h

1
2

Area ( )a b h= + 21
3Volume r hπ=

2 2Curved surface area r r hπ= +

h

r

Cone
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Notes: Elements with atomic weights between brackets have no stable isotopes.
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Chapter 1

(1) (a) kilo lambs, (b) mega bytes, (c) giga cars, (d) tera stars, (e) deci kelvin,

(f) centi meter, (g) milli ampere, (h) micro newton, (i) nano kilogram, (j) femto

second

(2) (a) 4 × 107 m, (b) 6.366 × 106 m, (c) 2.486 × 104 mi, 3.956 × 104 mi,

(d) 4.02 × 106 mi which is very close to the answer of part a

(3) 2.362 × 105 mi, 3.8 × 108 m, 3.8 × 1010 cm, 3.8 × 1011 mm

(4) 0.02(km)3

(5) (a) AU = 1.5 × 1011 m = 1.5 Gm, (b) ly = 9.461 × 1015 m = 9.461 Pm,

(c) pc = 3.084×1016 m = 30.84 Pm, (d) Mpc = 3.084×1022 m = 30.84 Zm

(6) (a) 400, (b) 4003 = 6.4 × 107, (c) 4.815 × 106 m

(7) (a) 6.3699 × 1011 m, (b) Estimated/Actual = 1.7 × 103

(8) (a) 1.16 × 1034 days, (b) 5.78 × 1012 days, (c) 1.51 × 1012 days, (d) 1.83 ×
104 days

(9) (a) 1 microyear = 0.526 of a 1-minute TV commercial, (b) 1 microcentury =
0.877 of a 60-minute TV commercial

(10) (a) 0.03 mi/h, (b) 1.243 mi/h, (c) 22.99 mi/h, (d) 136.73 mi/h, (e) 621.5 mi/h

(11) 48 months = 1440 dy (if the clock doesn’t show am/pm) or 96 months =
2880 dy (if the clock shows am/pm)

(12) Atomic clock precession is about 1 part in 2 × 1015, or about 5 × 10−16 s.

So, the error for a 19-year interval is 2.9 × 10−7 s. Therefore, it is sufficiently

H. A. Radi and J. O. Rasmussen, Principles of Physics, 1015
Undergraduate Lecture Notes in Physics, DOI: 10.1007/978-3-642-23026-4,
© Springer-Verlag Berlin Heidelberg 2013
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precise to determine your age within 10−6 s, but certainly much more precise

with 10−3 s.

(13) (a) After ten centuries, the day is longer by 0.01 s. The average day duration

difference for these 10 centuries is 0.005 s, (b) The total cumulative effect is:

(the average day duration difference for these 10 centuries)× (the number of

days) = 1826.25 s = 0.5073 h

(14) 285714.3 mg/day, 11904.8 mg/h, 198.4 mg/min, 3.3 mg/s

(15) 5.95 × 1024 kg

(16) (a) 5.01 × 1025 atoms/(1 kg), (b) 6.022 × 1026 atoms/(12 kg)

(17) (a) (2.988 897 2 ± 0.000 001 7) × 10−26 kg, (b) 5.01 × 1046 molecules

(18) (a) 1.178 × 10−26 m3, (b) 2.28 × 10−9 m

(19) T = 2π
√

L/g ⇒ T =
√

L/(L/T2) = T. Thus, the expression is dimensionally

correct.

(20) s = kamtn ⇒ L = (
L/T2

)m × Tn = Lm × Tn−2m ⇒ m = 1, n − 2m = 0.

Therefore m = 1 and n = 2.

(21) (a) v2 = v2◦ + 2a s ⇒ (L/T)2 = (L/T)2 + (L/T2) × L = (L/T)2. Thus,

the equation is dimensionally correct., (b) s = s◦ + v◦ t + 1
2 a t2 ⇒ L =

L + (L/T) × T + (L/T2) × T2 = L. Thus, the equation is dimensionally

correct., (c) s = s◦ cos kt ⇒ L = L × cos(T−1 × T) = L × cos(number) = L.

Thus, the equation is dimensionally correct.

(22) F ∝ m a ⇒ F ∝ kg × L/T2 ⇒ F has the units kg m/s2in the SI units

(23) G = Fr2/m1m2 = (kg m/s2)(m2)/(kg)2 = m3/(kg s2)

Chapter 2

(1) 11.18 km, 26.6◦ W of N

(2) 5.29 km, 40.9◦ N of E

(3) (a) 8.66 units at 90◦, (b) 13.23 units at 40.9◦

(4) (a) 20 m, 10π m, (b) 0, 20π m

(5) −2 cm along the x-axis and 2 cm along the y-axis

(6) (a) 10.96 units along the x-axis and 5 units along the y-axis, (b) 12.1 units

at −24.5◦

(7) (a) 104 km/h, (b) No, because the radar unit measures only the component of

the car’s velocity along the radar beam. If the angle between the beam and the

car’s velocity is 90◦, then the radar unit will measure zero velocity since the

car is not moving perpendicularly to the highway.
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(8) 15.62 km

(9)
→
R = 3

→
i + 5

→
j + 5

→
k and R = 7.68

(12) 5 at 306.9◦

(13) (a) 6 at 0◦, (b) 6.3 at 108.4◦

(14) (a)
→
A + →

B = 2
→
i − 3

→
j + 5

→
k , (b)

→
A − →

B = −4
→
i + 5

→
j + 3

→
k ,(c)

→
C = −2

→
i +

3
→
j − 5

→
k

(15) (a)
→
A•

→
B = A B cos θ = −15.59, (b)

→
A•

→
B = AxBx + AyBy = −15.59

(18) (a)
→
A•

→
B = 0, (b)

→
A•

→
C = −9, (c)

→
B•

→
C = −16, (d)

→
A × →

B = 12
→
k , (e)

→
A ×

→
C = −12

→
k , (f)

→
B × →

C = 12
→
k

(19) (b) A2B sin θ

(22) (b)
√

(x2 − x1)2 + (y2 − y1)2, tan−1[(y2 − y1)/(x2 − x1)]
(23)

→
F = 1.6 × 10−14(1.5

→
i − →

j ) N

(24)
→
S = −0.44

→
i − 0.4

→
j + 1.12

→
k

Chapter 3

(1) (a) 0.25 km/min, (b) 4.17 × 10−3 km/s, (c) 15 km/h

(2) (a) 53.3 km/h, (b) 53.3 km/h

(3) (a) 24 m, (b) 12 m/s and 12 m/s

(4) 100 m

(5) (a) 6 m/s, (b) 8 m/s, (c) 9 m/s

(6) (a) v̄ = �x/�t = 4 m/s, s̄ = d/�t = 4 m/s, (b) At ti = 0, we find from the

equation x = 8t − 2t2 that xi = 0, i.e., the body is at the origin. At t = 2 s, we

find that x is maximum and equal to 8 m. At t = 4 s, we find that x = 0 again,

which means that the body returns to the origin and moves a distance of 16 m.

At tf = 5 s, we find that xf = −10 m, which means that the body moves a total

distance of 26 m. Thus, v̄ = �x/�t = −2 m/s and s̄ = d/�t = 5.2 m/s.

(7) (a) 19.2 m, 4.8 m/s for the interval 0 ≤ t ≤ 4 and 100.8 m, 16.8 m/s for the

interval 4 ≤ t ≤ 10, (b) 9.6 m/s, 24 m/s

(8) (a) For t = 1, 2, 3, 4, and 5 s we have x = 1,−2,−3,−2, and 1 m, (b) For

t = 1, 2, 3, 4, and 5 s we havev = −4,−2, 0, 2, and 4 m/s, (c) For t = 1, 2, 3, 4,

and 5 s we have: motion towards decreasing x, motion towards decreasing x,

momentarily no motion, motion towards increasing x, and motion towards

increasing x, (d) Yes, at t = 3 s, (e) No

(9) Negative, zero, positive, zero, zero, and negative
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(10) (a) 0 < t < 1 s, (b) 3 s < t < 5 s, (c) 1 s < t < 3 s and 5 s < t < 7 s

(11) 28 m

(12) −5 m/s2

(13) (a) v = 8 + 4 t, (b) a = 4 m/s2, (c) 28 m/s, 4 m/s2

(14) (a) 19.6 m/s2, 15.6 m/s2, (b) a = 20 − 0.8 t

(15) x = 10t2 − 0.4t3/3, for t = 0, 3, and 6 s we have: x = 0, 86.4, and 331.3 m,

v = 0, 56.4, and 105.6 m/s, and a = 20, 17.6, and 15.2 m/s2

(16) (a)

t (s)0

2

4

6

1 2 3 4 5 6 7 8

- 2

- 4

a (m/s2)

(m/s)

(b) −0.8 m/s2, (c) −5 m/s2

(17) (a) 6 m/s, (b) 26 m/s, (c) a = 4 + 6 t, 16 m/s2, (d) x − x◦ = 6t + 2t2 + t3

(18) 20 m/s, 50 m

(19) (a) 3 m/s2, (b) 24 m

(20) (a) 20 m/s2, (b) 200 m/s, (c) 4 km

(21) (a) −2 m/s2, (b) 5 m/s, (c) 150 m

(22) (a) 31.9 m, (b) 2.55 s, (c) 26.9 m/s

(23) (a) 19.6 m, (b) 2 s, (c) 4 s, (d) −19.6 m/s

(24) (a) 49 m/s, (b) 122.5 m

(25) (a) 122.5 m, (b) 72.5 m, (c) 172.5 m

(26) (a) 36.72 m/s (downward), (b) 41.8 m

(27) (a) 9.28 m/s (upward), (b) 22.6 m

(28) (a) 5.1 s, (b) 127.6 m, (c) 10.2 s, (d) −50 m/s, (e) −53.8 m/s, (f) 10.6 s

(29) (a) 44.1 m, (b) 44.1 m for the fourth stone, 39.2 m for the third stone, 24.5 m for

the second stone, 0 m for the first stone, (c) 3 s

(30) (a)
√

10 m/s, (d) 3
√

10/
[√

2 + 1
]2

(31) (a) 1.96 m/s, (b) 0.196 m, (c) −1.96 m/s

(33) (a) 1.5 s, (b) 11.25 m, (c) 25 m/s, 15 m/s
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Chapter 4

(1) (a) �
→r = (−5

→
i + 10

→
j − 5

→
k )m, (b) →

v = (−→
i + 2

→
j − →

k )m/s

(2) (a) →
v = (2

→
i + 4

→
j )m/s, (b) →

v = (2
→
i + 4t

→
j )m/s, |→v |t=2s = 8.25 m/s at 76◦,

(c) →a = (4
→
j )m/s2

(3) (a) →
v = (16

→
i +6

→
j )m/s, (b) →

v = [(12t2 −12)
→
i +6

→
j ]m/s, |→v |t=1 s = 6 m/s

at 90◦, (c) →
v |t=3 s = (96

→
i + 6

→
j )m/s, |→v |t=3 s = 96.2 m/s at 90◦, (d) →a =

(36
→
i )m/s2, (e) →a = (24 t

→
i )m/s2, at=2 s = 48 m/s2 at 0◦, (f) At t = 1 s, x is

minimum

(4) (a) r = √
9t2 + 4t4 + 4(m), r|t=2 s = 10.2 m, (b) →

v = (3
→
i − 4t

→
j )m/s,

|→v |t=2 s ≡ v|t=2 s = 8.54 m/s at 291◦, (c) →a = (−4
→
j )m/s2, a = 4 m/s2 at 270◦

(5) →r = (5
→
i − 1.25

→
j )(m), →

v = (10
→
i − 5

→
j )m/s

(6) (a) 13 m/s, (b) 32.7 m/s at 66.6◦ below the horizontal line

(7) (a) 6.708 m/s, (b) 1.265 s

(8) (a) 11.18 m/s, (b) 1.265 s

(9) (a) 18 m/s and 24 m/s, (b) →r = 36
→
i + 28

→
j ,

→
v = 18

→
i + 4

→
j (v = 18.5 m/s and

θ = 13.7◦), (c) 28.8 m, 2.4 s, (d) 2.4 s, 86.4 m

(10) (a) 2 m/s, 6 m/s, (b) 1.2 s, 7.2 m, 7.2 m, (c) 2.4 s, 14.4 m

(11) (a) 48.2 m, (b) 60 m, (c) 25.24 m/s, (d) 100 m

(12) (a) 27.39 m/s = 98.59 km/h, (b) 17.83 m/s = 64.19 km/h

(13) (a) v◦ = 254.5 m/s, (b) 50 s, (c) In the presence of air resistance, v◦ should

increase so that the rock can reach the point x = 9 km

(14) (a) 7.45 s, (b) 438.2 m

(15) 63.44◦

(17) θ◦ = 1
2 tan−1 (−1/ tan φ)

(18) R = (v0 cos θ0/g)

[
v0 sin θ0 +

√
v2

0 sin2 θ0 − 2gh

]

(19) R = (v0 cos θ0/g)

[
v0 sin θ0 +

√
v2

0 sin2 θ0 + 2gh

]

(20) 200 m/s

(21) 2.47 m/s2

(22) (a) 1025 m/s, (b) 2.73 × 10−3 m/s2

(23) (a) 30 m/s, downwards, (b) 60 m/s2

(24) (a) 9 × 1022 m/s2, (b) 1.52 × 10−16 s

(25) 0.029 m/s2

(26) 1.64 × 106 m/s2 = 167000 g

(27) 1.9 km
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(28) (a) 2 m/s2, (b) 5.66 m/s2, (c) 5.05 m/s

(29) (a) 8.66 m/s2, 5 m/s2, (b) 4.16 m/s

(30) (a) 7839 m/s, 9.38 m/s2, (b) 26.7 m/s2 at θ = 20.6◦

Chapter 5

(1) 1.25 × 104 N

(2) (a) 5 s, (b) 25 m

(3) (a)
→
F = 3

→
i − 4

→
j , 5 N at 323.1◦, (b) 2.5 m/s2 at 323.1◦

(4) (a) 5.25
→
i + 1.5

→
j , (b) 5.46 m/s2 at 15.9◦

(5) (a) 30◦, (b) Yes, this angle is independent of W

(6) T1 = 100 N, T2 = 118.3 N

(7) T1 = 200 N, T2 = 190.8 N, T3 = 101.5 N

(8) (a) −16 m/s2, (b) −16000 N, (c) μs = 1.6 (In some cases μs can exceed 1 as

in this case)

(9) (a) 8.7◦, (b) 0◦

(10) 14.3◦

(11) (a) 0.75 m/s2, (b) 9 N

(12) (a) 0.75 m/s2, (b) 3 N

(13) (a) 0.25 m/s2, (b) 0.03 N

(14) 0.25

(15) (a) aP/sB = 1/2, (b) 12 N, 2 m/s2, (c) 12 N, 1 m/s2

(16) (a) T1 = 60 N, T2 = 100 N, (b) T1 = 72 N, T2 = 120 N

(17) a2 = 0.5 m/s2, T2 = 0.01 N

(18) (a) 500 N, (b) 560 N, (c) 300 N, 336 N

(19) 20 N

(20) 90 N

(21) (a) For m1, a = 4 m/s2 up the plane and for m2, a = 4 m/s2 downwards.

(b) The magnitude of the tension in both cords is 36 N, (c) For m1, a = 1 m/s2

up the plane and for m2, a = 1 m/s2 downwards. The magnitude of the tension

in both cords is also 36 N

(22) For m1, 2 m/s2 downwards and for m2, 2 m/s2 upwards, 48 N

(23) 3 m/s

(24) a = (m2 − m1)g/(m1 + m2), T1 = T2 = T3 = 2m1 m2g/(m1 + m2)

(25) (a) 0.5, 30 N
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(26) 6 m/s2, 12 N

(27) 3 m/s2, 12 N

(28) T1 = 3
4 F, T2 = 2

4 F, T3 = 1
4 F, when the number of the locomotive engine

plus the cars is n, we get Ti = n−1
n F, i = 1, 2, . . . , (n − 1)

(29) (a) 0.58, (b) 0.36

(30) (a) 1154.7 N, (b) 2309.4 N

(31) 603.9 N

(32) 1.68 m/s2, 4.62 N

(33) Block m2 has a2 = 1.103 m/s2, block m1 has a1 = 2.835 m/s2, and the tension

is zero

(34) From 0 to 2.5 m/s2

(35) (a) 491 N, 49.1 kg, (b) 2.04 m/s2

(36) The same answers as exercise 35, but the maximum/minimum readings will be

during the stopping/starting period of the elevator’s descending motion

(37) 13.8 m/s

(38) (a) 7.97 m/s, when we take g = 10 m/s2 (b) 140 m/s (≈50 km/h) (about 18

times the speed of the drop when the resistive drag force exists)

(40) θ = 0

Chapter 6

(1) (a) 200 N, (b) 100 m, (c) −20 000 J, (d) 400 N, 50 m, −20 000 J

(2) (a) −39.2 J, (b) +39.2 J, (c) +19.6 J, −19.6 J

(3) (a) Wg(A → B)= − mgh, (b) Wg(B → A)= + mgh, (c) Wg(A → B → C)=
− mgh, (d) Wg(A → C)= − mgh, (e) Wg(A → B → C → A)= 0

(4) −1.715 J

(5) (a) F d, −μkmgd, 0, 0, (b) 100 J, −49 J, 0, 0

(6) 60 J, 0, 69.3 J

(7) (a) −2 J, (b) −8 J, (c) −2 J, (d) 9 J, (e) −3 J

(8) (a) 32 J, (b) 32 J

(9) (a) 5.89 J, (b) −1.57 × 10−2 J

(10) (a) 0.54 J, (b) 0.3 J

(12) − 1
5 kd5

(13) 2πRF cos θ

(14) 3.86 × 105 J

(15) 1.5 J
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(16) 4.06 × 105 J

(17) 420 J

(18) 40 J

(19) (a) 25 J, (b) −25 J, (c) 9 J, (d) −9 J, (e) 0

(20) (a) 2.5 J, (b) 7.5 J, (c) 11.875 J

(21) 0.21 m

(22) 187.5 J

(23) (a) 98 J, (b) 6.26 m/s

(24) (a) 7.35 J, (b) 5.78 m/s

(25) (a) 9.8 J, (b) 6.26 m/s, (c) 4.43 m/s

(26) (a) 4.43 m/s, (b) 0.25

(28) (a) v = ±√
3Fd/4 m, (b) v = ±√

Fd/m

(29) 2.86 m/s

(30) 14 m

(31) θ = cos−1(2/3) = 48.2◦

(32) 20 m/s

(33) (a) 7.67 m/s, (b) −845 J (more energy loss than Ex. 6.8, but the percentage loss

of energy by friction with respect to original potential energy of the boy is the

same; about 58%)

(34) (a) −98 J, (b) The block will never reach point C if the track is more rough and

might stop somewhere on the track once it goes past point A. The block will

pass point C if the track is smoother

(35) −14.5 J, No, because its energy (stored in the spring) will be less than its

potential energy at the edge of the rough surface

(36) (a) 29 N, (b) 8.57 cm

(37) 36750 J, 147 N

(38) (a) −25 J, (b) 25 J, (c) 125 N

(39) 0.327 kW = 0.438 hp

(40) 223.8 piasters

(41) (a) −62400 W, (b) (−18900 t)W

(42) 500 W

(43) 537.1 N opposite the velocity

(44) 7.234 × 104 W  97 hp opposite the velocity

(45) (a) ma + mg sin θ + α + β v2, (c) 40 000 W, 50 728.5 W, 4 000 W, 4 000 W,

98 728.5 W
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Chapter 7

(1) 2.71 × 10−22 kg.m/s

(2) (a) 160 000 kg.m/s, (b) 80 m/s, (c) 40 m/s

(3) −3.2 kg.m/s

(4) (a) −16 kg.m/s,−16 kg.m/s (b) −8000 N

(5) (a) −3 m/s (b) 15 N

(6) (a) 16 kg.m/s, −12 kg.m/s (b) 20 kg.m/s, 323.1◦

(7) (16
→
i − 8

→
j ) kg.m/s

(8) 300 N

(9) (a) 40 kg.m/s, (b) 20 N, (c) 30 N

(10) m
√

2 g h

(11) (a) 2.4 kg.m/s upward, (b) 75%

(12) (a) 1.25 × 10−3 s, (b) 0.48 N.s (in the direction of penetration), (c) −384 N

(opposite to the direction of penetration)

(13) (a) 5 × 10−5 meters every second, (b) 0.1 kg, (c) 0.6 N (downwards)

(14) (a) −86.6 kg.m/s (opposite to the x-axis), (b) −8660.3 N (opposite to the

x-axis)

(15) The smallest value is for θ = 0, where �p = 0 and F = 0. The largest value is

for θ = 90◦, where �p = −100 kg.m/s and F = − 10000 N

(16) (a) 0.8 m/s, (b) 4.8 × 104 J, (c) −4/3 m/s (in opposite direction)

(17) m1/m2 = 0.5

(18) −6.47 × 102 m/s (The negative sign indicates that the recoiling nucleus is

moving in the opposite direction to the alpha particle)

(19) 0.125 m/s

(20) (a) V = −(m/M) v (The negative sign indicates that the car is moving in the

opposite direction to the man’s motion), (b) vrel = v + |V | = [(m + M)/M]v
(21) (a) 0.5 m/s, (b) 200 J, (c) 199.75 J

(22) 594 m/s

(23) 2.8 m/s, 3.8 m/s

(24) −1.67 m/s, 3.33 m/s

(25) m2 = 3 m1

(26) (a) 1.5 kg, (b) v′
1 = − 0.2 v1 (The negative sign indicates that the first ball will

move in the opposite direction to its original motion), (c) 0.96

(27) (a) 1, (b) 0.89, (c) 0.296, (d) 0.019
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(28) (a) Yes, the collision is elastic because all involved forces are conservative

forces, (b) 0.4 cm

(29) (a) Yes, as in Exercise 28, (b) 2 m/s, (c) 0.25 m, (d) v′
1 = −4 m/s, v′

2 = 4 m/s

(30) (a) Yes, as in Exercise 29, (b) 6 m/s, (c) 0.25 m (same compression as Exercise

29), (d) v′
1 = + 4 m/s, v′

2 = 12 m/s

(31) v′
1 = v1/

√
3 = 10

√
3/2 m/s, v′

2 = v1/
√

6 = 10/
√

2 m/s, cos θ = √
2/3, Ktarget/

Kprojectile = 0.5

(32) v′
1 = √

3 v1/2 = 15
√

3 m/s, v′
2 = v1/2 = 15 m/s

(33) v′
1 = v′

2 = v1/
√

2 = 30/
√

2 m/s

(35) Two times

(36) −M/(m + M),−0.98. Thus, 98% of the energy is lost.

(37) (a) 10 m/s, (b)−0.923. Thus, 92.3% of the energy is lost.

(38) (a) 19 m/s, (b) −0.687. Thus, 68.7% of the energy is lost

(39) (a) The heavier nucleus will move with half the speed of the lighter nucleus, but

in an opposite direction, (b) 4×10−17 J for the lighter nucleus and 2×10−17 J

for the heavier one

(40) (a) →
v ′

2 = (2
→
i + 3

→
j ) (m/s), (b) 50 J are lost

(41) |→p ′
3| = 1.3 × 10−22 kg.m/s, →p ′

3 is 157.4◦ from the vector →p ′
2 and 112.6◦ from

the vector →p ′
1

(42) (a) v′
2 = 2.506 (m/s), θ = 60.8◦ (b) 22.14 J

(43) (b) 18.47 m/s, φ = 22.5◦,−0.146. Thus 14.6% of the energy is lost

(44) 0.048 nm

(45) xCM = 0.286 m, yCM = 0.571 m (this answer does not depend on the value of m

because it appears as a common factor in both the numerator and denominator)

(47) zCM = 0.03 nm

(48) →r CM = 2.8
→
i + 3.8

→
j

(49) xCM = L/2, yCM = L/2 (from the center of the left rod)

(50) xCM = (3/4)h

(51) zCM = H/4, 34.7 m

(52) →
v CM = (2.8

→
i + 0.2

→
j ) (m/s)

(53) (a) −7.8 m/s, 11.2 m/s, (b) 3.6 m/s

(54) (a) 0, (b) 1.2 m, (c) 1.2 m/s, 0.8 m/s

(55) (a) 7.5 m from the man, 5 m/s, (b) 4.5 m/s, (c) 10 s, 45 m/s

(56) 120 m

(57) (a) 49 N (b) 171.5 W, (c) 85.75 W

(58) 50 m/s2
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(59) −1000 m/s, 1.5 × 105 N

(60) (a) 3.75 × 106 N, (b) 6056.5 m/s

Chapter 8

(1) π/6 = 0.52 rad, π/4 = 0.79 rad, π/3 = 1.05 rad, π/2 = 1.57 rad, π = 3.14 rad,

3π/2 = 4.71 rad, π = 6.28 rad

(2) 1.327 × 103 km

(3) (a) 0.75 rad = 42.97◦, (b) 2.4 m

(4) 636.6 rev

(5) 930.8 rad/s2

(6) −188.5 rad/s2

(7) 1.2 rev

(8) (a) ω = 8t − 14, α = 8 rad/s2, (b) θ = 0 at t = 0.5 s and t = 3 s, ω = 0 at

t = 1.75 s

(9) ω = ω◦ − 2 bt + 3 at2, θ = θ◦ + ω◦ t − bt2 + at3

(10) (a) 2.4 m/s, (b) No, but may be the best location is somewhere close to the rim

of the wheel if the spokes and the dart are not very thin

(11) 9.425 × 103 rad = 1.5 × 103rev = 3 × 103π rad = 5.4 × 105 degrees, 2.356 ×
103 rad = 3.75 × 102rev = 7.5 × 102π rad = 1.35 × 105 degrees

(12) (a) −10 π rad/s2 = −31.42 rad/s2, (b) 4 s

(13) (a) −50 π rad/s2 = −1.571 × 102 rad/s2, (b) 116.7 rev

(14) (a) 23.56 s, (b) 167.7 rev

(15) −30 π rad/s2 = −188.5 rad/s2

(16) (a) 3
→
i rad/s, 4

→
k rad/s, (b) 5 rad/s and at angle 53.13◦ above the x-axis,

(c) →
α 1(t)= 12[− sin 4t

→
i + cos 4t

→
j ] (rad/s2),

→
α 1(0)= 12

→
j (rad/s2)

(17) (a) 12 π rad/s = 37.699 rad/s, (b) 2.4 π m/s = 7.539 m/s, at = 0, ar = 28.8 π2

m/s2 = 284.24 m/s2

(18) (a) π/30 rad/s = 1.05 × 10−1 rad/s, (b) π/1800 rad/s = 1.75 × 10−3 rad/s,

(c) π/21600 rad/s = 1.45 × 10−4 rad/s, (d) zero

(19) 20.9 mm/s, 0.26 mm/s, 0.015 mm/s

(20) (a) 12.57 m/s, (b) at = 0, ar = 16 π2/3 m/s2 = 52.64 m/s2 towards the center

(21) (a) 7.272 × 10−5 rad/s, (b) 403 m/s, at = 0, ar = 0.029 m/s2 (perpendicular to

the Earth’s axis), (c) 465.4 m/s

(22) 5.373 rad/s if we take g = 10 m/s2

(23) (a) 2.5 rad/s2, (b) 500 rad = 79.58 rev



1026 Answers to All Exercises

(24) 102.9 m.N

(25) 2.05 m.N, clockwise

(26) (a) 2, (b) 7.84 × 10−2 m·N, counterclockwise

(27) (mA + mB)L2/3

(28) (a) I = 2
5 M R2 + M(L + R)2, (b) Iapp = M(L + R)2, (c) 1.1%

(29) 0.12 π m.N = 0.377 m·N
(30) 4 m/s2, 20 rad/s2, 18 N

(31) (a) α = 3 g cos θ/2 L − 3 τf /M L2, αmax = 60 rad/s2, (b) 29.9◦

(32) (a) 0.095 kg·m2, (b) It is greater than the value 0.05 kg·m2 obtained from

I = M R2/2. This is because the pulley with the wrapped cord has more mass

concentrated around its edge

(33) τ = m g L sin θ, α = g sin θ/L

(34) α = g sin θ [m L + 2M(L + R)]/[ 2
3 m L2 + M(3R2 + 4RL + 2L2)]

(35) 1.67 m/s2, T2 = 50 N, T1 = 46.67 N

(36) 616.9 J

(37) (a) 432 J, FM = 384 N, Fm = 192 N, (b) 384 J, FM = Fm = 256 N

(38) v = √
54ga/7 = 8.695

√
a

(39) 0.792 kg.m2

(40) (a) 398.4 W, (b) −6.56 m·N
(41) (a) 16 rad/s, (b) 1.6 m/s, at = 0, ar = 12.8 m/s2, 1.6 m/s, (c) 3.84 J

(42) (a) To the right, (b) 10 m/s2, (c) 10 N

Chapter 9

(1) 34
→
k (kg.m2/s or J.s)

(2) −1.5 × 105 →
k (kg.m2/s) for the clockwise motion, 1.5 × 105 →

k (kg.m2/s) for

the counterclockwise motion

(3) −24 t2 →
k (kg.m2/s)

(4)
→
L i = mvd (into the page for i = 1, 2, 3),

→
L i = mvd, (out the page for i = 5, 6,

7),
→
L i = 0 (for i = 4, 8)

(5) (a) 15 kg.m2/s (into the page), (b) 25.46 m.N (out of the page)

(9) 11.27 kg.m2/s (out of the page)

(10) (a) 0.1047 rad/s, (b) 3.421 × 10−6 kg.m2/s (into of the page)

(11) (a) 7.1 kg.m2, (b) 14.22 kg.m2/s (out of the page)

(12) (a) (0.24
→
i + 0.16

→
j )kg·m2/s, (b) 3.2 × 10−2 →

j (kg·m2/s), (c) 0◦
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(13) (a) I = 17
6 m R2, L = 17

3 πm R2/T along z-axis, (b) 1.417×10−2 kg.m2, 4.451×
10−2 kg.m2/s

(14) (a) m2 g R clockwise, (b) [m2 +m1 + 1
2 M] R v clockwise, (c) m2 g/[m2 +m1 +

1
2 M], 3 m/s2

(15) (a) α = 24 t (rad/s), L = 24 t2 (J·s), α = 48 rad/s, L = 96 (J·s), (b)
∑

τext = Iα

= 48 t (m·N),
∑

τext = dL/dt = 48 t (m·N),
∑

τext = 96 m·N
(16) 0.7 kg.m2/s along z-axis

(17) 3.848 × 103 kg.m2/s upwards

(18) (a) 4, 1/4, (b) 256, 16

(20) Ia Ra Rbωa/(Ia R2
b + Ib R2

a)

(21) (b) 1.5 m/s2, T1 = 10 N, T2 = 17.5 N, (c) 0.75 t (kg.m2/s)

(22) (a) 7.149 × 1033 kg.m2/s, (b) 2.69 × 1040 kg.m2/s

(23) (a)
∑

τext,1 = m1 g R clockwise,
∑

τext,2 =−m2 g R counterclockwise,∑
τext,sys = (m1 − m2) g R clockwise, (b) L1 = R m1 v + M R v/2 clockwise,

L2 = R m2 v + M R v/2 clockwise, Lsys = (m1 + m2 + M)R v clockwise,

(c) a = (m2 − m1) g /(m1 + m2 + M), T1 = (2 m2 + M) m1 g /(m1 + m2 +
M), T2 = (2 m1 + M) m2 g /(m1 + m2 + M)

(24) 100 %

(25) 1.8 kg.m2, by pulling her arms to the center of her body

(26) 0.41 rev/s

(27) ωi/(1 + 6 m/M)

(28) 5.45 rev/min

(29) 0.316 rev/s

(30) 0.2 rev/s (same as before)

(31) −0.8 rad/s

(32) (a) 0.643 rad/s, (b) 1080 J, 463 J

(33) 1.2 rev/s

(34) (a) 2 rev/s = 4 π rad/s, (b) 66.67% decrease

(35) −3.7 × 10−15%

(36) −2.6 × 10−15%

(37) (a) ωf = 2m v/[(4 M/3 + m)d], (b) H = m2 v2/[(M + m)(4 M/3 + m)g]
(38) (a) ωf = 2m v/[(M/3 + m)d], (b) −(1 + 3m/M)−1

(39) (a) ωf = 5 rad/s, (b) −74.8%

(40) vCM = mv/(M + m), ω(about CM)= [12m/(7m + 4M)](v/d)

(41) (a) 3 rev/s, (b) Ki = 3 J, Kf = 18 J, the increase in the rotational kinetic energy

came from the work that the student did in pulling his arms with the dumbbells
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(42) 1.974 J

(43) 2.34 rad/s = 22.34 rev/min

(44) 3.466 rad/s = 33.1 rev/min

(45) (a) 5.516 × 10−4 kg.m2, (b) 3.313 × 10−2 m.N

Chapter 10

(1) 4 × 104 kg/m3, 40

(2) 9549.3 kg/m3, 9.55

(3) 11.36 kg, 111.328 N

(4) 6.24 × 107 N/m2

(5) 1.96 × 1011 N/m2

(6) 2.352 × 1011 N/m2

(7) 8.04 × 10−3 m,−5.03 × 10−6 m

(8) 6.57 × 10−4 m

(9) (a) 2.5 N/m2, (b) 0.025, (c) 100 N/m2

(10) 2 × 10−7 m, (4.6 × 10−5)◦

(11) 3.82 × 10−4 rad = 2.19 × 10−2 deg

(12) 6.67 × 10−7

(13) −1.024 × 10−5 m3

(14) 84 000 N/m2

(15) 3.92 × 107 N/m2

(16) 345000 N/m2 = 3.45 Pa, 245000 N/m2 = 2.45 Pa [Pa = 105 N/m2 ≡ 105 Pa ]

(17) 117 268 N/m2 ≡ 117 268 Pa

(18) 28.57 m

(19) 0.8 × 103 kg/m3

(20) 113 328 Pa

(21) (a) 10.31 m, (b) 13.05 m, (Both values are not practical)

(22) 498 N

(23) (a) 3.27 N, (b) 0.817 N

(24) 3800 kg/m3

(25) (a) 2.205 × 10−3 N, (b) 533.3 kg/m3

(26) (a) v2 = 25 v1, (b) No effect, because the continuity equation does not depend

on altitude

(27) (a) 400 Pa, (b) 5400 Pa

(28) (a) 8.854 m/s, (b) 5.657 m
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(30) (a) vC = √
2 g h, (b) PB = Pa − ρ g (h + H), (c) Hmax = Pa/ρ g − h, (d)

7.67 m/s, 52 kPa, 7.3 m

(31) 1.5 × 10−3 N

(32) 5 × 10−3 m/s

(33) 4.36 × 10−4 m/s

(35) 2.64 × 103 Pa ≡ 19.9 mm Hg

Chapter 11

(1) −30 ◦C ≡ 243.15 K ≡ −22 ◦F, 10 ◦C ≡ 283.15 K ≡ 50 ◦F, 50 ◦C ≡ 323.15 K ≡
122 ◦F

(2) 37 ◦C ≡ 98.6 ◦F ≡ 310.15 K, 6 000 ◦C ≡ 10 832 ◦F ≡ 6 273.15 K

(3) −40 ◦C ≡ −40 ◦F ≡ 233.15 K,�T = 10 ◦C − (−40 ◦C)= 50 C◦ ≡ 90 F◦

(4) (a) 1064.5 ◦C ≡ 1948.1 ◦F ≡ 1337.65 K, 2660 ◦C ≡ 4820 ◦F ≡ 2933.15 K,

(b) �T = 1595.5 C◦, (c) �T = 1595.5 K

(5) T = 5 ◦C

(6) 0.12 m

(7) 2.72 × 10−3 m

(8) 3.6 mm

(9) 100.1 m

(10) 2.88 × 10−4 m2

(11) 0.048 %

(12) 8.95 cm

(13) (b) 0.5 m, 0.3 m

(14) (b − a)T → (b − a)T+�T = α (b − a)�T , i.e., aT → aT+�T = a(1 + α �T)

and bT → bT+�T = b(1 + α �T). Thus, bT /aT = bT+�T /aT+�T

(15) −113.16 ◦C

(16) 8.395 × 107 N/m2

(17) r = [2 + (α2 + α1)�T ] d/[2(α2 − α1)�T ] ≈ d/[(α2 − α1)�T ]
(18) 1.13 × 10−5 m3

(19) 50.0135 cm3

(20) 3.64 × 107 N/m2

(21) 2.688 cm3

(22) 1.25 kg/m3, 1.43 kg/m3

(23) (a) 3 × 104 N/m2, (b) 3 × 105 N/m2

(24) 1.59 atm
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(25) 4.15%

(26) 31.18 atm

(27) 3.214

(28) 2.42 × 1022 molecules

(29) 1.14 atm

(30) 1.155 × 10−3 kg

(31) 500 K

(32) (a) 1.270 kg, (b) 0.726 kg, (c) 0.566 m3 = 566 L

(33) 1.43 times the original volume

(34) 0.588 kg/m3. The difference in density between 0.588 kg/m3 and the value

0.598 kg/m3 arises from the fact that water vapor is very “near” to the state

phase change. Therefore, we would not expect the steam to act like an ideal

gas, because water vapor molecules will have other interactions besides purely

elastic collisions. This is evident from the fact that steam can form droplets,

indicating an attractive force between the molecules.

Chapter 12

(1) 2.592 × 106 J

(2) 1526 m

(3) 16.5 ◦C

(4) 3 × 105 J, 71.66 kcal

(5) 8561.9 cal

(6) 6.279 × 106 J

(7) (a) 4500 J/C◦, (b) 45000 J

(8) 450 J/kg.C◦

(9) 4 ◦C

(10) 91.8 ◦C

(11) 4867 J/kg.C◦

(12) 754.9 J/kg.C◦

(13) 1.45 × 107 J

(14) 0.285 kg

(15) 152695 J

(16) 0.0329 kg = 32.9 g

(17) 8.09 ◦C

(18) 26.45 g
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(19) 6.1 g

(20) (a) 1.2 × 106 J, (b) −3 × 105 J

(21) (a) 300 J, 225 J, 150 J, (b) −300 J,−225 J, −150 J

(22) (a) 3.174 × 106 J, (b) −3.174 × 106 J

(23) 2.5 × 105 J

(24) −100 J,−418.6 J,−318.6 J

(25) (a) 1.65 × 10−3 J, (b) 17 550 J, (c) 17 549.995 J

(26) (a) 538.85 K, 44.8 m3, 269.43 K, (b) 8.65 × 105 J

(27) (a) 0.289 K, (b) 2.27 × 10−3 m3

(28) (a) 3.2 × 103 kJ, (b) 0, (c) −1.6 × 103 kJ, (d) 1.6 × 103 kJ

(29) (a) 164.6 kJ, (b) 2200 kJ, (c) 2035.4 kJ

(30) (a) 6 000 J, (b) 3 500 J, (c) 627 ◦C

(31) (a) 28 J, (b) 62 J, (c) −68 J, (d) −96 J

(32) (a) 1000 J, (b) 1000 Pa, (c) 6907.7 J, (d) 6907.7 J

(33) (a) 3 × 10−3 cal/cm.C◦.s = 1.256 W/m.C◦, 3 × 10−3 cal/cm.C◦.s = 0.075

Btu/ft.F◦.h., (b) 7.963 × 10−3 m2.C◦/W

(34) 4.32 × 106 J

(35) 1656 W

(36) 45◦C, H = 45 kF A/L

(37) 350.4 W

(38) (a) 4825 W, (b) 0.24 cm

(40) 0.018 W/m.C◦

Chapter 13

(1) 26.5 × 104 N/m2

(2) (a) 5.65 × 10−21 J, (b) 6813 J

(3) 1200 K = 927 ◦C

(4) (a) 1.368 × 104 m/s, (b) 10 times faster

(5) (a) 240.6 K, (b) 4.98 × 10−21 J

(6) (a) 6.642 × 10−27 kg, (b) 2.415 × 1021 atoms, (c) 1368 m/s

(7) (a) 6.21 × 10−21 J, (b) 7480 J

(8) (a) 7.721 × 10−21 J, (b) 1525 m/s, 483 m/s

(9) (a) 498.8 J, (b) Yes, because the monatomic gas model does not include the

energy associated with the internal motions of the gas, such as vibrational and

rotational motions of molecules.

(10) (a) 3.73 × 10−26 m3/molecule, (b) 3.34 × 10−9 m



1032 Answers to All Exercises

(11) vrms = √
3 P/ρ

(12) (a) 493.1 m/s, (b) 5.269 × 10−3 s, (c) 94.9 round/s

(13) (a) 3.7413 × 106 J, (b) 6.2355 × 106 J, 2.4942 × 106 J, 3.7413 × 106 J

(14) (a) 2 × 105 J, (b) 43 ◦C

(15) 131.293 kg/kmol, Xenon gas

(16) 22.7 C◦

(17) (a) 1247.1 J, (b) 831.4 J, (c) 2078.5 J

(18) 28284.2 J

(20) 4.65 × 10−21 J

(21) (a) CP = 29.09 J/mol.K, CV = 20.79 J/mol.K (b) �T = 85.94 K, (c) �Eint

= 3.5726 × 103 J, (b) Vf = 7.72 × 10−3 m3

(23) (a) 483 m/s, (b) 445 m/s, (c) 395 m/s

(24) 1.5

(25) 1900, 60

Chapter 14

(1) (a) 2 s, (b) 0.5 Hz, (c) π rad/s

(2) (a) 0.25 s, 4 Hz, 8 π rad/s, (b) x( t)= A cos (8 π t)

(3) (a) 1.5 m, 1 Hz, 1 s, (b) v = −(3 π m/s) sin (2 π t−π/4), a = −(6 π2 m/s2)×
cos(2 π t − π/4), (c) 3 π m/s, 6 π2 m/s2, (d) zero

(4) The new amplitude is
√

2 times the old one

(5) (a) 39 N/m, (b) 1.42 kg

(6) (a) 0.5 s, 2 Hz, 4 π rad/s, (b) 8 π2N/m, 1.4 π m/s, 2.8 π2N

(7) (a) keff = k1 + k2, (b) keff = k1 + k2, (c) 1/keff = 1/k1 + 1/k2

(8) (a) f = √
2 k/m/2 π, (b) f = √

2 k/m/2 π, (c) f = √
k/2 m/2 π

(9) (a) 6 × 104 N/m, (b) 2.52 Hz

(11) 4 J

(12) (a) 6.25 × 10−3 J, (b) 0.25 m/s, (c)v = ±2.291 × 10−1 m/s, K = 5.25 × 10−3 J,

U = 10−3 J

(13) (a) T = π/2 s, f = 2/π Hz, ω = 4 rad/s, (b) E = 1
2 m v2

i + 1
2 k x2

i = 0.004 J, A =√
2/10 m, φ = −π/4 rad, vmax = 0.4

√
2 m/s, amax = 1.6

√
2 m/s2, (c) x =

(0.1
√

2 m) cos (4 t −π/4), v = −(0.4
√

2 m) sin (4 t −π/4), a = −(1.6
√

2 m)

cos (4 t − π/4), x = +0.1 m, v = −0.4 m/s, a =−1.6 m/s2

(14) (a) 196.2 m/s, (b) 1.03 s, 0.97 Hz

(15) (a) 0.3408 s, (b) 5%, (c) 5 s

(16) (c) 2.3 × 10−3 kg/s, 6.67 × 10−6 (about 7 parts per million)
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(17) 0.2 m, 0.5 π m, 4/π Hz, 2 m/s

(18) (a) 0.25 m, 3 rad/m, 40 rad/s, 13.3 m/s, (b) 20.9 m, 0.157 s, 6.37 Hz

(19) 519.6 m/s, No

(20) y = (0.05 m) sin(5 π x − 100 π t), 0.08 N

(21) 55.1 Hz

(22) (a) 16 m/s, 628.3 rad/s, (b) 157.9 W, (c) 1.6 cm

(23) (a) 20 m/s, π m, 6.4 Hz, (b) 75 W

(26) 60 m/s

(27) (a) 0.02 m, (b) 36 m/s, (c) 64.8 N

(28) (a) 40 Hz, (b) 80 Hz, 120 Hz, 160 Hz

(29) 1 m, π m, 10/π Hz, 10 m/s

(30) (a) 2.3 cm, (b) n( π
2.3 ) cm, (n = 0, 1, 2, . . .), (n + 1

2 )( π
2.3 ) cm, (n = 0,1,2,…),

(c) 4 cm

(31) 3.7 cm

(32) 437 Hz

(33) (a) 25 Hz, (b) 25/
√

2 Hz, (c) 25
√

2 Hz

(36) (a) 40 Hz, (b) 400 kg

(37) (a) 6 loops, (b) 1.67 Hz

(38) (a) μ1/μ2 = 4, (b) μ1/μ2 = 2.25

(39) 2 loops in string 1 and 5 loops in string 2, 395.2 Hz

(40) 8 nodes positioned at 0.32 m, 0.64 m, 0.8 m, 0.96 m, 01.12 m, 1.28 m, and

1.44 m from the left end of string 1

Chapter 15

(1) 351.6 m/s

(2) 422.3 m/s

(3) 5064 m/s

(4) 0.272 s

(6) 1321 m/s

(7) (a) 8.746 × 10−3 s = 8.8 ms, (b) 2.915 × 10−2 s = 29.2 ms

(8) 1170 m

(9) 1400 m

(10) (a) 2 Pa, (b) 1 m, 343 Hz, (c) 343 m/s

(11) (a) 4 μm, 0.314 m, 1091.8 Hz, 343 m/s, (b) 1.766 μm, (c) 2.74 cm/s

(13) 5.81 m

(14) 22.9 W
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(15) (a) 2 W/m2, (b) 1.125 W/m2

(16) 1.77 μW

(17) (a)λw = 4.51 λa, (b) (smax)a = 59.13 (smax)w, (c) (�Pmax)w = 59.13 (�Pmax)a,

(d) λa = 0.331 m, λw = 1.49 m, (smax)a = 1.09 × 10−8 m, (smax)w = 1.84 ×
10−10 m, (�Pmax)a = 0.0292 Pa, (�Pmax)w = 1.73 Pa

(18) 5 × 10−17 W, 5 × 10−5 W

(19) 120.8 dB

(20) 1000

(21) (a) 10−4 W/m2, (b) 82.1 dB

(23) 1.76 dB (This would barely be perceptible)

(24) (a) 133.8 dB, (b) 132 dB, (c) 129 dB

(25) (a) increased by a factor of 5, (b) increased by 7 dB

(26) (a) 4.0 × 10−5 W/m2, (b) 10 dB

(27) (a) about 109, (b) about 1012

(28) from about 100 Hz to about 20000 Hz

(29) 9 Hz difference

(30) 40 kHz

(31) 36 kHz

(32) (a) 5.92 Hz, (b) 4.34 m/s

(33) 20.58 m/s

(34) (a) 313 Hz, (b) 524 Hz, (c) 480 Hz

(35) (a) 471 Hz, (b) 480 Hz, (c) 9 beats/s

(36) (a) 0.364 m, (b) 0.398 m, (c) 982 Hz, (d) 900 Hz

(37) (a) The plane has a speed which is 1.5 times the speed of sound (or Mach 1.5),

(b) 41.8◦

(38) (a) 42.4 km, (b) 41.5 s

(39) (a) 23.6◦, (b) 17.2 s

(40) (a) 73.4◦, (b) 29.4 s, (c) 33.5 km

Chapter 16

(1) 2.83 cm, zero

(2) (a) 8 rad, (b) 0.073 m

(3) (a) 5(2n+1) cm, n = 0,1,2,..., (b) 10 n cm, n = 0,1,2,...

(4) 40.4 Hz, 80.9 Hz, 121.3 Hz

(6) The listener hears three minima.
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(8) (a) 2.18 cm, (b) 0.4 n π cm (n = 0,1,2,…), 0.4 (n + 1
2 ) π cm (n = 0,1,2,…),

(c) 4 cm

(11) 1429 Hz, 1143 Hz, 1715 Hz

(12) 286 Hz, 1429 Hz, 858 Hz

(13) (a) 0.75 m, (b) 1.5 m

(14) (a) 120 Hz, (b) 1.43 m

(15) 850 Hz, 1133 Hz

(16) 0.85 cm (for the upper limit) to 850 cm for the lower limit

(17) 67 cm, 111.7 cm

(18) (a) 15.5 cm, (b) 119 cm, (c) 440 Hz, 78 cm

(19) (a) 66 cm, (b) 262 Hz, 132 cm, (c) 262 Hz, 132 cm (the frequency and wave-

length are the same in the air, because it is the air that is resonating in the organ

pipe)

(20) −1.72%

(21) 476 m/s

(22) (a) The difference between successive harmonics is 140 Hz. The difference

between successive overtones for an open pipe is the fundamental frequency,

and each overtone is an integer multiple of it. Since 210 Hz is not a multiple

of 140 Hz, then 140 Hz cannot be the fundamental frequency, and so the pipe

cannot be open at both ends. Thus, it must be a closed pipe. (b) For a closed

pipe, the successive harmonics differ by twice the fundamental frequency. Thus

140 Hz must be twice the fundamental frequency, which is 70 Hz.

(23) (a) 85 Hz, (b) 340 m/s

(24) (a) 291 harmonics with n = 1, 2, 3, . . ., 291, (b) 291 harmonics with n = 1, 3,

5, . . ., 583

(25) (a) 348 m/s, (b) 125 cm

(26) 6 Hz

(27) 2%

(28) 516 Hz

(29) (a) 259 Hz or 265 Hz, (b) The frequency must have started at 265 Hz to become

266 Hz, (c) The tension should be reduced by 2.99%

(30) (a) 10.13 Hz, (b) 34.45 m

Chapter 17

(1) 1.25 × 108 m/s, 208.3 nm
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(2) (a) 3 × 108 m/s, (b) 2.256 × 108 m/s, (c) 5 × 1014 Hz, (d) 451.113 × 10−9 m,

(e) 5 × 1014 Hz

(3) (a) 0.1 ns, (b) 50 000

(4) 43.6◦

(5) (a) 2.143 × 108 m/s, (b) 38.2◦

(6) (a) 1.43, (b) 2.098 × 108 m/s

(7) 0.9 cm

(8) (a) 32.1◦, (b) 25.7◦, (d) 0.387 cm

(9) 24.4◦

(10) (a) 61.3◦, (b) 53.7◦

(11) (a) 1.3, (b) 50.3◦, (c) 66.8◦

(12) (a) 48.8◦, (b) 41.2◦

(13) (a) 50.3◦, (b) 33◦, 387 μm, Yes θ = 57◦ > θc fulfill the condition of total inter-

nal reflection (c) 3902 reflections

(14) 56.2◦

(15) 1.2 μs

(16) 58.47◦

(17) 0.34◦

(18) (a) 15.68◦, (b) 22.84◦

(19) (a) H = 100 cm, (b) h′ = h = 200 cm, i = − p (virtual), see the figure

e

f f

H

Im
ag

e

Mirror h'

'

t

h

t'

p i

(20) 0.75 m from its center

(21) i = − 0.2 m and M = + 2. The image is virtual because i is negative, upright

because M is positive, and twice as large as the object (h′ = 6 cm) because

M = 2
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(22) i = −0.2/3 m and M = +2/3.The image is virtual because i is negative, upright

because M is positive, and reduced (h′ = 2 cm) because M is less than unity

(23) We found that choosing i = p from the condition M = | −i/p| = 1 satisfies the

mirror equation 1/p + 1/i = 1/|f | and gives p = 2|f |, i.e. the object must be

placed at a distance 2f from the concave mirror. Note that, choosing i = − p

from the condition M = | − i/p| = 1 cannot satisfy the mirror equation.

(24) Choosing either i = p or i = − p from the condition M = | −i/p| = 1 does not

satisfy the mirror equation 1/p + 1/i = −1/|f |. Note that the mirror equation

for convex mirrors leads always to a virtual, upright, and reduced image for all

values of p.

(25) (a) f = + 5 cm for the concave mirror:
(i) p = ∞, i = 5 cm, M = 0 (real, focus, reduced)

(ii) p = 15 cm, i = 7.5 cm, M = −0.5 (real, inverted, reduced)

(iii) p = 10 cm, i = 10 cm, M = −1 (real, inverted, equal)

(iv) p = 7.5 cm, i = 15 cm, M = −2 (real, inverted, enlarged)

(v) p = 5 cm, i = ∞ cm, M = −∞ (real, inverted, enlarged)

(vi) p = 2.5 cm, i = −5 cm, M = +2 (virt., upright, enlarged)

(b) f = − 5 cm for the convex mirror:

(i) p = ∞, i = −5 cm, M = 0 (virt., focus, reduced)

(ii) p = 15 cm, i = −3.75 cm, M = +0.25 (virt., upright, reduced)

(iii) p = 10 cm, i = −3.3 cm, M = +0.33 (virt., upright, reduced)

(iv) p = 7.5 cm, i = −3 cm, M = +0.4 (virt., upright, reduced)

(v) p = 5 cm, i = −2.5 cm, M = +0.5 (virt., upright, reduced)

(vi) p = 2.5 cm, i = −1.67 cm, M = +0.67 (virt., upright, reduced)

(26)

0 2 4 6 8 10
0.0
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0.6

0.8
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-60

-40

-20
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40

(a) (b)
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Concave mirror ( f = 5 cm) Convex mirror ( f = 5 cm)

M M
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(27) (a) i = 18 cm and M = −2. The image is real because i is positive, inverted

because M is negative, and enlarged (h′ = −0.4 cm) because |M| is greater

than unity. (b) i = −6 cm and M = 2. The image is virtual because i is negative,

upright because M is positive, and enlarged (h′ = 0.4 cm) because M is greater

than unity

(28) i = −22.5 cm (both the object and image are in front of the spherical surface in

water) and M = 1.5. The image is virtual because i is negative, upright because

M is positive, and enlarged because M is greater than unity

(29) (a) i = 15 cm and M = −0.5. The image is real because i is positive, inverted

because M is negative, and reduced because M is less than unity, (b) i =
−10 cm and M = 2. The image is virtual because i is negative, upright because

M is positive, and enlarged because M is greater than unity

(30) (a) i = −7.5 cm and M = 0.25. The image is virtual because i is negative,

upright because M is positive, and reduced because M is less than unity, (b)

i = −3.3 cm and M = 0.67. The image is virtual because i is negative, upright

because M is positive, and reduced because M is less than unity

(32) (a) i = −5 cm and f =−20/3 cm. The image is virtual and the lens is a diverg-

ing lens. (b) R = 18 cm

(33) f2 = −37.5 cm

(34) i = −1.75 cm. The image is virtual and 1.75 cm in front the diverging lens

(35) i = +9.6 cm. The image is real and 9.6 cm behind the diverging lens

(36) i = +40 cm. The image is real and 40 cm behind the second lens, reduced

because M = 0.5, and upright because M is positive

(37) i = +4 cm. The image is real and 4 cm behind the second lens, reduced because

M = −0.4, and inverted because M is negative

(38) f1 = −5 cm

(39) f1 = −5 cm as in Exercise 38

(40) di/dt = f 2/(p − f )2 v, p = 2f

Chapter 18

(1) �y = 2.52 mm

(2) 500 nm (in the range of green light)

(3) λV = 400 nm, λR = 700 nm

(4) 600 nm, 5 × 1014 Hz
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(5) 4.5 × 10−6 m

(6) 2.9◦, 8.6◦, 14.5◦, 20.5◦, and 26.7◦, (corresponding to the order m = 1, 2, . . ., 5

for dark fringes)

(7) After the central fringe, the 12th blue fringe will overlap with the 10th yellow

fringe to produce a green fringe

(8) (a) 58, (b) 80.4◦

(9) 8.8 cm

(10) 0.019 mm

(11) 1355 rad

(12) (a) 0.75 I◦, (b) 94.5 nm

(13) 0.864

(16) (a) d = 100 nm, (b) Yes, with m = 2

(17) 686.4 nm

(18) d = 1473 nm

(19) (a) 21 dark bands and 20 bright bands between them, (b) 0.5 cm

(20) (a) 168.6 nm, (b) If the thickness were much less than one wavelength, then

there would be a very little phase change introduced by an additional path

length, and so the two reflected waves would have about π rad phase difference.

This would produce destructive interference.

(21) 102 nm

(22) (a) 74.2 nm, 541.7 nm (b) A light ray reflected from the air-oil interface under-

goes a phase shift φ1 = π. A ray reflected at the oil-water interface undergoes

no phase shift. When the oil thickness is negligible compared to the wavelength

of the light, then there is no significant shift in phase due to a path distance

traveled by a ray in the oil, i.e., φ2 ≈ 0. Thus, the light reflected from the two

surfaces will destructively interfere for all visible wavelengths and the oil will

appear black.

(23) (a) 675 nm, (b) 2.8 mm

(26) 12.33 m, 23.71 m

(27) (a) λ = 632.9 nm, (b) I3/Imax = 8.3 × 10−3 ≡ 0.83%

(28) 114 cm

(29) 0.26 mm

(30) (a) a = λ, (a) a = 400 nm

(31) (a) 25 cm, (a) 51.5%

(33) 625 nm

(34) 17.3◦
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(35) (a) d = 2.5 × 103 nm, (b) m = 0, 1, 2, 3, (c) R = 732.5, (d) N ′ = 366 slits

(36) For λ = 700 nm, mmax = 3.2. Three full spectral orders can be observed on

each side of the central maximum as well as a portion of the fourth order. For

λ = 400 nm, mmax = 5.6. Five full spectral orders can be observed on each

side of the central maximum as well as a portion of the six order.

(37) 16.6 cm for λ = 700 nm and 9.1 cm for λ = 400 nm

(38) The wavelengths 600–700 nm of the second order overlap with the wavelengths

400–467 nm of the third order.

(39) (a) 3, (b) The resolution is best for the third order, since it is more spread out

than the second and first order, (c) 0.028 nm

(40) 63.4◦

(41) 0.125 I◦
(42) 45◦

(43) 0.5625 I◦ (56.25%)

(44) 65.53◦

(45) (a) I1/I◦ = 1
2 , I2/I1 = 3

4 , and I2/I◦ = 3
8 , (b) 63.4◦

Chapter 19

(1) A neutral atom has the same number of electrons orbiting a nucleus having

the same number of protons. A negatively charged atom has an excess of one

or more electrons, while a positively charged atom has one or more missing

electrons.

(2) The rubber rod will be negatively charged while the fur will be positively

charged. It is not possible to transfer positive charges from rubber to fur or vice

versa, because positively charged nuclei (or protons) are massive and immobile,

unlike electrons.

(3) Negative charged copper rod.

(4) When the comb is near the bits of paper, molecules in the paper are polarized

with an opposite charge facing the comb, and the paper is attracted. During

contact, charge from the comb is transferred to the paper by conduction. Then

the paper may be neutralized and fall off. It may even become equally charged

as the comb, and then get repelled.

(5) Wearing rubber-soled shoes allows for an accumulation of charge by friction

with the floor. Upon discharging, a spark may result, and if the area is enriched

with oxygen, then it would result in an explosion.
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(6) No. Molecules in the wall are polarized with an opposite charge facing the

balloon, and the balloon is attracted to the wall. During contact, ionization of

the air between the balloon and the wall provide ions so the excess electrons in

the balloon can be transferred to the ions, reducing the charge on the balloon and

eventually causing the attractive force to be insufficient to support the weight

of the balloon.

(7) We first allow the two uncharged metallic spheres to touch. The charged rubber

rod is then brought near one of the spheres. The positive charge on the rubber

rod will repel the electrons in the nearby sphere and cause them to move to

the far end of the second sphere (this is known as charging by induction).

If the spheres are now separated, one of them will retain a negative charge

while the other will retain an equal amount of positive charge. Finally, we take

away the charged rubber rod.

(8) 6.24 × 1018 electrons, 5.68 × 10−12 kg

(9) (a) 9 × 1013 N, (b) 9 × 109 N, (c) 9000 N, Yes, Yes

(10) 2.3 × 10−8 N

(11) 2.1 × 10−4 N

(12) 2.1 × 1011 electrons

(13) (a) 2.62 × 1024 electrons, (b) 2.39 electrons per billion (109)

(14) (a) 57.6 N, (b) Larger by 1.24 × 1036 times

(15) q/m = 8.61 × 10−11 C/kg

(16) q = ±1.4 × 10−9 C, No, both positive and negative charges repel each other.

(17) (a) 35 μC and 5 μC, (b) 45 μC and −5 μC or −45 μC and 5 μC

(18) 14.4 N away from q2

(19) 0.02 N on q1 and directed to the left, zero force on q2, and 0.02 N on q3 and

directed to the left.

(20) 0.25 N, No, only the direction will be reversed

(21) 8.9 N at 204◦ or
→
F = (−8.1

→
i − 3.6

→
j ) N

(23) 0.97 N at 135◦ or
→
F = (−0.69

→
i + 0.69

→
j ) N

(24) (a) 0.018 N at 45◦ or
→
F = (0.013

→
i + 0.013

→
j ) N, (b) 3.1 × 10−2 N at 225◦ or

→
F = (−2.2 × 10−2→

i − 2.2 × 10−2→
j ) N

(25) (a) 2 k q q◦/a2, negative x-direction, (b) 2 k q q◦/(a2 + y2)3/2, negative

x-direction

(26) (a) 82.3 × 10−9 N, (b) 9.04 × 1022 m/s2, (c) 2.19 × 106 m/s

(27) (a) zero, (b) 1.9 × 109 N

(28) q1 = q2 = Q/2
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(29) (a) T = 2 π
√

πε◦ m a3/q q′, (b) 6.63 × 10−13 s  0.7 ps

(30) (b) 7.318 × 10−9 C

(31) (a) x = k q Q L/2 W h2, P = W − 3 k q Q/h2, (b) h = √
3 k q Q/W

(32) (a) θ1/θ2 = 3, (b) r = (8 k L q2/3 m g)1/3

Chapter 20

(1) (a) 9 × 107 N/C, (b) 9 × 103 N/C, (c) 9 × 10−3 N/C

(2) (a) 1.1 × 10−14 C, (b) 1.1 × 10−10 C, (c) 1.1 × 10−4 C

(3) (a) 5.6 × 10−11 N/C, down, (b) 1.0 × 10−7 N/C, up, very small values

(4) (a) 5 × 105 N/C, negative x-direction, (b) 8.8 × 1016 m/s2

(5) (a) 1.8 × 103 N/C, 243.4◦, (b) 3.6 × 104 N/C, 36.9◦

(6) At 20 cm to the right of the −4 μC charge

(7) 7.2 × 107 N/C directed toward q2

(8) (a) zero, (b) zero, (c) 1.3 × 107→
i (N/C)

(9) 5.4 × 105 N/C to the left

(10) (a) +5.88×108N/C,+1.28×1011N/C,−6.41×1011N/C,−6.41×1011N/C,

+1.28 × 1011N/C,+5.88 × 108N/C, (b) about 98%

(11) (a) −2.84 × 108 →
i (N/C),−2.58 × 1010 →

i (N/C),−2.06 × 1011 →
i (N/C),

−2.06 × 1011 →
i (N/C),−2.58 × 1010 →

i (N/C),−2.84 × 108 →
i (N/C), (b)

about 102%

(12) (a) λ = −Q/L, (d) 3.2 × 106 N/C directed toward the rod

(13) (a) E = k λ/a to the left, (a) E = k λ◦/2 a to the left

(14) (a) zero, (b) 1.32 × 106 N/C, (c) 7.68 × 106 N/C, (d) 4.35 × 105 N/C, (e) The

electric field is zero at the center of the ring, then increases as a increases, and

finally starts to decrease as a increases

(15) 1182 N/C to the right

(16) E = 4 k Q/πR2 to the left, where Q is the magnitude of the charge on each

quarter circle, i.e. with |λ| = 2 |Q|/(π R)

(17) E = 4 k Q/πR2 to the left, the same formula as in Exercise 16, but Q here is

the magnitude of the charge on each half circle, i.e. with |λ| = |Q|/(π R)

(20) (a) q1/q2 = 3/53/2  0.3, (b) Yes, to the left of C1

(21) (a) 3.32×105 N/C, (b) 2.72×105 N/C, (c) 3.58×104 N/C, (d) 4.23×102 N/C

(23) The near-field approximation matches the 1 mm location and the point charge

approximation matches the 100 cm location.

(24) z = R/
√

3
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(25) E = σ/ε◦
(27) (a) 8.78 × 108 m/s, 3.51 × 10−13 J, (b) 4.79 × 105 m/s, 1.92 × 10−16 J

− − − − − −

(a) and (c) (b)

Neutral point (d) (e)

+ + + + + +

 on the disk and  on the rodσ λ− −  on the diskσ+

q+

q+

N

+∞−∞
λ−

λ+
q+ +∞−∞

− − − − −

+ + + + +

(28) (a) 4.52 × 105 N/C, (b) 7.23 × 10−14 N to the left, (c) 7.95 × 1016 m/s2 to the

left, (d) 6.14 × 10−10 s, (e) 4.88 × 107 m/s and 1.08 × 10−15 J

(29) (a) 7.95 × 1016 m/s2 to the left, (b) 4.88 × 107 m/s, (c) 4.61 × 10−10 s

(30) The electron will hit the upper plate at x = 2.386 × 10−2 m  2.4 cm

(31) The proton will never hit the lower plate and at y = −d/2, the x-coordinate of

the proton will be x  102 cm

(32) (a) 1.76 × 1013 m/s2, (b) 1.5 × 10−8 s, (c) 1.98 × 10−3 m = 0.198 cm,

(d) 4.15 × 10−2 m = 4.15 cm

(33) (a) 9.581×109 m/s2, (b) 1.5×10−8 s, (c) 1.078×10−6 m (almost no deflection),

(d) 2.263 × 10−5 m (little deflection)

Chapter 21

(1) (a) 105 N.m2/C, (b) −105 N.m2/C, (c) zero, (d) zero, (e) 5 × 104 N.m2/C

(2) 2.5 × 106 N/C

(3) (a) zero, (b) −π × 103 N.m2/C, (c) π × 103 N.m2/C

(4) (a) a3β N.m2/C, (b) 0.04 N.m2/C, zero
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(5) (a) zero, (b) βA, (c) αA

(6) (a) 2.8 N.m2/C, (b) −2.8 N.m2/C

(7) (a) −E r h, (b) +E r h, (c) zero

(8) (a) q/ε◦, (b) (q + 2 π R λ)/ε◦
(9) (a) q/ε◦, zero, 2 q/ε◦, and zero, (b) No, (c) Because the number of electric field

lines that enter any surface will emerge from it and hence do not contribution

to the electric flux.

(10) (a) 2.856 × 104 N.m2/C, (b) 1.414 × 106 N.m2/C, Yes

(11) (a) 103 N.m2/C, (b) zero

(12) 4.425 × 10−3 C/m3

(13) (a) zero, (b) 126.3 N.m2/C

(14) (a) q/2ε◦, (b) −q/2ε◦
(15) 5 × 105 N/C upwards

(16) 5 × 109 N/C away from the wall. The field is uniform as long as the distance

from the wall is much less than the wall’s dimensions.

(17) (a) zero, (b) σ/ε◦ to the right, (c) zero

(18) (i) (a) σ/ε◦ to the left, (b) zero, (c) σ/ε◦ to the right (ii) (a) σ/ε◦ to the right,

(b) zero, (c) σ/ε◦ to the left

(19) (a) 3.9 × 10−9 C/m2, (b) (441.4 N/C)
→
k , (c) −(441.4 N/C)

→
k

(20) (a) 14.4 M N/C inwards, directed to the filament, (b) 7.2 M N/C inwards,

directed to the filament, (c) 1.44 M N/C inwards, directed to the filament

(21) (a) 6 × 105 N/C, (b) 7.54 × 103 N.m2/C

(22) (a) 1.1 × 10−6 C, (b) zero

(23) ρ r/2ε◦ radially outward if ρ is positive

(24) (a) zero, (b) 6.75 × 106 N/C

(25) (a) zero, (b) E = k Q/r2, (c) zero

(26) 5.94 × 105 m/s

(27) (a) 9 × 10−7 C, (b) 7.5 × 10−6 C

(28) (a) zero, (b) 3.38 × 106 N/C, (c) 6.75 × 106 N/C, (d) 3.0 × 106 N/C,

(e) 7.5 × 105 N/C

(29) 8.34 × 10−9 C

(30) E = α r2/4ε◦ for r ≤ R radially outward, and E = α R4/4ε◦ r2 for r ≥ R radi-

ally outward

(31) EC1 = −ρR/6ε◦ downwards, EC1 = 17ρR/54ε◦ upwards
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(32) (a) E = (kQ/R3) r, (b) E = kQ/r2, (c) zero, (d) zero, (e) inner charge is −Q,

outer charge is 0

(33) (a) σCopper = Q/2 A, σGlass = Q/A, (b) ECopper = σCopper/ε◦ = Q/2 A ε◦, EGlass

= σGlass/ε◦ = Q/2 A ε◦, the magnitude of the two fields are the same, and both

are perpendicular to the plates

(34) (a) λinner = −λ, λouter = 4 λ, (b) E = 2 k λ/r (radius of the wire < r < R1),

E = 0, (R1 < r < R2), E = 8 k λ/r(r > R2)

(35) E = k(q1 + q2)/r2, directed outward if (q1 + q2) > 0 and inwards if (q1 +
q2) < 0

Chapter 22

(1) (a) Zero, (b) 10−3 J, (c) −1.56 × 10−3 J

(2) (a) Zero, (b) −10−3 J, (c) +1.56 × 10−3 J

(3) (a) Zero, (b) 10−3 J, (c) −1.56 × 10−3 J

(4) 1.35 × 106 J, 6.02 × 1023 electrons, Avogadro’s number

(5) 3.7 × 105 N/C

(6) (a) 1200 V, (b) 2.05 × 107 m/s

(7) (a) 135.6 N/C, (b) 7.38 cm

(8) (a) 240 V, (b) 240 V

(9) (a) 2 m/s, (b) The same

(10) (a) 1.44 × 10−7 V, 7.2 × 10−8 V, (b) −7.2 × 10−8 V

(11) (a) −1.44 × 10−7 V,−7.2 × 10−8 V, (b) 7.2 × 10−8 V

(12) (a) 0.9 m, (b) 3.6 × 10−9 C

(13) 3 cm

(14) (a) −1.44 × 107→
i (V), (b) Zero, −0.36 J, (c) Zero

(15) 4639 V

(16) −7.2 × 103 V

(19) 16.3 μ V

(20) (a) k Q ln(1.8)/L, (b) Zero

(21) −2 π k λ/3

(22) k λ(π + 2 ln 2)

(23) (a) −3.02 × 106 V, (b) −1.51 × 106 V

(24) z = ± √
3 R

(25) V = 2 π σ k

(√
R2

2 + a2 −
√

R2
1 + a2

)

(26) 2331 V
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(28) V =π α k
(

R
√

R2 + a2 + a2 ln
⌈

a/
{

R + √
R2 + a2

}⌉)
(29) (a) r = √

3/2 R, (b) VR − V0 = −kQ/2R

(30) (a) Vr = (α R3/12 ε◦)(4 − r3/R3) for 0 ≤ r ≤ R, (b) Vr = α R4/(4 ε◦r) for

r ≥ R

(31) (a) 1.8 × 106 V, (b) 1.8 × 106 V, (c) 1.8 × 106 V, (d) 1.2 × 106 V

(32) (a) 4.2 × 1014 electrons, (b) 1.33 × 10−4 C/m2

(33) 150 V

(35) (a) qa = Q a/(a + b), qb = Q b/(a + b), (b) V = k Q/(a + b)

(36) 109.86 V

(37) (a) Ex = (−6 x − 6 y2 + 4 z) V/m, Ey = (−3 x2 − 12 y2 + 4 z) V/m, Ez = (−3 x2

− 6 y2 + 4) V/m, (b) Ex = −4 V/m, Ey = −28 V/m, Ez = −32 V/m

(38) Er = ± 2 k p/r3(+ when θ = 0 and − when θ = π)

(39) (a) 900 kV, (b) 3 × 10−5 C = 30 μC, (c) 135 kV, 67.5 kV/m

(40) 10.7 hp

Chapter 23

(1) 150 μ C

(2) 80 000 V

(3) 3 × 10−5 C

(4) 3.54 n m

(5) (a) 177 pF, (b) 3.54 n C, 8.85 × 10−8 C/m2 (c) 10 kV

(6) 79.65 n C

(7) 3.475 n C

(11) (a) 227 pF, (b) 353 V

(12) 40 pF

(13) (a) 2 × 10−10 F, (b) 10 nC

(14) 708 μ F

(15) 4.41 f F

(16) (a) 53.1 pF, (b) 376.6 V

(17) (a) 750 μ C, (b) 33 μ C, 22.7 V

(18) (a) 10.6 n C, (b) 210 n C

(19) 1.000 578

(20) (a) 1.77 nF, 21.24 n C, 7.97 nF, 95.58 n C, (b) 30.98 n C/m2, 3500 N/C

(21) (a) 5 μ F, (b) Q1 = 18 μ C, Q2 = 27 μ C, (c) �V1 = �V2 = 9 V

(22) (a) 1.2 μ F, (b) Q1 = Q2 = 10.8 μ C, (c) �V1 = 5.4 V,�V2 = 3.6 V
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(23) (a) 2.2 μ F, (b) Q1 = 6 μ C, Q2 = Q3 = 7.2 μ C, (c) �V1 = 6 V,�V2 = 3.6 V,

�V3 = 2.4 V

(24) (a) 484 μ C, (b) 198 μ C, (c) 96 μ C, (d) 44 μ C

(25) (a) Q1 = 50 μ C, Q3 = 40 μ C, (b) �V = 35 V

(26) (a) 6 μ F, (b) �V = 35 V

(27) (a) 2 C/5, (b) C, (c) 5 C/3, (d) 11 C/6

(28) (a) 9.6 μ C, (b) 24 μ C, (c) 40 μ C, (d) 44 μ C

(29) (a) 65 μ F, (b) 750 μ C, (c) 11.54 V, (d) Q1f = 28.85 μ C, Q2f = 46.13 μ C

(33) 44.25 n J

(34) (a) U1 = 200 μ J, U2 = 300 μ J, (b) Yes, Ueq = U1 + U2

(35) (a) �Vf = 5 V, Q1f = Q2f = 25 μ C, (b) Ui = 250 μ J, Uf = 125 μ J, Ui > Uf

(36) 9.5%

(37) 50 kV/m, 0.011 J/m3, 8.69 × 10−8 J

(38) 0.02 J

(39) (a) 40 V, (b) 800 J

Chapter 24

(1) 1019 elecrons/s

(2) (a) 600 C, (b) 3.75 × 1021 electrons

(3) (a) 9632 C, (b) 5.35 A

(4) (a) 5 × 1018 electrons per second, (b) 0.8 A

(5) (a) 60 C, (b) 30 A

(6) (a) I = 2(1 + t), 6 A, (b) J = 2 × 104(1 + t), 60 kA/m2

(7) (a) 2387.3 A/m2, (b) 596.8 A/m2

(8) (a) IIron = 8 A, JIron = 4.07 × 105 A/m2, (b) JCopper = 2.55 × 108 A/m2

(9) 1.04 × 10−3 m/s  1 mm/s

(10) 7.32 × 10−1 V/m

(11) (a) 1.59 × 106 A/m2, (b) 50 V/m, (c) 3.14 × 10−5 �.m, 3.18 × 104 (�.m)−1

(12) 3.975 �

(13) (a) 3.9 × 105 A/m2, (b) 6.357 × 10−3 V/m, (c) 3.184 × 10−3 V, (d) 6.366 ×
10−4 �, (e) 23.91◦C

(14) (a) 18.85 A, (b) 5.3 × 10−6 �, 10−4 V

(15) (a) 1.776 × 10−2 m, (b) 9.57 × 10−7 �, (c) 10.45 A, 2.45 μm/s

(16) 78%
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(17) 27.8 �

(18) 5.25 × 10−3 �

(19) (a) 1.892 × 10−8 �.m, (b) 1.06 × 107 A/m2, (c) 8.33 A, (d) 0.012 �,

(e) 1.13 mm/s, (f) 1 V

(20) R◦ n = 4 �, R◦ c = 5 �

(21) (a) 0.25 A, (b) 960 �, (c) 0.42 A, 576 �

(22) (a) 88 �, (b) 2.5 A, (c) 163.6 W

(23) (a) 2.4 �, (b) 10 A, (c) 102 mm

(24) (a) 0.02 A, (b) 20 V

(25) (a) 0.9 kW. h, (b) 31.5 piaster

(26) (a) 31.83 A/m2, (b) 6.25 × 1014 electrons/s, (c) 0.5 W, (d) 4.19 × 107 m/s,

(e) 4.75 × 1012 electrons/m3

(27) 231.25 �

(28) (a) 2 A, (b) 10 V

(29) (a) 0.5 �, (b) 8.25 V

(30) (a) 0.05 �, (b) 0.15 �

(31) (a) 29 �, (b) 3.3%, (c) 0.1 A, No

(32) (a) 2.8 �, (b) 14 V

(33) (a) 6 �, (b) 14 V

(34) (a) 5 R/2, (b) R, (c) 3 R/5, (d) 6 R/11

(35) (a) 2.4 A, 1.2 A, 1.2 A, 2.4 A, (b) 3 A, 3 A, 3 A, 3 A, (c) 4 A, 6 A, 2 A,

2 A, (d) 2 A, 3 A, 6 A

(36) (a) 1.5 M�, (b) 0.7 M�

(37) (a) 960 �, (b) 0.2 A, (c) 192 V, (d) 38.4 W

(38) (a) 6 �, (b) 2 A, (c) I3 = 1.5 A, I4 = 0.5 A, (d) P1 = 4 W, P2 = 9 W, P3 = 9 W,

P4 = 3 W

(39) I1 =−1 A, I2 = 1 A, I3 = 2 A

(40) I1 =−14/11 A, I2 = −18/11 A, I3 = −32/11 A

(41) I1 = 2 A, I2 = 2 A, I3 = −4 A

(42) ε1 = 9 V, I2 =−2.5 A, I3 = −2 A

(43) I1 = 0.5 A, I2 = −1 A, I3 = −0.5 A, I4 = 0

(46) 39. 7%

(47) (a) 2 s, 24 μC, 12 μA, (b) 1.39 s

(49) (a) 1.1 m C, 4.4 m A, (b) 0.15 m C, 0.6 μA

(50) τBefore = 2 s, τAfter = 0.75 s, ISwitch = 0.6 mA + (0.2 mA)e−t/0.75
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Chapter 25

(1) (a) down, (b) to the left, (c) in the plane of the page and perpendicular to
→
v and

→
B , (d) up, (e) no force, (f) into the page, (g) into the page, (h) out of the

page

(2) (a) to the left, (b) no deflection, (c) out of the page, (d) to the right

(3) 24.6◦ or 155.4◦

(4) −1.82 × 10−13 →
k (N), along the negative z-axis

(5) 6.4 × 10−17 N, downwards

(6) 3.845 × 10−26 kg, Sodium ion

(7) (a) 0.167 m, (b) 131 μs, (c) 6.4 × 10−11N

(8) (a) 1.548 × 107 m/s, (b) 7.43 × 10−12 N, (c) 0.215 m, (d) 1.1 × 1015 m/s2

(9) (a) 1.708 × 10−3 m, (b) 3.577 ns, (c) 0.014 m

(10) (a) 60◦, 62.625 cm, (b) 39.7◦, 14.44 cm, (c) 21.2◦

(11) 3.75 × 104 m/s

(12) 20.5 mT

(13) (a) and (b) The magnetic field is out of page, the left plate is at a higher electric

potential for the left pair, and the right plate is at a higher electric potential for

the right pair. Note that, these polarities are reversed when the magnetic field

is into the page in the case of a clockwise path, (c) 8.54 cm

(14) (a) 7.5 × 104 m/s, (b) 40.56 cm

(15) (a) 2.4 × 105 m/s, (b) 9.96 mm

(16) (a) 7.38 × 10−11 m3/C, (b) 5.53 μV, (c) 1.11 × 10−3 V/m

(17) (a) 5.85×1028 electrons/m3, (b) 5.86×1028 atoms/m3, the number of charge

carriers in silver is almost one electron per atom, (c) 1.424 × 10−4 V/m

(18) (a) 6.67 × 10−5 m/s, (b) 5.854 × 1028 electrons/m3, (c) point b is at higher

potential

(19) 0.525 N

(20) (a) 1.875 × 10−1 N, 323.1◦ from the x-axis in the xy plane

(21) Fab = 0, Fbc = 0.5 I LB, into the page, Fcd = 0.5 I LB out of the page,
∑

F = 0

as must be for a closed loop

(22) 0.625 A (when g = 10 m/s2)

(23) Fab = 0, Fbc = 0.1 N, Fcd = 0.05 N, Fde = 0.1 N, Fef = 0

(24) F = 2πR I B sin θ, to the right

(25) (a) 0.628 A·m2, (b) 6.283 × 10−2 A·m
(26) (a) μ= 0.2171 I L2 out of the page, (b) τ = 0.2171 I L2B up
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(27) 9.425 × 10−3 N·m
(28) (a) B = mg/π I R, (b) The same B = mg/π IR for 0◦ ≤ θ ≤ 90◦

(29) 1.35 N·m, counterclockwise

(30) (a) 21 A·m2, (b) 53◦, (c) 13.42 N·m, the coil will rotate so that →
μ aligns with

→
B . Looking down along the y-axis, the loop will rotate in a clockwise direction

(31) (a) μ= 1.473×10−3 A·m2, (b) →
μ = 1.473×10−3→

k (A·m2), (c) →
τ = [2.946×

10−4 →
j − 4.419 × 10−4→

i ] (N·m), only the component of torque along y-axis

cause a torque about this axis, while the one along the negative x-axis has no

effect on the loop. Looking down along the y-axis, the loop will rotate in a

counterclockwise direction

(32) 1.4 rad = 80.2◦

(33) (a) 1.3 × 108 m/s, 0.31 s, (b) 5.2 km, no

Chapter 26

(1) (a) −7.8 × 10−9 →
k (T), (b) −4 × 10−9 →

k (T)

(2) 13.7 T

(3) υ2/c2

(4) At P, 33.3 μT out of the page and at Q, 33.3 μT out the page

(5) At P, 66.7 μT out of the page and at Q, 66.7 μT into the page

(6) 69.3 μT to the left

(7) (a) Zero, (b) 11.3 μT to the left, (c) Zero

(8) Zero for the two wires that point extends along their length, 2 μT (into the page)

for the two vertical wires that they have a 5 cm length, 4 μT (into the page) for

the horizontal wire that has a 10 cm length, Btot = 8 μT

(9) 31.42 μT, 22.48 μT, 1.11 μT, 1.16 μT

(10) 7.63 cm, 18.13 cm, 39.79 cm

(11) 21.14 μT out of the page

(12) 17.65 μT out of the page

(13) (a) 0.021 T

(14) (a) 16 μC, (b) 64 μN repulsive force

(15) (a) B(x)= μ◦Ia/π(a2 + x2)
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(b)

-60 -40 -20 20 40 600
-4

-2

0

2

4
B (mT)

x (mm)

(16) (a) F(2) = 30 μT to the right, F(4) = 90 μT to the left, (b) F(3) is up, F(1) is

down, (c) 60 μT to the left

(17) (a) B = 0 (for r < R) and B = μ◦I/2πr (for r ≥ R)

(18)
∮

C1

→
B • d→s = 10μ◦,

∮
C3

→
B • d→s = −10μ◦,

∮
C3

→
B • d→s = 0, No one

(19) Ba = 100 μT toward top of page, Bb = 50 μT toward bottom of page

(20) 250 μT, 500 μT, 250 μT

(21) Br<a = 0, Ba<r<b = [μ◦I/2πr][(r2 − a2)/(b2 − a2)], Br>b = μ◦I/2πr

(22) B = μ◦nI

(23) B = 0.503 T

(24) (a) 400 turns per layer, (b) 3.0 T

(25) 60.3 μT

(26) (a) 5 layers, (b) 47.43 m

(27) B(r)= μ◦NI/2πr

(28) 2 × 10−3 T

(29) 0.024 T, 0.022 T

(30) (b) B = 1
2μ◦λ

(31)
→
Ba = −μ◦λ

→
i ,

→
Bb = 0,

→
Bc = + μ◦λ

→
i

(32) (a) 0.2 A, (b) 22.6 × 109 V·m/s, (c) 0.5 μT

(33) (a) 1.079 × 1012 V/m.s, (b) 3 × 10−7 T

(34) 2.57 × 10−34 J·s, 0,−9.27 × 10−24 J/T, 1.85 × 10−23 J/T

(35) (a) For m� = 0 we get Lz = 0, μ�,z = 0, (b) For m� = 0 we get U� = 0, (c) For

m� = −2 we get Lz = 2.1 × 10−34 J·s, μ�,z = 1.85 × 10−23 J/T, U� = −7.42 ×
10−24 J

(36) Us = ±4.635 × 10−24 J,�Us = 9.27 × 10−24 J
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(37) 6.489 × 10−22 J = 4.056 × 10−3 eV

(38) 1.105 × 102 A/m along the disk axis, 1.192 × 1027 atoms

(39) (a) →
μ Before = 0,

→
μ After is out of page, (b) Counterclockwise, (c) Into of the

page

(40) −5 × 10−5

(41) (a) 1.8 × 103 A/m, 2.2619467 m T, 0.452 389 34 μWb, (b) 3.6 × 10−3 A/m,

2.2619422 m T, 0.452 388 44 μWb

(42) (a) 4 × 103 A/m, 5.026548 m T (b) 9.2 × 10−2 A/m, 5.026663 m T,

(43) 2.72 × 10−1 A/m, 5.026890 mT

(44) 5.58 × 105 A/m, 0.7 T

(45) (a) 1.6 × 106 A/m, (b) 15.98 A.m2, (c) 8 m.N

(46) 2.64 T

(47) 2 × 10−4 T.m/A = 159.2 μ◦

Chapter 27

(1) (a) 0.06 Wb, (b) 64.6◦

(2) 0.12 V, 0.08 A

(3) As the south pole of the magnet is pushed into the loop, the magnetic flux

increases out of the right face of the loop. To oppose this increase, the flux

produced by the induced current must be into the right face of the loop, so the

induced current must be from right to left in the resistor

(4) As the north pole of the magnet recedes from the loop, the magnetic flux

decreases into the left face of the loop. To oppose this decrease, the flux pro-

duced by the induced current must be into the left face of the loop, so the

induced current must be from left to right in the resistor

(5) −200 V

(6) Clockwise for the inside loop and Counterclockwise for the outside loop

(7) 1.57 × 10−2 V

(8) 0.005 V

(9) (a) (0.8 − 10−3t) (T), (b) π × 10−5 V

(10) (a) Clockwise, (b) counterclockwise, (c) counterclockwise, (d) clockwise,

(e) counterclockwise, (f) clockwise, (g) clockwise when �B decreases and

counterclockwise when �B increases, (h) no induced current

(11) (a) Clockwise, (b) 4.91 × 10−2 V, (c) 2.5 × 10−2 A

(12) (a) Clockwise, (b) 3.47 × 10−1 V, (c) 2.31 × 10−1 A
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(13) (a) Clockwise, (b) 0.94 mV, (c) 0.38 mA

(14) (a) Opposite to the solenoid’s current, (b) 0.2 mV, (c) 51 μA, (d) Opposite to

the solenoid’s new current, 0.2 V, 51 mA

(15) (a) 5.89 mV, (b) 23.1 mJ, (c) 8.97 × 10−3 ◦C

(16) (a) 8.011 × 10−3 V, (b) 4.48 × 10−2 �, (c) 178.8 mA, (d) 1.43 × 10−3 W

(17) (a) 235.6 mV, (b) 1.04 × 10−4 J,

(18) (a) �B = μ◦I b In(1 + x/a)/2π, (b) ε =μ◦I b v/[2π(x + a)], F = {μ◦I b v/

[2π(x + a)]}2/(Rv)

(19) 0.18 V

(20) 0.5 T

(21) 0.6 V

(22) (a) 3.75 V, (b) 140.6 mN, (c) 1.406 W

(23) (a) I = BLvArod/[2(vt + L)ρ], (b) P = B2L2v2Arod/[2(vt + L)ρ]
(24) vt = m g R/B2L2 = 0.33 m/s

(25) (a) B L g sin θ cos θ t, (b) The near side has a higher potential

(26) v = (ε◦/BL)[1 − e−(B2L2/mR)t], vt = ε◦/BL

(27) 30 V

(28) 311 V

(29) 198 turns

(30) 4.4 rev/s

(31) 0.156 A

(32) 3.536 A, 5 A

(33) (a) 302.5 �, (b) 806.7 � for the 60-W bulb and 484 � for the 100-W bulb

(34) 110 V

(35) 155.6 V, 14.14 A

(36) (a) 2200 W, (b) 0 and 4400 W

(37) (a) Step-down, (b) 0.12, 8.3

(38) 46

(39) (a) Step-down, (b) 2.7

(40) Req = (NP/NS)
2 R

(41) (a) 55.6 kV, (b) 88.96 MW, 10.1%

(42) 5 × 10−9 N down

(43) 10−9 N up

(44) 6.283 × 10−6 N/C

(45) (a) πr2dB/dt, r < R, (b) 1
2 rdB/dt, r < R, (c) 1

2 (R2/r)dB/dt, r < R, (d) πr2dB/

dt, r < R, (e) πR2dB/dt, r = R, πR2dB/dt, r > R
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Chapter 28

(1) 1.5 V

(2) 1 H

(3) 25 mH

(4) 12.57 mH

(5) 892 turns

(6) 23 turns

(7) (a) 157.1 mH, (b) 10.2 V

(8) (a) 10 V, (b) 8 mH, (C) 0.1 J

(9) (a) 63.33 cm, (b) 795.8 m, (c) 68.1 �

(10) (a) (3/10) H (when in series), (b) (2/30) H (when in parallel)

(11) 2.5 mH

(12) 1.2 V

(13) 20 mH

(14) (a) 105.6 mH, (b) 26.39 V

(15) (a) 17.5 mH, (b) 1 mH, (c) −0.25 V

(16) Leq = L1 + L2 + Ms, Leq = (L1L2 − Mp)/(L1 + L2 − 2Mp)

(17) (a) 1.592 × 104 J/m3, (b) 318 mJ

(18) 112.5 mJ

(19) 9.43 μ J

(20) (a) uB  1.6 × 106 J/m3, uE  4.4 × 10−4 J/m3, (b) E = 6 × 108 N/C =200

Ebreakdown

(21) 320 V

(22) 174.5 μ J

(24) (a) 2.25 H, (b) 180 mJ, (c) 1.2 T, (d) 3819 A/m, (e) 573 kJ/m3

(25) (a) 0.11 τ, (b) 0.69 τ, (c) 2.3 τ

(26) (a) 2.15 s, (b) 4 A

(27) 20 μs, (b) 92.1 μs, (c) 6 mA

(28) (a) 2.49 s, (b) 20.1 �

(29) (a) 300, (b) 16 �, 80 m H

(30) (a) εL(t)= −ε exp(−t/τ), (b) Poutput(t)= (ε2/R)[1 − exp(−t/τ)],(c) Pdiss(t)=
(ε2/R)[1 − exp(−t/τ)]2, (d) dUB(t)/dt = (ε2/R)[1 − exp(−t/τ)]exp(−t/τ),

(e) −0.368 ε, 0.632 (ε2/R), 0.3996 (ε2/R), 0.2326 (ε2/R)

(31) (a) I1 = I2 = 1.2A, I3 = 0, (b) I1 = 2 A, I2 = 2/3 A, I3 = 4/3 A, (c) I1 = 0,

I2 = −2.25A, I3 = −2.25A, (d) I1 = I2 = I3 = 0
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(32) (a) εL(t)= +(9V )exp(−[10−5 s−1]t), (b) 9 V, 0

(33) 12.7 μH

(34) (a) 79.6 Hz, (b) 0.2A, (c) (0.2 A) sin[(500 s−1)t] (d) 10−2 J

(35) 1.59 mH, 15.92 μF

(36) (a) 0.35 nF, (b) 75.1 μH

(37) 0.5 A

(38) Yes, the circuit oscillates with frequency 2236 Hz

(39) (a) Rc = 2 �, and the circuit will oscillate since R < Rc, (b) 95.5 Hz

(c) 5.236 ms, 1.5 %, (d) 1.73 �

(40) 8.163 × 10−3 �

(41) 0.248 H, 25.6 nF

(42) (a) 311 V, (b) v = (311 V) sin(100 π t)

(43) (a) 110 V, (b) 5.5 A, (c) 50 cycle/s

(44) (a) 110 A, (b) 0.58 A

(45) (a) zero, (b) 82.9 mA

(46) 10 �, 22 A

(47) 2.21 kHz

(48) (a) 4.375 k�, (b) 5.029 × 10−2 A, (c) −46.7◦ (The current leads the source

voltage by 46.7◦), (d) 7.587 W, (e) 150.9 V, 160.08 V

(49) (a) 50 Hz, (b) The voltages across the resistor and across the capacitor are not

in phase, the rms voltage across the source will not be the sum of their rms

voltages

(50) (a) 10 �, (b) 11 A, (c) 88 V, 99 V, 33 V

(51) (a) 23.9 mH, 884 μF, (b) 0.8, (c) 968 W

(52) (a) 37.7 �, 4.1 �, 48.5 �, (b) 2.267 A, 3.206 A, (c) 112.2 V, 120.9 V, 13.1 V, vR

= (112.2 V) sin(377 t), vL = (120.9 V) sin (377 t + π/2), vC = (13.1 V) sin

(377 t − π/2), 79.3 V, 85.5 V, 9.3V, (d) 43.8◦, 179.9 W

(54) (a) 2.639 nF, (b) 37.5 mA

(55) (a) 1508 �, 1508 �, (b) 5.63 W

(56) (a) 456.4 rad/s, (b) 73.03 �, 73.03 �, 20 � (c) 0, 12.5 A, (d) 250 V, 913 V,

913 V
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A
Absolute pressure, 320
Absolute zero, 357
Acceleration due to gravity, 14
Acceleration, 48
Acceleration-time graph, 52
Acoustic interferometer, 533
Action-reaction pair, 105
Adding vectors, 25
Addition of vectors, 19
Adiabatic process, 397
Air columns of one closed end, 544
Air film, 613
Air-filled capacitor, 773
Alternating current, 942
Alternating current (ac) generator, 941
Ammonia molecule, 222
Ampere, 642, 810
Ampere’s law, 897
Ampere–Maxwell law, 901
Amplitude

of the oscillations, 145
of the wave, 466

Analyzer, 625
Angle of deviation, 572
Angular

acceleration, 230
acceleration vector, 233
dispersion, 572
displacement, 228
frequency, 452
impulse formula, 295
position, 228
quantities, 228
vectors, 233
velocity, 229
wave number, 467

Angular momentum, 269, 907
of a particle, 269
of a rotating rigid body, 271
of a system of particles, 271

Angular-velocity vector, 233
Antinodes, 479
Applications of ampere’s law, 898
Archimedes’ principle, 323
Armature, 940
Asteroid, 299
Astronomical unit, 12, 13
Atmospheric pressure, 319
Atomic

clock, 6
mass units, 8

Atwood machine, 274
Audible

range, 499
waves, 499

Average
acceleration, 48
angular acceleration, 230
angular speed, 229
current, 810
density, 305
power, 166
pressure, 314
speed, 42, 62
translational energy per molecule, 431
translational kinetic energy per molecule,

431
velocity, 42

Avogadro’s number, 14, 365
Axis of symmetry, 285

B
Back emf, 961
Ballistic pendulum, 199
Beat frequency, 552
Beating, 549
Beats, 550
Bernoulli’s equation, 335
Biot-savart law, 889
Bohr magneton, 906

H. A. Radi and J. O. Rasmussen, Principles of Physics,
Undergraduate Lecture Notes in Physics, DOI: 10.1007/978-3-642-23026-4,
� Springer-Verlag Berlin Heidelberg 2013
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B (cont.)
Bohr model of the hydrogen atom, 656
Boltzmann’s constant, 441
Breakdown potential difference, 785
Bright band, 604
British thermal unit (BTU), 380
Bubble, 376
Bulk modulus, 306, 312
Buoyant forces, 323

C
Calculating capacitance, 775
Calorie, 379
Canonical pendulum, 290
Capacitance, 774
Capacitive reactance, 982
Capacitor, 773

in a parallel, 790
in a series, 792
in an ac circuit, 980
in combination, 773

Capacitor and capacitance, 773
Capacitors and dielectrics, 773
Capacitors with dielectrics, 781
Cargo module, 215
Cathode ray tube, 54
Celsius

scale, 358
temperature, 358

Center of mass, 181
Centimeter-gram-second, 104
Centripetal acceleration, 88
Cesium atomic clock, 7
Cesium clock, 7
Chain-link conversion, 5
Change of phase due to reflection, 611
Characteristic frequency, 7
Charge and mass of the

electron, 644
proton, 644
neutron, 644

Charge carrier, 810
Charged

ring, 695
rod, 672

Charge-field system, 732
Charging

a capacitor, 838
a conductor by induction, 640
a conductor by rubbing, 640
an insulator by induction, 641
conductors, 639
current, 841

Chromatic dispersion, 571
Circuits with an ac source, 977
Classical model of a hydrogen atom, 904
Coaxial shell, 777
Coefficient

of kinetic friction, 108
of linear expansion, 361
of static friction, 108
of viscosity, 341
of volume expansion, 362
of friction, 110

Coherent, 603
Cold-welding, 109
Collisions, 187
Color-coding for resistors, 818
Combination of thin lenses, 590
Compact disk, 235
Completely inelastic collision, 194
Compressed spring, 145
Compressions, 502
Concave mirror, 577, 578
Conduction, 406
Conduction electrons, 810
Conductors in electrostatic equilibrium, 717
Conservation

of angular momentum, 269
of energy, 137, 163
of linear momentum, 181
of mechanical energy, 157

Conservative Forces, 151
Constant

acceleration, 52
angular acceleration, 232
speed (v), 11

Constructive interference, 532
Constructively, 612
Continuous charge distribution, 670
Convection, 406
Conventional positive charge carriers, 825
Converging lens, 586
Convex mirror, 577
Copper loop, 946
Coulomb, 642, 660
Coulomb constant, 642
Coulomb’s Law, 642
Critical angle, 568
Critical point, 443
Critical temperature, 443
Critically damped, 976
Cross product, 29
Crystalline solid, 360
Curie’s law, 913
Current, 809

density, 812
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elements, 890
Cyclic process, 396
Cylindrical

Capacitor, 776
heat flow, 413

D
Damped, 462
Damped simple harmonic motion, 462
Damping constant, 491
Dark band, 604
Decays radioactively, 213
Decibel, 511
Decibel scale, 508
Degrees of freedom, 439
Description of dielectrics, 783
Destructive interference, 532
Destructively, 612
Diamagnetic

loop, 931
materials, 911

Diamagnetism, 910
Diatomic ideal-gas, 439
Dielectric, 781

constant, 781
strength, 785

Differential
current element, 889
magnetic field vector, 890

Diffraction, 615
grating, 620
of light, 604

Dimensional analysis, 9
Dimensionless constant, 108
Direct current (dc), 809
Direct current (dc) generator, 941
Direction cosines, 36
Discharging

a capacitor, 840
current, 841

Dispersion, 571
Dispersion of white light, 572
Displacement

amplitude, 502
antinode, 542
current, 901
node, 542
vector, 17, 71

Distribution of molecular speeds, 441
Diverging

lens, 586
mirrors, 580

Domain walls, 914

Dot product, 27
Double concave lens, 589
Double convex lens, 589
Double glazing, 410
Double-slit experiment, 609
Drag

coefficient, 112
force, 111

Drift
of a free electron, 812
speed, 811

Dumbbell, 301

E
Earth’s

radius, 13
rotation, 14
equator, 12

Elastic
collision, 187
limit, 307
modulus, 306
potential energy, 155
properties of solids, 306

Elasticity
in length, 307
of shape, 310

Electric
charge, 637
charge-storing devices, 773
circuits, 809
current, 809
current density, 811
flux, 701
force, 637
generators, 940
point charge, 38
potential difference, 734
potential due to a charged conductor, 757
potential due to a charged rod, 749
potential due to a dipole, 745
potential due to a point charge, 741
potential due to a uniformly charged arc,

752
potential due to a uniformly charged disk,

754
potential due to a uniformly charged ring,

753
field, 659
potential, 731
potential energy, 731, 742
power, 823
resistance, 814
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E (cont.)
Electric dipole, 664

in an external electric field, 747
dipole moment, 746

Electric field, 659
along the dipole axis, 667
field lines, 684
of a point charge, 660
of an electric dipole, 666

Electrical
breakdown, 785
force, 642
resistance, 815

Electrically
charged, 637
polarized, 641

Electrified, 637
Electromagnet, 919
Electromagnetic disturbance, 949
Electromagnetic wave (EMW), 561, 947, 949
Electromotive force, 825
Electron-volt, 735
Electrostatic precipitators, 761
Energy converter, 825
Energy, 137

density, 796
levels, 7
of the simple harmonic oscillator, 459
stored in a charged capacitor, 795
stored in an inductor, 966

Energy power and intensity of sound waves,
505

Equality of vectors, 19
Equation of continuity, 330
Equation of state, 365
Equilibrium position, 145
Equipartition, 431
Equipotential surface, 738
Equivalent

capacitor, 790
resistor, 829

Expansions, 502
Extended object, 200
External forces, 199

F
Fahrenheit scale, 358
Farad, 774
Faraday’s law of induction, 933
Ferromagnetic materials, 914
Ferromagnetism, 914
Fiber optics, 569
First harmonic, 483

First law of thermodynamics, 379, 395
Flat refracting surfaces, 584
Fluid dynamics (hydrodynamics), 314, 328
Fluid statics (hydrostatics), 314
Fluids, 303
Focal length, 577
Force, 103

constant, 144
of friction, 108
of tension, 110

Force-time graph, 213
Formation

of images by reflection, 575
of images by refraction, 583

Fraunhofer diffraction, 616
Free fall, 57
Free-body diagram, 107
Free-expansion process, 398
Free-fall acceleration, 57
Frequency, 465
Fresnel diffraction, 616
Frictionless, 108, 130
Fringe order number, 606
Fringes, 604
Fundamental frequency, 484

G
Gas constant, 366
Gases, 303
Gauge pressure, 320
Gauss’s law, 701, 705
Gauss’s law for magnetism, 903
Gaussian surface, 705
Geometrical optics, 561
Gravitational

attraction, 106
force of attraction, 646
potential energy, 154

Greatest possible displacements, 538
Group of particles, 200
Gyroscope, 285

H
Hard ferromagnetic material, 917
Harmonic

motion, 451
waves, 466

Hearing response to intensity and frequency,
514

Heat, 379
capacity, 380
transfer, 406
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transfer at a steady state, 412
Heat and work, 390
Helium-filled, 327
Helmholtz coils, 924
Henry, 963
High-voltage capacitors, 786
Hockey puck, 217
Home insulation, 412
Hooke’s law, 144
Horizontal

motion, 80
range, 81

Horsepower, 166
Human auditory system, 526
Huygens’ principle, 616
Hydrogen atom, 100
Hysteresis, 916
Hysteresis loop, 917

I
Iceberg, 326
Ice-skater, 210, 418
Ideal

battery, 825
emf, 826
fluid, 328, 334
gas, 365
gas model, 365
string, 464

Idealized adiabatic process, 397
Image, 575
Impedance, 985
Impulse, 182
Impulse-momentum theorem, 182
In phase, 532, 978
Incident pulse, 481
Incoherent, 603
Incompressible flow, 328
Index of refraction, 564
Induced

current, 933
electric dipole moments, 784
electric field, 784, 945
emf, 933

Inductive reactance, 982
Inductors, 963
Inductors in an ac circuit, 979
Inelastic collisions, 187, 194
Inertial

frames, 104
reference frames, 104

Infinite
plane sheet, 709

rod, 724
sheet of charge, 677

Infrasonic waves, 499
Instantaneous

acceleration, 49
angular acceleration, 230
angular velocity, 229, 253
current, 810
power, 167
velocity, 44

Insulators, 640
Intensity, 508
Intensity of single-slit diffraction patterns, 618
Interference, 531

in time, 549
of light, 603
pattern, 604

Internal energy, 379
of a diatomic ideal gas, 439
of a monatomic ideal gas, 433
of an ideal gas, 433

Internal forces, 199
International system of units, 3
Intrinsic

angular momentum, 907
magnetic-dipole moments, 908

Intrinsic-spin magnetic dipole moment, 907
Inverse square law, 508
Ionization breakdown of air, 762
Irreversible

domains, 915
magnetization, 915

Irrotational flow, 322
Isobaric process, 398
Isolated

conductor, 707
sphere, 779
system, 396, 397

Isothermal, 400
Isothermal expansion, 401
Isotropic solid, 363
Isotropically, 562
Iso-volumetric, 399

J
Joule, 380
Junction rule, 834

K
Kelvin scale, 357
Kilowatt-hour, 166
Kinematics, 41
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K (cont.)
Kinetic energy, 148
Kinetic friction, 108
Kirchhoff’s two rules, 809

L
Laminar flow, 340
Large-charge storage capacitors, 786
Latent heat, 385

of condensation, 385
of fusion, 385
of solidification, 385
of vaporization, 385

Lateral magnification, 576
Law

of conservation of energy, 166
of heat conduction, 407
of inertia, 104
of reflection, 564
of refraction, 564

Lens-makers’ equation, 587
Lenz’s law, 933
Lever arm, 238
Light

bulb, 850
intensity, 605
rays, 561

Linear
expansion, 361
material, 816
momentum, 181
wave equation, 476

Liquids, 303
Liquid state, 442
Locomotive, 213
Longitudinal

sound pulse, 500
waves, 463, 499

Loop rule, 834
Loops in the string, 484
Low-voltage capacitors, 785
L-C circuit, 971
L-R circuit, 967
L-R-C circuit, 974
L-R-C series in an ac circuit, 984

M
Mach

cone, 521
number, 522

Macroscopi parameters, 427
Macroscopic behavior of the ideal gas, 431

Magnetic
circuit breakers, 920
dipole moment, 904
domains, 914
flux, 903
force between two parallel currents, 895
hysteresis, 917
materials, 908
permeability, 911
properties, 908
quantum number, 907
susceptibility, 911

Magnetic field
at the center of a circular wire loop, 891
due to a curved wire segment, 891
inside and outside a long straight wire, 898
of a solenoid, 899
of a toroid, 899
on the axis of a circular wire loop, 892
on the extension of a straight wire, 890

Magnetization
curve, 916
vector, 909

Malus’s law, 625
Mass

density, 304
flow rate, 330

Massless, 110
Matter waves, 463
Maximum height, 81
Maxwell’s equations, 947
Maxwell-Boltzmann distribution, 441
Measuring pressures, 319
Mechanical

energy, 460
model, 360

Mechanics, 41
Megaparsec, 13
Mercury barometer, 319
Metric system, 3
Microscopic model, 427
Millimeter of mercury, 315
Molar mass, 366
Molar specific heat

at constant pressure, 434, 436
at constant volume, 434, 435
capacity of an ideal gas, 434

Molecular model
Moment, 238

arm, 238
of inertia, 241

Momentum, 181
Monatomic

gases, 437
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ideal gas, 433
Monochromatic light, 573
Moon’s

orbit, 13
radius, 13

Most probable speed, 441
Motion

in one dimension, 41
in two dimensions, 71
of charged particles, 686

Motional emf, 936
Moving

observer, 515
source, 517

Multiplying vectors, 27
Mutual inductance, 964

N
Negative

of a vector, 20
terminal, 825

Net
flux, 704
force, 103

Newton, 3, 660
Newton’s

first law, 104
gravitational law, 642
law of gravity, 731
law of universal gravitation, 643
rings, 613
second law for rotation, 240
second law, 104
third law, 105

Newton’s law, 15
Niels bohr, 646
Nodes, 478
Non-conducting rod, 675
Non-conductive semicircular arc, 695
Nonconductors, 640
Non-conservative forces, 151
Non-ideal gas, 442
Non-linear material, 816
Non-ohmic, 816
Non-radiating lc circuit, 971
Non-stretchable, 120
Non-uniform

circular motion, 91
velocity gradient, 341

Non-viscous flow, 328
Normal

force, 107
modes, 482

North pole, 12
Number

of beats per second, 552
of kilomoles, 366

O
Ohm, 816
Ohm’s law, 814
Ohmic material, 816
One

kilogram, 8
kilomole, 365
meter, 6
mole, 365
second, 7

One-dimensional analysis, 142
One-dimensional wave, 494
Open-tube manometer, 320
Optical fibers, 568, 569
Orbital

angular momentum, 905
magnetic, 905
magnetic dipole moments of atoms, 904
quantum number, 905

Orientation potential energy, 906
Origin

of magnetism, 904
of magnetic field, 889

Oscillating
circuit, 971
L-C Circuit, 971

Oscillation frequency, 7
Out of phase, 533
Overdamped, 533, 976
Oxygen

atom, 220
nucleus, 221

P
Parabolic

path, 200
trajectory, 80

Parallel-axis theorem, 243
Parallelepiped, 37
Parallelogram, 37
Parallel-plate capacitor, 773, 775
Paramagnetic materials, 913
Paramagnetism, 910
Paraxial rays, 578
Parent atomic nucleus, 213
Particles, 561
Pascal, 315
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P (cont.)
Pascal’s

law, 318
principle, 318

Path
difference, 605
length, 534

Peak
current out of phase, 980
voltage, 980

Pendulum bob, 175
Period

of revolution, 88
of the motion, 452

Periodic
motion, 451
sound waves, 502

Permanent electric dipole moments, 783
Permeability of free space, 889
Permittivity constant, 643
Phase, 466

angle, 452
change, 384
constant, 452
transition, 384

Phases of matter, 442
Phase-shifted sine, 979
Phasor diagram, 985
Photons, 561
Physical optics, 561, 603
Planck’s constant, 905
Plane mirror, 575
Plane of polarization, 624
Plane wave of light, 563
Plane-polarized light, 626
Point-like object, 41
Poise, 341
Poiseuille, 341
Poisson’s ratio, 309
Polar dielectrics, 783
Polarization of light, 624
Polarized, 624
Polarized light, 625
Polarizer, 625
Polarizing sheet, 625
Polluted air, 761
Position vector, 71
Positiontime graph, 42
Positive terminal, 825
Potential difference, 734

due to a uniformly charged sphere, 756
energy, 151
gradient, 758

Potential, 733

Power, 137
factor, 986
in rotational motion, 251
plant, 958

Poynting vector, 38
Prefixes for si units, 4
Pressure

antinode, 542
in fluids, 314
node, 542
variation amplitude, 503
variation, 524

Primary coil, 944
Principal axis, 577
Principle of conservation of mechanical

energy, 159
Prisms, 571
Projectile motion, 79
Proper fundamental frequency, 553
Properties of vectors, 19
Pulley, 128
Pure rotational motion, 253
Pyramid, 222

Q
Quantization, 907
Quantization rules, 905
Quantum number, 905
Quasistatically, 391

R
Radial acceleration, 88
Radian measures, 227
Radiation, 406
Radio and TV sets, 988
Railroad, 214
Random zigzag motion, 812
Randomly-oriented orbital magnetic dipole

moments of atoms, 907
Rarefactions, 502
Rate of energy (or power) transferred by the

wave through the string, 474
Rate of shear strain, 341
Ray diagrams for thin lenses, 588
RC circuit, 838
Reactance and phasors in an ac circuit, 982
Real batteries, 826
Real focal point, 577
Recoil freely, 186
Reference

configuration, 732
potential energy, 732
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Reflected, 563
Reflected interference fringes, 620
Reflection

at a boundary, 481
gratings, 620

Refracted, 563
Refraction of light, 563
Relating angular and linear quantities, 233
Relative

density, 305
permeability of the material, 911

Relaxed spring, 144
Resistance, 823
Resistance-free, 971
Resistivity, 814
Resistors

in a parallel combination, 831
in an ac circuit, 978
in series, 829

Resolving power, 622
Resonance, 482, 988
Resonance in L-R-C series circuit, 988
Resonant frequencies, 482
Restoring force, 144
Resultant force, 103
Right-hand rule, 29
Right-handed coordinate, 36
Right-handed screw, 30
Rigid body, 233
Rms (root mean square), 444
Rms speeds, 432
Rocket propulsion, 205
Roller-coaster, 179
Rolling

as pure rotation, 253
as rotation and translation combined, 252
motion, 252
with friction, 255

Rotational
dynamics, 227
kinematics, 227
kinetic energy, 248
motion, 227

S
Safest resistance, 850
Satellite, 89
Scalar product, 27
Scatterers, 811
Scientific notation, 3
Second

harmonic, 483
standard mass, 8

Secondary
coil, 944
wave, 616

Seismic waves, 463
Self-induced emf, 961
Self-inductance, 961, 963
Self-induction, 961
Shear modulus, 306, 311
Shearing

strain, 310
stress, 310

Shock wave, 521
Simple harmonic motion, 451, 456
Simple pendulum, 14
Single slit, 616
Sinusoidal

function, 550
voltage, 977
waves, 463

Siphon, 352
Sliding, 255
Slip-rings, 941
Smallest unit charge in nature, 644
Snell’s law, 568
Soft ferromagnetic material, 917
Solar eclipse, 13, 14
Sonar (sound navigation and ranging), 519
Sonic boom, 522
Sound

energy, 534
level, 511
waves, 499

Source of electromotive force, 825
Spaceship, 215
Spatial interference, 533, 549
Specific heat, 380
Speed

of a particle, 46
of light, 6, 949
sound waves, 499
waves on strings, 470

Spherical
aberration, 578
capacitor, 777
mirrors, 576
refracting surfaces, 583
waves, 508

Spin, 907
magnetic dipole moments of electrons, 907
quantum number, 907

Spinning top, 285
Spin-projection, 907
Split-ring commutator, 941
Spring constant, 144
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S (cont.)
Standard

kilogram, 8
of time, 6
temperature and pressure, 444

Standing
sound waves in air columns, 541
sound waves, 478, 537
wave, 478
waves and resonance, 482

Standing-wave patterns, 480, 539
Static friction, 108
Stationary

observer, 517
source, 515

Steady flow, 328
Steady-state electric circuits, 809
Step-down transformer, 944
Step-up transformer, 944
Stereo amplifier, 526

formula, 342
law, 342

Strain, 306
Stream tube, 329
Streamline, 328
Strength, 910
Stress, 306
Stretched spring, 145
String waves, 470
Strongly transmitted, 612
Submarines, 520
Sun’s radius, 13
Superposition, 531

of sound waves, 531
principle, 478

Supersonic Speeds, 521
Surrounding

a thin straight wire, 891
a very long straight wire, 891

Symmetry axis, 577
System

of point charges, 741
of decreasing mass, 205
of increasing mass, 203

T
Tangential

acceleration, 90
speed, 90
velocity, 234

Temperature, 357
Temperature coefficient of resistivity, 817
Temporal interference, 549

Tensile
strain, 307
stress, 307

Terminal speed, 112
The doppler effect, 514
The force law for SHM, 455
The mechanical equivalent of heat, 379
The mirror equation, 578
The thin lens equation, 586
The van de graaff generator, 762
Thermal

conductivity, 407
energy, 379
expansion, 360

Thermal conduction, 406
in one dimension (plain walls), 406
in two dimensions, 413

Thermodynamic, 390
path, 394
process, 390, 395

Thin
films, 611
lenses, 586
spherical shell, 716

Thin-lens equation, 588
Third harmonic, 483
Three-dimensional analysis, 147
Three-dimensional array, 314
Threshold

of hearing, 505, 514
of pain, 505, 511

Thrust, 207
Time constant, 840, 968
Time of flight, 83
Torque, 227
Torr, 315
Torricelli’s law, 337
Torsional shear, 310
Total

energy, 460
internal reflection, 568
linear momentum, 185
magnetic field, 909
translational energy, 431

Trajectory, 79
Transfer of energy, 379
Transformer, 943
Transformer equation, 944
Translational motion, 200
Transmission

gratings, 620
line, 958

Transmitted
beam, 626
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interference fringes, 620
Transverse

motion, 464
wave, 464

Trapezoid, 143
Triple point of water, 357
Tube of flow, 329
Tuning fork, 545
Types

of capacitors, 785
of deformations, 306

U
Ultracentrifuge, 101
Ultrasonic waves, 499
Undamped,

frequency, 491
circuit, 976

Uniform
acceleration, 15
circular motion, 87, 91
electricfield, 686
magnetic field, 38

Uniformly
charged arc, 679
charged disk, 682
charged ring, 681

Unit
of measurement, 3
of time, 7
vectors, 22

Units of
length, 5
time, 5
mass, 3, 5

Universal gravitation, 15
Unpolarized, 624
Unpolarized light, 625

V
Variable capacitors, 786
Variation

of pressure with depth, 316
of resistance with temperature, 816

Vector
components, 22
product, 29

Vectors and scalars, 17
Velocity and acceleration of SHM, 452
Velocity-time graph, 52
Verge of slipping, 108

Vertical motion, 80
Vibrational motion, 199, 438
Virtual

focal point, 577
image, 576

Viscosity, 340
Visible spectrum, 615
Volt, 734
Volume

expansion, 362
flow rate, 331
of 1 kmol, 367
strain, 312
stress, 312

W
Water molecule, 14
Watt, 166
Wave

crest, 515
front, 515
length, 465
number, 467
optics, 603
pattern, 539
velocity, 466

Weight, 106
Work done

by a constant force, 137
by a spring, 144
by a variable force, 142
by a weight, 138
by friction, 140
by non-conservative forces, 162
by the applied force, 171
by weight, 171
in rotational motion, 250

Work, 137
Work-energy, 137
Work-energy principle for rotational

motion, 251
Work-energy-theorem, 137

Y
Young’s double slit experiment, 604
Young’s modulus, 306

Z
Zero amplitudes, 538
Zero internal resistance, 825
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